
ptg999

ptg999

Objective-C
Programming

THE BIG NERD RANCH GUIDE

AARON HILLEGASS & MIKEY WARD

ptg999

Objective-C Programming

Objective-C Programming: The Big Nerd Ranch Guide
by Aaron Hillegass and Mikey Ward

Copyright © 2013 Big Nerd Ranch, LLC.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, contact

Big Nerd Ranch, LLC.
1989 College Ave NE
Atlanta, GA 30317
(404) 478-9005
http://www.bignerdranch.com/
book-comments@bignerdranch.com

The 10-gallon hat with propeller logo is a trademark of Big Nerd Ranch, LLC.

Exclusive worldwide distribution of the English edition of this book by

Pearson Technology Group
800 East 96th Street
Indianapolis, IN 46240 USA
http://www.informit.com

The authors and publisher have taken care in writing and printing this book but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

App Store, Apple, Cocoa, Cocoa Touch, Instruments, Interface Builder, iMac, iOS, iPad, iPhone, iTunes, Mac, OS
X, Objective-C, PowerBook, and Xcode are trademarks of Apple, Inc., registered in the U.S. and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

ISBN-10 032194206X
ISBN-13 978-0321942067

Second edition, second printing, March 2014

http://www.bignerdranch.com/
http://www.informit.com

ptg999

iii

Acknowledgments
It is a great honor that we get to work with such amazing people. Several of them put a lot of time and
energy into making this book great. We’d like to take this moment to thank them.

• The other instructors who teach our Objective-C class fed us with a never-ending stream of
suggestions and corrections. They are Scott Ritchie, Bolot Kerimbaev, Christian Keur, Jay
Campbell, Juan Pablo Claude, Owen Mathews, Step Christopher, TJ Usiyan, and Alex Silverman.

• Sarah Brown, Sowmya Hariharan, Nate Chandler, and James Majors kindly helped us find and fix
flaws.

• Our brilliant editor, Susan Loper, took a stream-of-consciousness monologue that stumbled across
everything a programmer needs to know and honed it into an approachable primer.

• Ellie Volckhausen designed the cover.

• Chris Loper at IntelligentEnglish.com designed and produced the print book and the EPUB and
Kindle versions.

• The amazing team at Pearson Technology Group patiently guided us through the business end of
book publishing.

ptg999

This page intentionally left blank

ptg999

v

Table of Contents
I. Getting Started .. 1

1. You and This Book ... 3
C and Objective-C .. 3
How this book works .. 4
How the life of a programmer works .. 4

2. Your First Program .. 7
Installing Apple’s developer tools .. 7
Getting started with Xcode ... 7
Where do I start writing code? .. 9
How do I run my program? .. 14
So, what is a program? .. 15
Don’t stop ... 16

II. How Programming Works .. 19
3. Variables and Types ... 21

Types .. 21
A program with variables ... 22
Challenge .. 24

4. if/else .. 25
Boolean variables .. 27
When curly braces are optional ... 27
else if ... 27
For the more curious: conditional operators ... 28
Challenge .. 28

5. Functions ... 29
When should I use a function? .. 29
How do I write and use a function? .. 29
How functions work together .. 31

Standard libraries .. 32
Local variables, frames, and the stack ... 33
Scope .. 34
Recursion .. 35
Looking at frames in the debugger ... 38
return .. 40
Global and static variables .. 41
Challenge .. 42

6. Format Strings .. 43
Using tokens .. 43
Escape sequences .. 44
Challenge .. 45

7. Numbers .. 47
Integers ... 47

Tokens for displaying integers ... 48
Integer operations ... 49

Floating-point numbers .. 52
Tokens for displaying floating-point numbers ... 52

ptg999

Objective-C Programming

vi

The math library ... 52
Challenge .. 53
A note about comments ... 53

8. Loops .. 55
The while loop ... 56
The for loop .. 57
break .. 58
continue .. 59
The do-while loop ... 60
Challenge: counting down .. 60
Challenge: user input ... 61

9. Addresses and Pointers ... 65
Getting addresses .. 65
Storing addresses in pointers ... 66
Getting the data at an address ... 67
How many bytes? ... 67
NULL ... 68
Stylish pointer declarations ... 69
Challenge: how much memory? ... 70
Challenge: how much range? .. 70

10. Pass-By-Reference ... 71
Writing pass-by-reference functions ... 72
Avoid dereferencing NULL ... 74
Challenge .. 74

11. Structs ... 75
Challenge .. 77

12. The Heap ... 79
III. Objective-C and Foundation .. 83

13. Objects .. 85
Objects .. 85

Classes .. 85
Creating your first object .. 86

Methods and messages ... 88
Message sends .. 88
Another message ... 89
Class methods vs. instance methods ... 90
Sending bad messages ... 91
A note on terminology ... 93

Challenge .. 94
14. More Messages ... 95

A message with an argument .. 95
Multiple arguments ... 96
Nesting message sends ... 98
alloc and init .. 99
Sending messages to nil ... 99
id ... 100
Challenge ... 100

15. Objects and Memory .. 103

ptg999

Objective-C Programming

vii

On pointers and their values .. 103
Memory management ... 105

ARC ... 106
16. NSString .. 109

Creating instances of NSString .. 109
NSString methods ... 109
Class references .. 110
Other parts of the documentation ... 116
Challenge: finding more NSString methods .. 117
Challenge: using readline() ... 117

17. NSArray ... 119
Creating arrays .. 119
Accessing arrays ... 120
Iterating over arrays ... 123
NSMutableArray ... 125
Old-style array methods ... 126
Challenge: a grocery list ... 127
Challenge: interesting names ... 127

18. Your First Class ... 129
Accessor methods .. 133

Accessor naming conventions .. 133
self ... 134
Multiple files .. 134
Class prefixes ... 134
Challenge ... 135

19. Properties ... 137
Declaring properties ... 137
Property attributes ... 138
Dot notation ... 139

20. Inheritance .. 141
Overriding methods ... 144
super ... 145
Inheritance hierarchy .. 146
description and %@ .. 147
Challenge ... 148

21. Object Instance Variables and Properties .. 151
Object ownership and ARC ... 153

Creating the BNRAsset class ... 154
Adding a to-many relationship to BNREmployee .. 155

Challenge: holding portfolio .. 159
Challenge: removing assets ... 160

22. Class Extensions .. 161
Hiding mutability .. 162
Headers and inheritance .. 163
Headers and generated instance variables ... 164
Challenge ... 164

23. Preventing Memory Leaks ... 165
Strong reference cycles .. 167

ptg999

Objective-C Programming

viii

Weak references .. 170
Zeroing of weak references ... 171
For the More Curious: manual reference counting and ARC history 173

Retain count rules ... 174
24. Collection Classes .. 177

NSSet/NSMutableSet ... 177
NSDictionary/NSMutableDictionary ... 180
Immutable objects ... 183
Sorting arrays ... 184
Filtering ... 185
Collections and ownership .. 186
C primitive types ... 186
Collections and nil .. 187
Challenge: reading up .. 187
Challenge: top holdings .. 187
Challenge: sorted holdings .. 187

25. Constants .. 189
Preprocessor directives ... 190

#include and #import ... 191
#define .. 191

Global variables .. 192
enum ... 193
#define vs. global variables ... 195

26. Writing Files with NSString and NSData .. 197
Writing an NSString to a file .. 197
NSError ... 198
Reading files with NSString .. 200
Writing an NSData object to a file ... 200
Reading an NSData from a file .. 202
Finding special directories .. 202

27. Callbacks .. 205
The run loop .. 206
Target-action ... 206
Helper objects ... 209
Notifications ... 212
Which to use? .. 214
Callbacks and object ownership ... 214
For the more curious: how selectors work .. 215

28. Blocks .. 217
Using blocks .. 218

Declaring a block variable .. 218
Composing a block .. 219
Passing in a block ... 220
typedef .. 222

Blocks vs. other callbacks ... 223
More on blocks ... 223

Return values .. 223
Anonymous blocks .. 224

ptg999

Objective-C Programming

ix

External variables .. 224
Challenge: an anonymous block ... 227
Challenge: using a block with NSNotificationCenter .. 227

29. Protocols .. 229
Calling optional methods .. 231

30. Property Lists .. 233
Challenge ... 236

IV. Event-Driven Applications ... 237
31. Your First iOS Application .. 239

GUI-based applications .. 239
Getting started with iTahDoodle ... 240
BNRAppDelegate .. 241
Model-View-Controller ... 242
The application delegate ... 244
Setting up views ... 245
Running on the iOS simulator ... 248
Wiring up the button .. 249
Wiring up the table view .. 251
Saving and loading data ... 255

Adding a C helper function ... 255
Saving task data .. 256
Loading task data .. 256

For the more curious: what about main()? .. 257
For the more curious: running iTahDoodle on a device ... 257

32. Your First Cocoa Application ... 259
Getting started with TahDoodle .. 260
Setting up views in Interface Builder .. 262

Setting up the button .. 263
Setting up the table view .. 265
Adding autolayout constraints .. 268

Making connections ... 270
File’s Owner ... 270
Setting the button’s target-action pair .. 271
Connecting the table view ... 273

Implementing NSTableViewDataSource ... 275
Saving and loading data ... 277
Challenge ... 278

V. Advanced Objective-C .. 279
33. init .. 281

Writing init methods .. 281
A basic init method ... 282

instancetype .. 282
Using and checking the superclass initializer .. 283

init methods that take arguments .. 283
Using accessors .. 285
Multiple initializers .. 286
Deadly init methods ... 289

34. More about Properties ... 291

ptg999

Objective-C Programming

x

More on property attributes ... 291
Mutability .. 291
Lifetime specifiers ... 291
Advice on atomic vs. nonatomic .. 294

Implementing accessor methods ... 294
35. Key-Value coding ... 297

Non-object types ... 299
Key paths ... 299

36. Key-Value Observing .. 301
Using the context in KVO .. 302
Triggering the notification explicitly ... 303
Dependent properties ... 304

37. Categories ... 305
Challenge ... 306

VI. Advanced C .. 307
38. Bitwise Operations ... 309

Bitwise-OR .. 310
Bitwise-AND .. 311
Other bitwise operators .. 312

Exclusive-OR ... 312
Complement ... 313
Left-shift .. 313
Right-shift .. 314

Using enum to define bit masks ... 314
More bytes ... 315
Challenge ... 315

39. C Strings .. 317
char .. 317
char * ... 318
String literals .. 321
Converting to and from NSString ... 322
Challenge ... 322

40. C Arrays .. 323
Challenge ... 325

41. Running from the Command Line ... 329
Command-line arguments ... 330
More convenient running from the command-line .. 333

42. Switch Statements .. 335
Appendix: The Objective-C Runtime .. 337

Introspection ... 337
Dynamic method lookup and execution ... 337
Management of classes and inheritance hierarchies .. 338
How KVO works .. 342
Final notes ... 344
Challenge: instance variables ... 344

Next Steps ... 345
Index ... 347

ptg999

Part I
Getting Started

ptg999

This page intentionally left blank

ptg999

3

1
You and This Book

Let’s talk about you for a minute. You want to write applications for iOS or OS X, but you have not
done much (or any) programming in the past. Your friends have raved about other Big Nerd Ranch
books (like iOS Programming: The Big Nerd Ranch Guide and Cocoa Programming for Mac OS X),
but they are written for experienced programmers. What should you do?

Read this book.

There are similar books, but this one is the one you should read. Why? We have been teaching people
how to write applications for iOS and the Mac for a long time now, and we have identified what you
need to know at this point in your journey. We have worked hard to capture that knowledge and dispose
of everything else. There is a lot of wisdom and very little fluff in this book.

Our approach is a little unusual. Instead of simply trying to get you to understand the syntax of
Objective-C, we will show you how programming works and how experienced programmers think
about it.

Because of this approach, we are going to cover some heavy ideas early in the book. You should not
expect this to be an easy read. In addition, nearly every idea comes with a programming experiment.
This combination of learning concepts and immediately putting them into action is the best way to
learn programming.

C and Objective-C
When you run a program, a file is copied from the file system into memory (RAM), and the
instructions in that file are executed by your computer. Those instructions are inscrutable to humans.
So, humans write computer programs in a programming language. The very lowest-level programming
language is called assembly code. In assembly code, you describe every step that the CPU (the
computer’s brain) must take. This code is then transformed into machine code (the computer’s native
tongue) by an assembler.

Assembly language is tediously long-winded and CPU-dependent (because the brain of your new iMac
can be quite different from the brain of your well-loved, well-worn PowerBook). In other words, if you
want to run the program on a different type of computer, you will need to rewrite the assembly code.

To make code that could be easily moved from one type of computer to another, we developed “high-
level languages.” With high-level languages, instead of having to think about a particular CPU, you
can express the instructions in a general way, and a program (called a compiler) will transform that
code into highly-optimized, CPU-specific machine code. One of these high-level languages is C. C
programmers write code in the C language, and a C compiler converts the C code into machine code.

ptg999

Chapter 1 You and This Book

4

The C language was created in the early 1970s at AT&T. The Unix operating system, which is the basis
for OS X and Linux, was written in C with a little bit of assembly code for very low-level operations.
The Windows operating system is also mostly written in C.

The Objective-C programming language is based on C, but it adds support for object-oriented
programming. Objective-C is the programming language that is used to write applications for Apple’s
iOS and OS X operating systems.

How this book works
In this book, you will learn enough of the C and Objective-C programming languages to learn to
develop applications for the Mac or for iOS devices.

Why are we going to teach you C first? Every effective Objective-C programmer needs a pretty deep
understanding of C. Also, many ideas that look complicated in Objective-C have very simple roots
in C. We will often introduce an idea using C and then push you toward mastery of the same idea in
Objective-C.

This book was designed to be read in front of a Mac. You will read explanations of ideas and carry
out hands-on experiments that will illustrate those ideas. These experiments are not optional. You will
not really understand the book unless you do them. The best way to learn programming is to type in
code, make typos, fix your typos, and become physically familiar with the patterns of the language.
Just reading code and understanding the ideas in theory will not do much for you and your skills.

For even more practice, there are exercises called Challenges at the end of each chapter. These
exercises provide additional practice and will make you more confident with what you have just
learned. We strongly suggest you do as many of the Challenges as you can.

You will also see sections called For the More Curious at the end of some chapters. These are more in-
depth explanations of topics covered in the chapter. They are not absolutely essential to get you where
you are going, but we hope you will find them interesting and useful.

Big Nerd Ranch hosts a forum where readers discuss this book and the exercises in it. You can find it at
http://forums.bignerdranch.com/.

You will find this book and programming in general much more pleasant if you know how to touch-
type. Touch-typing, besides being faster, enables you to look at your screen and book instead of at the
keyboard. This makes it much easier to catch your errors as they happen. It is a skill that will serve you
well for your entire career. There are numerous typing tutor programs available for the Mac.

How the life of a programmer works
By starting this book, you have decided to become a programmer. You should know what you have
signed up for.

The life of a programmer is mostly a never-ending struggle. Solving problems in an always-changing
technical landscape means that programmers are always learning new things. In this case, “learning
new things” is a euphemism for “battling against our own ignorance.” Even if a programmer is just
fixing a bug in code that uses a familiar technology, sometimes the software we create is so complex
that simply understanding what is going wrong can take an entire day.

http://forums.bignerdranch.com/

ptg999

How the life of a programmer works

5

If you write code, you will struggle. Most professional programmers learn to struggle hour after hour,
day after day, without getting (too) frustrated. This is another skill that will serve you well. If you are
curious about the life of programmers and modern software projects, we highly recommend the book
Dreaming in Code by Scott Rosenberg.

Now it is time to jump in and write your first program.

ptg999

This page intentionally left blank

ptg999

7

2
Your First Program

Now that you know how this book is organized, it is time to see how programming for the Mac and for
iOS devices works. To do that, you will:

• install Apple’s Developer Tools

• create a simple project using those tools

• explore how these tools are used to make sure your project works

At the end of this chapter, you will have successfully written your first program for the Mac.

Installing Apple’s developer tools
To write applications for OS X (the Mac) or iOS (the iPhone and friends), you will be using Apple’s
developer tools. The main application that you will need is called Xcode.

Xcode is only available on the Mac (not Windows or Linux), so you will need a Mac to work with this
book. In addition, this book is based on Xcode�5, which is compatible with OS X 10.8 (Mountain Lion)
and higher.

You can download the latest version of Xcode for free from the Mac�App�Store. You may want to drag
the Xcode icon onto your Dock; you will be using it an awful lot.

Getting started with Xcode
Xcode is Apple’s Integrated Development Environment. Everything you need to write, build, and run
new applications is in Xcode.

A note on terminology: anything that is executable on a computer we call a program. Some programs
have graphical user interfaces; we call these applications.

Some programs have no graphical user interface and run for days in the background; we call these
daemons. Daemons sound scary, but they are not. You probably have about 60 daemons running on
your Mac right now. They are waiting around, hoping to be useful. For example, one of the daemons
running on your system is called pboard. When you do a copy and paste, the pboard daemon holds
onto the data that you are copying.

Some programs have no graphical user interface and run for a short time in the terminal; we call
these command-line tools. In this book, you will be writing mostly command-line tools to focus on
programming essentials without the distraction of creating and managing a user interface.

ptg999

Chapter 2 Your First Program

8

Now you are going to create a simple command-line tool using Xcode so you can see how it all works.

When you write a program, you create and edit a set of files. Xcode keeps track of those files in a
project. Launch Xcode. From the File menu, choose New and then Project….

To help you get started, Xcode suggests a number of project templates. You choose a template
depending on what sort of program you want to write. In the lefthand column, select Application from
the OS�X section. Then choose Command�Line�Tool from the choices that appear to the right.

Figure 2.1 Choosing a template

Click the Next button.

Name your new project AGoodStart. The organization name and company identifier will not
matter for the exercises in this book, but they are required to continue. Use Big�Nerd�Ranch and
com.bignerdranch. From the Type pop-up menu, select C.

ptg999

Where do I start writing code?

9

Figure 2.2 Choosing project options

Click the Next button.

In the next window, choose the folder in which you want your project directory to be created. (If you
are unsure, accept the default location that Xcode suggests.) You will not need a repository for version
control, so uncheck the box labeled Create�git�repository. Finally, click the Create button.

You will be creating this same type of project for the next several chapters. In the future, we will just
say, “Create a new C�Command�Line�Tool named program-name-here” to get you to follow this same
sequence.

Why are you creating C projects? Objective-C is built on top of the C programming language. You will
need to have an understanding of parts of C before you can get to the particulars of Objective-C.

Where do I start writing code?
After creating your project, you will be greeted by a window displaying lots of information about
AGoodStart.

ptg999

Chapter 2 Your First Program

10

Figure 2.3 First view of the AGoodStart project

This window is more detailed than you need, so let’s make it a little simpler.

First, at the top right corner of the window, find three buttons that look like this: .

These buttons hide and show different areas of the window. You will not need the righthand area until
later, so click the righthand button to hide it.

ptg999

Where do I start writing code?

11

You now have two areas at your disposal: the navigator area on the left and the editor area on the
right.

Figure 2.4 Navigator and editor areas in Xcode

The navigator area displays the current navigator. There are several navigators, and each one provides
a different way to examine the contents of your project. You are looking at the project navigator. This
navigator lists the files that make up your project.

In the project navigator, find a file named main.c and click on it. (If you do not see main.c, click the
triangle next to the folder labeled AGoodStart to reveal its contents.)

When you select main.c in the project navigator, the editor area changes to display the contents of this
file (Figure 2.5).

ptg999

Chapter 2 Your First Program

12

Figure 2.5 Selecting main.c in the project navigator

The main.c file contains a function named main. A function is a list of instructions for the computer
to execute, and every function has a name. In a C or Objective-C program, main is the name of the
function that is called when a program first starts.

#include <stdio.h>

int main(int argc, const char * argv[]) {

 // insert code here...
 printf("Hello, World!\n");
 return 0;
}

This function contains the two kinds of information that you write in a program: code and comments.

• Code is the set of instructions that tell the computer to do something.

• Comments are ignored by the computer, but we programmers use them to document code we have
written. The more difficult the programming problem you are trying to solve, the more comments
will help document how you solved the problem. The importance of this documentation becomes
apparent when you return to your work months later, look at code you forgot to comment, and
think, “I am sure this solution is brilliant, but I have absolutely no memory of how it works.”

ptg999

Where do I start writing code?

13

In C and Objective-C, there are two ways to distinguish comments from code:

• If you put // in a line of code, everything from those forward slashes to the end of that line is
considered a comment. You can see this used in Apple’s “insert code here...” comment.

• If you have more extensive remarks, you can use /* and */ to mark the beginning and end of
comments that span more than one line.

These rules for marking comments are part of the syntax of C. Syntax is the set of rules that governs
how code must be written in a given programming language. These rules are extremely specific, and if
you fail to follow them, your program will not work.

While the syntax regarding comments is fairly simple, the syntax of code can vary widely depending
on what the code does and how it does it. But there is one feature that remains consistent: every
statement ends in a semicolon. (You will see examples of code statements in just a moment.) If you
forget a semicolon, you will have made a syntax error, and your program will not work.

Fortunately, Xcode has ways to warn you of these kinds of errors. In fact, one of the first challenges
you will face as a programmer is interpreting what Xcode tells you when something goes wrong and
then fixing your errors. You will get to see some of Xcode’s responses to common syntax errors as we
go through the book.

Let’s make some changes to main.c. First, you need to make some space. Find the curly braces ({ and
}) that mark the beginning and end of the main function. Then delete everything between them.

Now replace the contents of the main function with what the contents shown below. You will add a
comment, two code statements, and another comment. Do not worry if you do not understand what you
are typing. The idea is to get started. You have an entire book ahead to learn what it all means.

#include <stdio.h>

int main (int argc, const char * argv[])
{
 // Print the beginning of the novel
 printf("It was the best of times.\n");
 printf("It was the worst of times.\n");
 /* Is that actually any good?
 Maybe it needs a rewrite. */

 return 0;
}

Notice that the new code that you need to type in is shown in a bold font. The code that is not bold is
code that is already there and will show you where to add the new code. This is a convention that we
will use for the rest of the book.

As you type, you may notice that Xcode tries to make helpful suggestions. This feature is called code
completion, and it is very handy. You may want to ignore it right now and focus on typing things in
yourself. But as you continue through the book, start playing with code completion and how it can help
you write code more conveniently and more accurately.

(You can see and set the different options for code completion in Xcode’s preferences. Select Xcode →
Preferences and then open the Text�Editing preferences.)

ptg999

Chapter 2 Your First Program

14

In addition, Xcode uses different font colors to make it easy to identify comments and different parts
of your code. For example, comments are always green. After a while of working with Xcode, you will
begin to instinctively notice when the colors do not look right. Often, this is a clue that you have made
a syntax error. And the sooner you know that you have made an error, the easier it is to find and fix it.

How do I run my program?
It is time to run your program and see what it does. This is a two-step process. Xcode builds your
program and then runs it. When building your program, Xcode prepares your code to run. This
includes checking for syntax and other kinds of errors.

In the upper lefthand corner of the project window, find the button that looks suspiciously like the play
button in iTunes or on a DVD player. If you leave your cursor over that button, you will see a tool tip
that says Build�and�then�run�the�current�scheme. Click this button.

If all goes well, you will be rewarded with the following:

If not, you will get this:

What do you do then? Carefully compare your code with the code in the book. Look for typos and
missing semicolons. Xcode will highlight the lines that it thinks are problematic. After you find and fix
the problem, click the Run button again. Repeat until you have a successful build.

(Do not get disheartened when you have failed builds with this code or with any code that you write in
the future. Making and fixing mistakes helps you understand what you are doing. In fact, it is actually
better than lucking out and getting it right the first time.)

After your build has succeeded, a new area will appear at the bottom of the window (Figure 2.6). The
right half of this area is the console. The console shows the output from your code being executed:

ptg999

So, what is a program?

15

Figure 2.6 Output in console at bottom-right

So, what is a program?
Now that you have built and run your first program, let’s take a quick look inside to see how it works.

A program is a collection of functions. A function is a list of operations for the processor to execute.
Every function has a name, and the function that you just wrote is named main.

When programmers talk about functions, we usually include a pair of empty parentheses. Thus, the
main function is referred to as main().

There was another function in your program – printf(). You did not write this function, but you did
use it.

To a programmer, writing a function is a lot like writing a recipe card. Like a function, a recipe card
has a name and a set of instructions. The difference is that you execute a recipe, and the computer
executes a function.

ptg999

Chapter 2 Your First Program

16

Figure 2.7 A recipe card named Easy Broiled Chicken

These cooking instructions are in English. In the first part of this book, your functions will be written
in the C programming language. However, a computer processor expects its instructions in machine
code. How do you get there?

When you write a program in C (which is relatively pleasant for you), the compiler converts your
program’s functions into machine code (which is pleasant and efficient for the processor). The
compiler is itself a program that is run by Xcode when you press the Run button. Compiling a program
is the same as building a program, and we will use these terms interchangeably.

When you run a program, the compiled functions are copied from the hard drive into memory, and the
function named main is executed by the processor. The main function usually calls other functions.
For example, your main function called the printf function. You will learn more about how functions
work in Chapter 5.

Don’t stop
At this point, you have probably dealt with several frustrations: installation problems, typos, and lots of
new vocabulary. And maybe nothing you have done so far makes any sense. That is completely normal.

Aaron’s son Otto is six. Otto is baffled several times a day. He is constantly trying to absorb knowledge
that does not fit into his existing mental scaffolding. Bafflement happens so frequently that it does
not really bother him. He never stops to wonder, “Why is this so confusing? Should I throw this book
away?”

As we get older, we are baffled much less often – not because we know everything, but because we
tend to steer away from things that leave us bewildered. For example, reading a book on history can
be quite pleasant because we get nuggets of knowledge that we can hang from our existing mental
scaffolding. This is easy learning.

ptg999

Don’t stop

17

Learning a new language is an example of difficult learning. You know that there are millions of people
who speak that language effortlessly, but it seems incredibly strange and awkward in your mouth. And
when people speak it to you, you are often flummoxed.

Learning to program a computer is also difficult learning. You will be baffled from time to time –
especially here at the beginning. This is fine. In fact, it is kind of cool. It is a little like being six again.

Stick with this book; we promise that the bewilderment will cease before you get to the final page.

ptg999

ptg999

Part II
How Programming Works

In these next chapters, you will create many programs that demonstrate useful concepts. These
command-line programs are nothing that you will show off to your friends, but there should be a small
thrill of mastery when you run them. You are moving from computer user to computer programmer.

Your programs in these chapters will be written in C. Note that these chapters are not intended to cover
the C language in detail. Quite the opposite: honed from years of teaching, this is the essential subset
of information about programming and programming in C that new-to-programming people need to
know before learning Objective-C programming.

ptg999

This page intentionally left blank

ptg999

21

3
Variables and Types

Continuing with the cooking metaphor from the last chapter, sometimes a chef will keep a small
blackboard in the kitchen for storing data. For example, when unpacking a turkey, he notices a label
that says “14.2 Pounds.” Before he throws the wrapper away, he will scribble “weight = 14.2” on the
blackboard. Then, just before he puts the turkey in the oven, he will calculate the cooking time (15
minutes + 15 minutes per pound) by referring to the weight on the blackboard.

Figure 3.1 Keeping track of data with a blackboard

During execution, a program often needs places to store data that will be used later. A place where one
piece of data can go is known as a variable. Each variable has a name (like cookingTime) and a type
(like a number). In addition, when the program executes, the variable will have a value (like 228.0).

Types
In a program, you create a new variable by declaring its type and name. Here is an example of a
variable declaration:

 float weight;

The type of this variable is float (which we will define in a moment), and its name is weight. At this
point, the variable does not have a value.

ptg999

Chapter 3 Variables and Types

22

In C, you must declare the type of each variable for two reasons:

• The type lets the compiler check your work for you and alert you to possible mistakes or
problems. For instance, say you have a variable of a type that holds text. If you ask for its
logarithm, the compiler will tell you something like “It does not make any sense to ask for this
variable’s logarithm.”

• The type tells the compiler how much space in memory (how many bytes) to reserve for that
variable.

Here is an overview of the commonly used types. We will return in to each type in more detail in later
chapters.

short, int, long These three types are whole numbers; they do not require a decimal point.
A short usually has fewer bytes of storage than a long, and an int is in
between. Thus, you can store a much larger number in a long than in a
short.

float, double A float is a floating point number – a number that can have a decimal
point. In memory, a float is stored as a mantissa and an exponent. For
example, 346.2 is represented as 3.462 x 102 A double is a double-precision
number, which typically has more bits to hold a longer mantissa and larger
exponents.

char A char is a one-byte integer that is usually treated as a character, like the
letter 'a'.

pointer A pointer holds a memory address. It is declared using the asterisk character.
For example, a variable declared as int * can hold a memory address where
an int is stored. It does not hold the actual number’s value, but if you know
the address of the int, then you can get to its value. Pointers are very useful,
and there will be more on pointers later. Much more.

struct A struct (or structure) is a type made up of other types. You can also
create new struct definitions. For example, imagine that you wanted
a GeoLocation type that contains two float members: latitude and
longitude. In this case, you would define a struct type.

These are the types that a C programmer uses every day. It is quite astonishing what complex ideas can
be captured in these five simple ideas.

A program with variables
Back in Xcode, you are going to create another project. First, close the AGoodStart project so that you
do not accidentally type new code into the old project.

Now create a new project (File → New → Project...). This project will be a C�Command�Line�Tool
named Turkey.

ptg999

A program with variables

23

In the project navigator, find this project’s main.c file and open it. Edit main.c so that it matches the
following code.

#include <stdio.h>

int main (int argc, const char * argv[])
{
 // Declare the variable called 'weight' of type float
 float weight;

 // Store a number in that variable
 weight = 14.2;

 // Log it to the user
 printf("The turkey weighs %f.\n", weight);

 // Declare another variable of type float
 float cookingTime;

 // Calculate the cooking time and store it in the variable
 // In this case, '*' means 'multiplied by'
 cookingTime = 15.0 + 15.0 * weight;

 // Log that to the user
 printf("Cook it for %f minutes.\n", cookingTime);

 // End this function and indicate success
 return 0;
}

(Wondering about the \n that keeps turning up in your code? You will learn what it does in Chapter 6.)

Build and run the program. You can either click the Run button at the top left of the Xcode window or
use the keyboard shortcut Command-R. Your output in the console should look like this:

The turkey weighs 14.200000.
Cook it for 228.000000 minutes.

Back in your code, let’s review what you have done. In the line of code that looks like this:

 float weight;

we say that you are “declaring the variable weight to be of type float.”

In the next line, your variable gets a value:

 weight = 14.2;

You are copying data into that variable. We say that you are “assigning a value of 14.2 to that variable.”

In modern C, you can declare a variable and assign it an initial value in one line, like this:

 float weight = 14.2;

Here is another assignment:

 cookingTime = 15.0 + 15.0 * weight;

The stuff on the righthand side of the = is an expression. An expression is something that gets evaluated
and results in some value. Actually, every assignment has an expression on the righthand side of the =.

ptg999

Chapter 3 Variables and Types

24

For example, in this line:

 weight = 14.2;

the expression is just 14.2.

An expression can have multiple steps. For example, when evaluating the expression 15.0 + 15.0 *
weight, the computer first multiplies weight by 15.0 and then adds that result to 15.0. Why does the
multiplication come first? We say that multiplication has precedence over addition.

To change the order in which operations are normally executed, you use parentheses:

 cookingTime = (15.0 + 15.0) * weight;

Now the expression in the parentheses is evaluated first, so the computer first does the addition and
then multiplies weight by 30.0.

Challenge
Welcome to your first challenge!

Most chapters in this book will finish with a challenge exercise to do on your own. Some challenges
(like the one you are about to do) are easy and provide practice doing the same thing you did in the
chapter. Other challenges are harder and require more problem-solving. Doing these exercises cements
what you have learned and builds confidence in your skills. We cannot encourage you enough to take
them on.

(If you get stuck while working on a challenge, take a break and come back and try again fresh. If that
does not work, visit the forum for this book at forums.bignerdranch.com for help.)

Create a new C�Command�Line�Tool named TwoFloats. In its main() function, declare two variables of
type float and assign each of them a number with a decimal point, like 3.14 or 42.0. Declare another
variable of type double and assign it the sum of the two floats. Print the result using printf(). Refer
to the code in this chapter if you need to check your syntax.

ptg999

25

4
if/else

An important idea in programming is taking different actions depending on circumstances:

• Have all the billing fields in the order form been filled out? If so, enable the Submit button.

• Does the player have any lives left? If so, resume the game. If not, show the picture of the grave
and play the sad music.

This sort of behavior is implemented using if and else, the syntax of which is:

if (conditional) {
 // Execute this code if the conditional evaluates to true
} else {
 // Execute this code if the conditional evaluates to false
}

You will not create a project in this chapter. Instead, consider the code examples carefully based on
what you have learned in the last two chapters.

Here is an example of code using if and else:

float truckWeight = 34563.8;

// Is it under the limit?
if (truckWeight < 40000.0) {
 printf("It is a light truck\n");
} else {
 printf("It is a heavy truck\n");
}

If you do not have an else clause, you can just leave that part out:

float truckWeight = 34563.8;

// Is it under the limit?
if (truckWeight < 40000.0) {
 printf("It is a light truck\n");
}

The conditional expression is always either true or false. In C, it was decided that 0 would represent
false, and anything that is not zero would be considered true.

ptg999

Chapter 4 if/else

26

In the conditional in the example above, the < operator takes a number on each side. If the number
on the left is less than the number on the right, the expression evaluates to 1 (a very common way of
expressing trueness). If the number on the left is greater than or equal to the number on the right, the
expression evaluates to 0 (the only way to express falseness).

Operators often appear in conditional expressions. Table 4.1 shows the common operators used when
comparing numbers (and other types that the computer evaluates as numbers):

Table 4.1 Comparison operators

< Is the number on the left less than the number on the right?

> Is the number on the left greater than the number on the right?

<= Is the number on the left less than or equal to the number on the right?

>= Is the number on the left greater than or equal to the number on the right?

== Are they equal?

!= Are they not equal?

The == operator deserves an additional note: In programming, the == operator is what is used to check
for equality. We use the single = to assign a value. Many, many bugs have come from programmers
using = when they meant to use ==. So stop thinking of = as “the equals sign.” From now on, it is “the
assignment operator.”

Some conditional expressions require logical operators. What if you want to know if a number is in a
certain range, like greater than zero and less than 40,000? To specify a range, you can use the logical
AND operator (&&):

if ((truckWeight > 0.0) && (truckWeight < 40000.0)) {
 printf("Truck weight is within legal range.\n");
}

Table 4.2 shows the three logical operators:

Table 4.2 Logical operators

&& Logical AND -- true if and only if both are true

|| Logical OR -- false if and only if both are false

! Logical NOT -- true becomes false, false becomes true

(If you are coming from another language, note that there is no logical exclusive OR in Objective-C, so
we will not discuss it here.)

The logical NOT operator (!) negates the expression to its right.

// Is it lighter than air?
if (!(truckWeight > 0.0)) {
 printf("The truck has zero or negative weight. Hauling helium?\n");
}

ptg999

Boolean variables

27

Boolean variables
As you can see, expressions can become quite long and complex. Sometimes it is useful to put the
value of the expression into a handy, well-named variable.

BOOL isNotLegal = !((truckWeight > 0.0) && (truckWeight < 40000.0));
if (isNotLegal) {
 printf("Truck weight is not within legal range.\n");
}

A variable that can be true or false is a boolean variable. Historically, C programmers have always
used an int to hold a boolean value. Objective-C programmers typically use the type BOOL for boolean
variables, so that is what we use here. (BOOL is an alias for an integer type.) To use BOOL in a C
function, like main(), you would need to include in your program the file where this type is defined:

#include <objc/objc.h>

You will learn more about including files in the next chapter.

When curly braces are optional
A syntax note: if the code that follows the conditional expression consists of only one statement, then
the curly braces are optional. So the following code is equivalent to the previous example.

BOOL isNotLegal = !((truckWeight > 0.0) && (truckWeight < 40000.0));
if (isNotLegal)
 printf("Truck weight is not within legal range.\n");

However, the curly braces are necessary if the code consists of more than one statement.

BOOL isNotLegal = !((truckWeight > 0.0) && (truckWeight < 40000.0));
if (isNotLegal) {
 printf("Truck weight is not within legal range.\n");
 printf("Impound truck.\n");
}

Why? Imagine if you removed the curly braces.

BOOL isNotLegal = !((truckWeight > 0.0) && (truckWeight < 40000.0));
if (isNotLegal)
 printf("Truck weight is not within legal range.\n");
 printf("Impound truck.\n");

This code would make you very unpopular with truck drivers. In this case, every truck gets impounded
regardless of weight. When the compiler does not find a curly brace after the conditional, only the next
statement is considered part of the if construct. Thus, the second statement is always executed. (What
about the indention of the second statement? While indention is very helpful for human readers of
code, it means nothing to the compiler.)

In this book, we will always include the curly braces.

else if
What if you have more than two possibilities? You can test for them one by one using else if. For
example, suppose a truck belongs to one of three weight categories: floating, light, and heavy.

ptg999

Chapter 4 if/else

28

if (truckWeight <= 0) {
 printf("A floating truck\n");
} else if (truckWeight < 40000.0) {
 printf("A light truck\n");
} else {
 printf("A heavy truck\n");
}

You can have as many else if clauses as you wish. They will each be tested in the order in which they
appear until one evaluates as true. The “in the order in which they appear” part is important. Be sure to
order your conditions so that you do not get a false positive. For instance, if you swapped the first two
tests in the above example, you would never find a floating truck because floating trucks are also light
trucks. The final else clause is optional, but it is useful when you want to catch everything that did not
meet the earlier conditions.

For the more curious: conditional operators
It is not uncommon to use if and else to set the value of an instance variable. For example, you might
have the following code:

int minutesPerPound;
if (isBoneless) {
 minutesPerPound = 15;
} else {
 minutesPerPound = 20;
}

Whenever you have a scenario where a value is assigned to a variable based on a conditional, you
have a candidate for the conditional operator, which is ?. (You will sometimes see it called the ternary
operator because it takes three operands).

int minutesPerPound = isBoneless ? 15 : 20;

This one line is equivalent to the previous example. Instead of writing if and else, you write an
assignment. The part before the ? is the conditional. The values after the ? are the alternatives for
whether the conditional is found to be true or false.

Challenge
Consider the following code snippet:

int i = 20;
int j = 25;
int k = (i > j) ? 10 : 5;

if (5 < j - k) { // First expression
 printf("The first expression is true.");
} else if (j > i) { // Second expression
 printf("The second expression is true.");
} else {
 printf("Neither expression is true.");
}

What will be printed to the console?

ptg999

29

5
Functions

In Chapter 3, you learned that a variable is a name associated with a chunk of data. A function is a
name associated with a chunk of code. You can pass information to a function. You can make the
function execute code. You can make a function return information to you.

Functions are fundamental to programming, so there is a lot in this chapter – three new projects, a new
tool, and many new ideas. Let’s get started with an exercise that will demonstrate what functions are
good for.

When should I use a function?
Suppose you are writing a program to congratulate students for completing a Big Nerd Ranch course.
Before worrying about retrieving the student list from a database or about printing certificates on
spiffy Big Nerd Ranch paper, you want to experiment with the message that will be printed on the
certificates.

Create a new C�Command�Line�Tool named ClassCertificates. (Select File → New → Project... or use
the keyboard shortcut Command-Shift-N to get started.)

Your first thought in writing this program might be:

int main (int argc, const char * argv[])
{
 printf("Kate has done as much Cocoa Programming as I could fit into 5 days.\n");
 printf("Bo has done as much Objective-C Programming as I could fit into 2 days.\n");
 printf("Mike has done as much Python Programming as I could fit into 5 days.\n");
 printf("Liz has done as much iOS Programming as I could fit into 5 days.\n");

 return 0;
}

Does the thought of typing all this in bother you? Does it seem annoyingly repetitive? If so, you have
the makings of an excellent programmer. When you find yourself repeating work that is very similar in
nature (in this case, the words in the printf() statement), you want to start thinking about a function
as a better way of accomplishing the same task.

How do I write and use a function?
Now that you have realized that you need a function, you need to write one. Open main.c in your
ClassCertificates project and write a new function named congratulateStudent. This function should
go just before main() in the file.

ptg999

Chapter 5 Functions

30

#include <stdio.h>

void congratulateStudent(char *student, char *course, int numDays)
{
 printf("%s has done as much %s Programming as I could fit into %d days.\n",
 student, course, numDays);
}

int main(int argc, const char * argv[])
{
 ...

(Wondering what the %s and %d mean? Puzzled by the type char *? Hold on for now; we will get
there.)

Now edit main() to use your new function:

int main (int argc, const char * argv[])
{
 congratulateStudent("Kate", "Cocoa", 5);
 congratulateStudent("Bo", "Objective-C", 2);
 congratulateStudent("Mike", "Python", 5);
 congratulateStudent("Liz", "iOS", 5);

 return 0;
}

Build and run the program. Find your output in the console. You may need to resize the bottom area.
You can do this by clicking on the area’s grey header and then dragging to adjust its size. (You can
resize any of the areas in Xcode the same way.)

The output should be identical to what you would have seen if you had typed in everything yourself.

Kate has done as much Cocoa Programming as I could fit into 5 days.
Bo has done as much Objective-C Programming as I could fit into 2 days.
Mike has done as much Python Programming as I could fit into 5 days.
Liz has done as much iOS Programming as I could fit into 5 days.

Think about what you have done here. You noticed a repetitive pattern. You took all the shared
characteristics of the problem (the repetitive text) and moved them into a separate function. That left
the differences (student name, course name, number of days). You handled those differences by adding
three parameters to the function. Let’s look again at the line where you name the function.

void congratulateStudent(char *student, char *course, int numDays)

Each parameter has two parts: the type of data the argument represents and the name of the parameter.
Parameters are separated by commas and placed in parentheses to the right of the name of the function.

What about the void to the left of your function name? That is the type of information returned from
the function. When you do not have any information to return, you use the keyword void. We will talk
more about returning later in this chapter.

You also used, or called, your new function in main(). When you called congratulateStudent(), you
passed it values. Values passed to a function are known as arguments. The argument’s value is then
assigned to the corresponding parameter name. That parameter name can be used inside the function as
a variable that contains the passed-in value.

ptg999

How functions work together

31

In your first call to congratulateStudent(), you passed three arguments: "Kate", "Cocoa", 5.

 congratulateStudent("Kate", "Cocoa", 5);

For now, focus on the third argument. When 5 is passed to congratulateStudent(), it is assigned to
the third parameter, numDays. Arguments and parameters are matched up in the order in which they
appear. They must also be the same (or very close to the same) type. Here, 5 is an integer value, and the
type of numDays is int.

Now, when congratulateStudent() uses the numDays variable within the function, its value will be 5.
Finally, you can prove that all of this worked by looking at the first line of the output, which correctly
displays the number of days.

Look back to the first proposed version of ClassCertificates with all the repetitive typing. What is
the point of using a function instead? To save on the typing? Well, yes, but that is definitely not all.
Partitioning your code into functions makes it easier to make changes and to find and fix bugs. You can
make a change or fix a typo in one place, and it will have the effects you want everywhere you call that
function.

Another benefit to writing functions is reusability. Now that you have written this handy function, you
could use it in another program.

How functions work together
A program is a collection of functions. When you run a program, those functions are copied from the
hard drive into memory, and the processor finds the function called “main” and executes it.

Remember that a function is like a recipe card. If you began to execute the “Easy Broiled Chicken”
card, you would discover that the third instruction says “Execute the Seasoned Bread Crumbs recipe,”
which is explained on another card. A programmer would say, “The Easy Broiled Chicken function
calls the Seasoned Bread Crumbs function.”

Figure 5.1 Recipe cards

Similarly, main() can call other functions. For example, main() in ClassCertificates called the
congratulateStudent(), which in turn called printf().

ptg999

Chapter 5 Functions

32

While you are preparing the bread crumbs, you stop executing the steps on the “Easy Broiled Chicken”
card. When the bread crumbs are ready, you resume working through the “Easy Broiled Chicken” card.

Similarly, the main function stops executing and “blocks” until the function it called is done executing.
To see this happen, you are going to call a sleep function that does nothing but wait a number of
seconds. This function is declared in the file unistd.h. At the top of main.c, include this file:

#include <stdio.h>
#include <unistd.h>

void congratulateStudent(char *student, char *course, int numDays)
{
…

In your main function, call the sleep function after the calls to congratulateStudent().

int main (int argc, const char * argv[])
{
 congratulateStudent("Kate", "Cocoa", 5);
 sleep(2);
 congratulateStudent("Bo", "Objective-C", 2);
 sleep(2);
 congratulateStudent("Mike", "Python", 5);
 sleep(2);
 congratulateStudent("Liz", "iOS", 5);

 return 0;
}

Build and run the program. You should see a two-second pause between each message of
congratulations. That is because the main function stops running until the sleep function is done
sleeping.

Standard libraries
Your computer came with many functions built-in. Actually, that is a little misleading – here is the
truth: Before OS X was installed on your computer, it was nothing but an expensive space heater.
Among the things that were installed as part of OS X were files containing a collection of precompiled
functions. These collections are called the standard libraries.

Two of the files that make up the standard libraries are stdio.h and unistd.h. When you include
these files in your program, you can then use the functions that they contain. printf() is in stdio.h;
sleep() is in unistd.h.

The standard libraries have two purposes:

• They represent big chunks of code that you do not need to write and maintain. Thus, they
empower you to build much bigger, better programs than you would be able to do otherwise.

• They ensure that most programs look and feel similar.

Programmers spend a lot of time studying the standard libraries for the operating systems that they
work on. Every company that creates an operating system also has documentation for the standard
libraries that come with it. You will learn how to browse the documentation for iOS and OS X in
Chapter 16.

ptg999

Local variables, frames, and the stack

33

Local variables, frames, and the stack
Every function can have local variables. Local variables are variables declared inside a function. They
exist only during the execution of that function and can only be accessed from within that function. For
example, consider a function that computed how long to cook a turkey. It might look like this:

void showCookTimeForTurkey(int pounds)
{
 int necessaryMinutes = 15 + 15 * pounds;
 printf("Cook for %d minutes.\n", necessaryMinutes);
}

necessaryMinutes is a local variable. It will come into existence when showCookTimeForTurkey()
starts to execute and will cease to exist once that function completes execution. The parameter of the
function, pounds, is also a local variable. A parameter is a local variable that gets initialized to the
value of the corresponding argument.

A function can have many local variables, and all of them are stored in the frame for that function.
Think of the frame as a blackboard that you can scribble on while the function is running. When the
function is done executing, the blackboard is discarded.

Imagine for a moment that you are working on the Easy Broiled Chicken recipe. In your kitchen,
each recipe that is in progress gets its own blackboard, so you have a blackboard for the Easy Broiled
Chicken recipe ready. Now, when you call the Seasoned Bread Crumbs recipe, you need a new
blackboard. Where are you going to put it? Right on top of the blackboard for Easy Broiled Chicken.
After all, you have suspended execution of Easy Broiled Chicken to make Seasoned Bread Crumbs.
You will not need the Easy Broiled Chicken frame until the Seasoned Bread Crumbs recipe is complete
and its frame is discarded. What you have now is a stack of frames.

Figure 5.2 Two blackboards in a stack

Programmers use the word stack to describe where the frames are stored in memory. When a function
is called, its frame is pushed onto the top of the stack. When a function finishes executing, we say that
it returns. That is, it pops its frame off the stack and lets the function that called it resume execution.

Let’s look more closely at how the stack works by putting showCookTimeForTurkey() into a program.
Create a new C�Command�Line�Tool named TurkeyTimer. Edit main.c to look like this:

ptg999

Chapter 5 Functions

34

#include <stdio.h>

void showCookTimeForTurkey(int pounds)
{
 int necessaryMinutes = 15 + 15 * pounds;
 printf("Cook for %d minutes.\n", necessaryMinutes);
}

int main(int argc, const char * argv[])
{
 int totalWeight = 10;
 int gibletsWeight = 1;
 int turkeyWeight = totalWeight - gibletsWeight;
 showCookTimeForTurkey(turkeyWeight);
 return 0;
}

Build and run the program. You should see the following output:

Cook for 150 minutes.

Recall that main() is always executed first. main() calls showCookTimeForTurkey(), which begins
executing. What, then, does this program’s stack look like just after necessaryMinutes is computed?

Figure 5.3 Two frames on the stack

The stack is last-in, first-out. That is, showCookTimeForTurkey()’s frame is popped off the stack before
main()’s frame is popped off the stack.

Notice that pounds, the single parameter of showCookTimeForTurkey(), is part of the frame.
Recall that a parameter is a local variable that has been assigned the value of the corresponding
argument. For this example, the variable turkeyWeight with a value of 9 is passed as an argument to
showCookTimeForTurkey(). Then that value is assigned to the parameter pounds, that is, it is copied
into the function’s frame.

Scope
In a function definition, any pair of curly braces { ... }) define the scope of the code that is in between
them. A variable cannot be accessed outside of the scope that it is declared in. In fact, it does not exist
outside of the scope that it is declared in.

Any pair of braces, whether they are a part of a function definition, an if statement, or a loop, defines
its own scope that restricts the availability of any variables declared within them.

ptg999

Recursion

35

Add the following code to your showCookTimeForTurkey function:

void showCookTimeForTurkey(int pounds)
{
 int necessaryMinutes = 15 + 15 * pounds;
 printf("Cook for %d minutes.\n", necessaryMinutes);
 if (necessaryMinutes > 120) {
 int halfway = necessaryMinutes / 2;
 printf("Rotate after %d of the %d minutes.\n", halfway, necessaryMinutes);
 }
}

Build and run the program.

The printf statement in this example can access variables that are in the scope defined by the curly
braces of the if statement, like halfway. It can also access variables in the outer scope defined by the
showCookTimeForTurkey function itself, like necessaryMinutes.

Now move the printf call outside of the if statement’s scope:

void showCookTimeForTurkey(int pounds)
{
 int necessaryMinutes = 15 + 15 * pounds;
 printf("Cook for %d minutes.\n", necessaryMinutes);
 if (necessaryMinutes > 120) {
 int halfway = necessaryMinutes / 2;
 printf("Rotate after %d of the %d minutes.\n", halfway, necessaryMinutes);
 }
 printf("Rotate after %d of the %d minutes.\n", halfway, necessaryMinutes);
}

Build and run the program again. The program will not run, and you will get a build error: Use�of
undeclared�identifier�'halfway'. Outside of the if statement’s scope, the halfway variable does not exist.
Stylish programmers would say that, “When the printf() call is made, the halfway variable has fallen
out of scope.”

Recursion
Can a function call itself? You bet! We call that recursion. There is a notoriously dull song called
“99 Bottles of Beer.” Create a new C�Command�Line�Tool named BeerSong. Open main.c and add a
function to write out the words to this song and then kick it off in main():

ptg999

Chapter 5 Functions

36

#include <stdio.h>

void singSongFor(int numberOfBottles)
{
 if (numberOfBottles == 0) {
 printf("There are simply no more bottles of beer on the wall.\n\n");
 } else {
 printf("%d bottles of beer on the wall. %d bottles of beer.\n",
 numberOfBottles, numberOfBottles);
 int oneFewer = numberOfBottles - 1;
 printf("Take one down, pass it around, %d bottles of beer on the wall.\n\n",
 oneFewer);
 singSongFor(oneFewer); // This function calls itself!

 // Print a message just before the function ends
 printf("Put a bottle in the recycling, %d empty bottles in the bin.\n",
 numberOfBottles);
 }
}

int main(int argc, const char * argv[])
{

 // We could sing 99 verses, but 4 is easier to think about
 singSongFor(4);
 return 0;
}

Build and run the program. The output looks like this:

4 bottles of beer on the wall. 4 bottles of beer.
Take one down, pass it around, 3 bottles of beer on the wall.

3 bottles of beer on the wall. 3 bottles of beer.
Take one down, pass it around, 2 bottles of beer on the wall.

2 bottles of beer on the wall. 2 bottles of beer.
Take one down, pass it around, 1 bottles of beer on the wall.

1 bottles of beer on the wall. 1 bottles of beer.
Take one down, pass it around, 0 bottles of beer on the wall.

There are simply no more bottles of beer on the wall.

Put a bottle in the recycling, 1 empty bottles in the bin.
Put a bottle in the recycling, 2 empty bottles in the bin.
Put a bottle in the recycling, 3 empty bottles in the bin.
Put a bottle in the recycling, 4 empty bottles in the bin.

What does the stack look like when the last bottle is taken off the wall, but none have been put in the
recycling bin?

ptg999

Recursion

37

Figure 5.4 Frames on the stack for a recursive function

Confused? Here is what happened:

• main() called singSongFor(4).

• singSongFor(4) printed a verse and called singSongFor(3).

• singSongFor(3) printed a verse and called singSongFor(2).

• singSongFor(2) printed a verse and called singSongFor(1).

• singSongFor(1) printed a verse and called singSongFor(0).

• singSongFor(0) printed “There are simply no more bottles of beer on the wall.” And returned.

• singSongFor(1) resumed execution, printed the recycling message, and returned.

• singSongFor(2) resumed execution, printed the recycling message, and returned.

• singSongFor(3) resumed execution, printed the recycling message, and returned.

• singSongFor(4) resumed execution, printed the recycling message, and returned.

• main() resumed, returned, and the program ended.

Discussing frames and the stack is usually not covered in a beginning programming course, but we
have found the ideas to be exceedingly useful to new programmers. First, these concepts give you a
more concrete understanding of the answers to questions like “What happens to my local variables
when the function finishes executing?” Second, they help you understand the debugger. The debugger
is a program that helps you understand what your program is actually doing, which, in turn, helps
you find and fix “bugs” (problems in your code). When you build and run a program in Xcode, the
debugger is attached to the program so that you can use it.

ptg999

Chapter 5 Functions

38

Looking at frames in the debugger
You can use the debugger to browse the frames on the stack. To do this, however, you have to stop
your program in mid-execution. Otherwise, main() will finish executing, and there will not be any
frames left to look at. To see as many frames as possible in your BeerSong program, you want to halt
execution on the line that prints “There are simply no more bottles of beer on the wall.”

How do you do this? In main.c, find the line

 printf("There are simply no more bottles of beer on the wall.\n");

There are two gray columns to the left of your code. Click the wider, lighter-gray column next to this
line of code to set a breakpoint.

Figure 5.5 Setting a breakpoint

A breakpoint is a location in code where you want the debugger to pause the execution of your
program. Run the program again. You can see from the output in the console that your program
stopped (or “broke”) right before executing the line on which you set the breakpoint.

The program is temporarily frozen, and you can examine it more closely. The navigator area has
switched to displaying the debug navigator, which shows all the frames currently on the stack, also
called a stack trace.

In the stack trace, frames are identified by the name of their function. Since your program consists
almost entirely of a recursive function, these frames have the same name and you must distinguish

ptg999

Looking at frames in the debugger

39

them by the value of oneFewer that gets passed to them. At the bottom of the stack is the frame for
main().

You can select a frame from the stack to see the variables in that frame and the source code for the line
of code that is currently being executed. Select the frame for the first time singSongFor() is called.

Figure 5.6 Selecting frame for singSongFor(4)

You can see this frame’s variables and their values in the bottom area to the left of the console. This
area is called the variables view.

Now you need to remove the breakpoint so that the program will run normally. Right-click the blue
indicator and select Delete�Breakpoint.

To resume execution of your program, click the button on the grey bar above the variables view.

Figure 5.7 Resuming BeerSong

ptg999

Chapter 5 Functions

40

We just took a quick look at the debugger here to demonstrate how frames work. However, using the
debugger to set breakpoints and browse the frames in a program’s stack will be helpful when your
program is not doing what you expect and you need to look at what is really happening.

return
Many functions return a value when they complete execution. You know what type of data a function
will return by the type that precedes the function name. (If a function does not return anything, its
return type is void.)

Create a new C�Command�Line�Tool named Degrees. In main.c, add a function before main() that
converts a temperature from Celsius to Fahrenheit. Then update main() to call the new function.

#include <stdio.h>

float fahrenheitFromCelsius(float cel)
{
 float fahr = cel * 1.8 + 32.0;
 printf("%f Celsius is %f Fahrenheit\n", cel, fahr);
 return fahr;
}

int main(int argc, const char * argv[])
{
 float freezeInC = 0;
 float freezeInF = fahrenheitFromCelsius(freezeInC);
 printf("Water freezes at %f degrees Fahrenheit.\n", freezeInF);
 return 0;
}

See how you take the return value of fahrenheitFromCelsius() and assign it to the freezeInF
variable of type float? Build and run the program.

The execution of a function stops when it returns. For example, take a look at this function:

float average(float a, float b)
{
 return (a + b)/2.0;
 printf("The mean justifies the end.\n");
}

If you called this function, the printf() call would never get executed.

A natural question, then, is “Why do we always return 0 from main()?” When you return 0 to the
system, you are saying “Everything went OK.” If you are terminating the program because something
has gone wrong, you return 1.

This may seem contradictory to how 0 and 1 work in if statements; because 1 is true and 0 is false, it is
natural to think of 1 as success and 0 as failure. So think of main() as returning an error report. In that
case, 0 is good news! Success is a lack of errors.

To make this clearer, some programmers use the constants EXIT_SUCCESS and EXIT_FAILURE, which
are just aliases for 0 and 1, respectively. These constants are defined in the header file stdlib.h:

ptg999

Global and static variables

41

#include <stdio.h>
#include <stdlib.h>

float fahrenheitFromCelsius(float cel)
{
 float fahr = cel * 1.8 + 32.0;
 printf("%f Celsius is %f Fahrenheit.\n", cel, fahr);
 return fahr;
}

int main(int argc, const char * argv[])
{
 float freezeInC = 0;
 float freezeInF = fahrenheitFromCelsius(freezeInC);
 printf("Water freezes at %f degrees Fahrenheit.\n", freezeInF);
 return EXIT_SUCCESS;
}

In this book, we will generally use 0 instead of EXIT_SUCCESS.

Global and static variables
In this chapter, we talked about local variables that only exist while a function is running. There are
also variables that can be accessed from any function at any time. We call these global variables. To
make a variable global, you declare it outside of a particular function. For example, you could add a
lastTemperature variable that holds the temperature that was converted from Celsius. Add a global
variable to Degrees:

#include <stdio.h>
#include <stdlib.h>

// Declare a global variable
float lastTemperature;

float fahrenheitFromCelsius(float cel)
{
 lastTemperature = cel;
 float fahr = cel * 1.8 + 32.0;
 printf("%f Celsius is %f Fahrenheit.\n", cel, fahr);
 return fahr;
}
int main(int argc, const char * argv[])
{
 float freezeInC = 0;
 float freezeInF = fahrenheitFromCelsius(freezeInC);
 printf("Water freezes at %f degrees Fahrenheit.\n", freezeInF);
 printf("The last temperature converted was %f.\n", lastTemperature);
 return EXIT_SUCCESS;
}

Any complex program will involve dozens of files containing different functions. Global variables
are available to the code in every one of those files. Sometimes sharing a variable between different
files is what you want. But, as you can imagine, having a variable that can be accessed by multiple
functions can also lead to great confusion. To deal with this, we have static variables. A static variable
is like a global variable in that it is declared outside of any function. However, a static variable is only

ptg999

Chapter 5 Functions

42

accessible from the code in the file where it was declared. So you get the non-local, “exists outside of
any function” benefit while avoiding the “you touched my variable!” issue.

You can change your global variable to a static variable, but because you have only one file, main.c, it
will have no effect whatsoever.

// Declare a static variable
static float lastTemperature;

Both static and global variables can be given an initial value when they are created:

// Initialize lastTemperature to 50 degrees
static float lastTemperature = 50.0;

If you do not give them an initial value, they are automatically initialized to zero.

In this chapter, you have learned about functions. When you get to Objective-C in Part III, you will
hear the word method – a method is very, very similar to a function.

Challenge
The interior angles of a triangle must add up to 180 degrees. Create a new C�Command�Line�Tool
named Triangle. In main.c, write a function that takes the first two angles and returns the third. Here is
what it will look like when you call it:

#include <stdio.h>

// Add your new function here

int main(int argc, const char * argv[])
{
 float angleA = 30.0;
 float angleB = 60.0;
 float angleC = remainingAngle(angleA, angleB);
 printf("The third angle is %.2f\n", angleC);
 return 0;
}

The output should be:

The third angle is 90.00

ptg999

43

6
Format Strings

Now that you know how functions work, let’s take a closer look at the printf function that you have
been using to write to the log.

The printf function accepts a string as an argument and prints it to the log. A string is a “string” of
characters strung together like beads on a necklace. Typically, a string is text.

A literal string is text surrounded by double quotes. In the AGoodStart project from Chapter 2, you
called printf() with literal string arguments:

 // Print the beginning of the novel
 printf("It was the best of times.\n");
 printf("It was the worst of times.\n");

Your output looked like this:

It was the best of times.
It was the worst of times.

You can store a literal string in a variable of type char *:

 char *myString = "Here is a string";

This is a C string. You could have created C strings in AGoodStart and passed them to printf():

 // Write the beginning of the novel
 char *firstLine = "It was the best of times.\n";
 char *secondLine = "It was the worst of times.\n";

 // Print the beginning of the novel
 printf(firstLine);
 printf(secondLine);

Your output would have looked exactly the same.

Using tokens
The printf function can do more than just print literal strings. You can also use printf() to create
custom strings at runtime using tokens and variables.

ptg999

Chapter 6 Format Strings

44

Reopen your ClassCertificates project. In main.c, find congratulateStudent(). Within this function,
you call printf() and pass it a string with three tokens and three variables as arguments.

 void congratulateStudent(char *student, char *course, int numDays)
 {
 printf("%s has done as much %s Programming as I could fit into %d days.\n",
 student, course, numDays);
 }

When you pass a string containing one or more tokens to printf(), the string that you pass is called
the format string. In this example, the format string includes three tokens: %s, %s, and %d.

When the program is run, the tokens are replaced with the values of the corresponding variable
arguments. In this case, those variables are student, course, and numDays. Your output looked
something like this:

Liz has done as much iOS Programming as I could fit into 5 days.

Tokens are replaced in order in the output: the first variable replaces the first token, and so on. Thus, if
you swapped student and course in the list of variables, you would see

iOS has done as much Liz Programming as I could fit into 5 days.

On the other hand, not all tokens and variables are interchangeable. The token you choose tells
printf() how the variable’s value should be formatted. The %s token tells printf() to format the
value as a string. The %d tells printf() to format the value an integer. (The d stands for “decimal.”)

If you use the wrong token, such as using %d when the substitution is the string "Ted", printf() will
try to represent "Ted" with an integer value, which will give you strange results.

There are other tokens for other types. You will learn and use several more as you continue working
through this book.

Escape sequences
The \n that you put at the end of your strings is an escape sequence. An escape sequence begins
with \, which is the escape character. This character tells the compiler that the character that comes
immediately after does not have its usual meaning.

The \n represents the new-line character. In printf() statements, you include a new-line character
when you want output to continue on a new line. Try removing one of these new-lines and see what
happens to your output.

Another escape sequence is \". You use it when you need to include quotation marks within a literal
string. The escape character tells the compiler to treat the " as part of the literal string and not as an
instruction to end the string. Here is an example:

 printf("\"It doesn't happen all at once,\" said the Skin Horse.\n");

And here is the output:

 "It doesn't happen all at once," said the Skin Horse.

ptg999

Challenge

45

Challenge
Create a new project (C�Command�Line�Tool) named Squarer. Write a program that computes and
displays the square of integer. Put the numbers in quotation marks. Your output should look something
like this:

"5" squared is "25".

ptg999

This page intentionally left blank

ptg999

47

7
Numbers

You have used numbers to measure and display temperature, weight, and how long to cook a turkey.
Now let’s take a closer look at how numbers work in C programming. On a computer, numbers come
in two flavors: integers and floating-point numbers. You have already used both.

Integers
 An integer is a number without a decimal point – a whole number. Integers are good for tasks like
counting. Some tasks, like counting every person on the planet, require really large numbers. Other
tasks, like counting the number of children in a classroom, require numbers that are not as large.

To address these different tasks, integer variables come in different sizes. An integer variable has a
certain number of bits in which it can encode a number, and the more bits the variable has, the larger
the number it can hold. Typical sizes are 8-bit, 16-bit, 32-bit, and 64-bit.

Similarly, some tasks require negative numbers, while others do not. So integer types come in signed
and unsigned varieties.

An unsigned 8-bit number can hold any integer from 0 to 255. Why? 28 = 256 possible numbers. And
we choose to start at 0.

A signed 64-bit number can hold any integer from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807. One bit for the sign leaves 263 = 9,223,372,036,854,775,808. There is only
one zero.

When you declare an integer, you can be very specific:

UInt32 x; // An unsigned 32-bit integer
SInt16 y; // A signed 16-bit integer

However, it is more common for programmers just to use the descriptive types that you learned in
Chapter 3.

char a; // 8 bits
short b; // Usually 16 bits (depending on the platform)
int c; // Usually 32 bits (depending on the platform)
long d; // 32 or 64 bits (depending on the platform)
long long e; // 64 bits

Why is char an 8-bit integer? When C was designed, nearly everyone used ASCII to represent
characters. ASCII gave each commonly used character a number. For example, ‘B’ was represented

ptg999

Chapter 7 Numbers

48

by the number 66. The numbers went up to 127, so we could easily fit any ASCII character into 8 bits.
To deal with other character systems (like Cyrillic or Kanji), we needed a lot more than 8 bits. For
now, live with ASCII characters, and we will talk about dealing with other encodings (like Unicode) in
Chapter 26.

What about sign? char, short, int, long, and long long are signed by default, but you can prefix
them with unsigned to create the unsigned equivalent.

Also, the sizes of integers depend on the platform. (A platform is a combination of an operating system
and a particular computer or mobile device.) Some platforms are 32-bit and others are 64-bit. The
difference is in the size of the memory address, and we will talk more about that in Chapter 9.

Tokens for displaying integers
Create a new project: a C�Command�Line�Tool called Numbers. In main.c, create an integer and print it
out in base-10 (i.e., as a decimal number) using printf():

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int x = 255;
 printf("x is %d.\n", x);
 return 0;
}

You should see something like

x is 255.

As you have seen, %d prints an integer as a decimal number. What other tokens work? You can print the
integer in base-8 (octal) or base-16 (hexadecimal). Add a couple of lines to the program:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int x = 255;
 printf("x is %d.\n", x);
 printf("In octal, x is %o.\n", x);
 printf("In hexadecimal, x is %x.\n", x);

 return 0;
}

When you run it, you should see something like:

x is 255.
In octal, x is 377.
In hexadecimal, x is ff.

(We will return to hexadecimal numbers in Chapter 38.)

ptg999

Integer operations

49

What if the integer has lots of bits? You slip an l (for long) or an ll (for long long) between the % and
the format character. Change your program to use a long instead of an int:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 long x = 255;
 printf("x is %ld.\n", x);
 printf("In octal, x is %lo.\n", x);
 printf("In hexadecimal, x is %lx.\n", x);

 return 0;
}

If you are printing an unsigned decimal number, you should use %u:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 unsigned long x = 255;
 printf("x is %lu.\n", x);

 // Octal and hex already assume the number was unsigned
 printf("In octal, x is %lo.\n", x);
 printf("In hexadecimal, x is %lx.\n", x);

 return 0;
}

Integer operations
The arithmetic operators +, -, and * work as you would expect. They also have the precedence rules
that you would expect: * is evaluated before + or -. In main.c, replace the previous code with a
calculation:

#include <stdio.h>

int main (int argc, const char * argv[])
{

 printf("3 * 3 + 5 * 2 = %d\n", 3 * 3 + 5 * 2);

 return 0;
}

You should see

3 * 3 + 5 * 2 = 19

Integer division
Most beginning C programmers are surprised by how integer division works. Try it:

ptg999

Chapter 7 Numbers

50

#include <stdio.h>

int main (int argc, const char * argv[])
{

 printf("3 * 3 + 5 * 2 = %d\n", 3 * 3 + 5 * 2);
 printf("11 / 3 = %d\n", 11 / 3);

 return 0;
}

You will get 11 / 3 = 3.666667, right? Nope. You get 11 / 3 = 3. When you divide one integer by
another, you always get a third integer. The system rounds off toward zero. (So, -11 / 3 is -3.)

This actually makes sense if you think “11 divided by 3 is 3 with a remainder of 2.” And it turns
out that the remainder is often quite valuable. The modulus operator (%) is like /, but it returns the
remainder instead of the quotient. Add the modulus operator to get a statement that includes the
remainder:

#include <stdio.h>

int main (int argc, const char * argv[])
{

 printf("3 * 3 + 5 * 2 = %d\n", 3 * 3 + 5 * 2);
 printf("11 / 3 = %d remainder of %d \n", 11 / 3, 11 % 3);

 return 0;
}

What if you want to get 3.666667? You convert the int to a float using the cast operator. The cast
operator is the type that you want placed in parentheses to the left of the variable you want converted.
Cast your denominator as a float before you do the division:

int main (int argc, const char * argv[])
{

 printf("3 * 3 + 5 * 2 = %d\n", 3 * 3 + 5 * 2);
 printf("11 / 3 = %d remainder of %d \n", 11 / 3, 11 % 3);
 printf("11 / 3.0 = %f\n", 11 / (float)3);

 return 0;
}

Now, floating point division will be done instead of integer division, and you will get 3.666667. Here
is the rule for integer vs. floating-point division: / is integer division only if both the numerator and
denominator are integer types. If either is a floating-point number, floating-point division is done
instead.

NSInteger and NSUInteger
At this moment, Xcode supports the development of both 32-bit and 64-bit applications. In an effort
to make it easy for you to write code that will work elegantly on either system, Apple introduced
NSInteger and NSUInteger. These are 32-bit integers on 32-bit systems; They are 64-bit integers on
64-bit systems. NSInteger is signed. NSUInteger is unsigned.

ptg999

Integer operations

51

NSInteger and NSUInteger are used extensively in Apple’s libraries, so when you start working in
Objective-C, you will use them a lot.

The recommended way of outputting them with printf() is a little surprising. Because Apple does not
want you to make too many assumptions about what is really behind them, it is recommended that you
cast them to the appropriate long before trying to display them:

NSInteger x = -5;
NSUInteger y = 6;
printf("Here they are: %ld, %lu", (long)x, (unsigned long)y);

Operator shorthand
All the operators that you have seen so far yield a new result. So, for example, to increase x by 1, you
would use the + operator and then assign the result back into x:

int x = 5;
x = x + 1; // x is now 6

C programmers do these sorts of operations so often that operators were created that change the value
of the variable without an assignment. For example, you can increase the value held in x by 1 with the
increment operator (++):

int x = 5;
x++; // x is now 6

There is also a decrement operator (--) that decreases the value by 1:

int x = 5;
x--; // x is now 4

What if you want to increase x by 5 instead of just 1? You could use addition and assignment:

int x = 5;
x = x + 5; // x is 10

But there is a shorthand for this, too:

int x = 5;
x += 5; // x is 10

You can think of the second line as “assign x the value of x + 5.” In addition to +=, there are also -=,
*=, /=, and %=.

To get the absolute value of an int, you use a function instead of an operator. The function is abs(). If
you want the absolute value of a long, use labs(). Both functions are declared in stdlib.h:

#include <stdio.h>
#include <stdlib.h>

int main (int argc, const char * argv[])
{
 printf("3 * 3 + 5 * 2 = %d\n", 3 * 3 + 5 * 2);
 printf("11 / 3 = %d remainder of %d \n", 11 / 3, 11 % 3);
 printf("11 / 3.0 = %f\n", 11 / (float)3);
 printf("The absolute value of -5 is %d\n", abs(-5));

 return 0;
}

ptg999

Chapter 7 Numbers

52

Floating-point numbers
If you need a number with a decimal point, like 3.2, you use a floating-point number. Most
programmers think of a floating-point number as a mantissa multiplied by 10 to an integer exponent.
For example, 345.32 is thought of as 3.4532 x 102. And this is essentially how they are stored: a 32-bit
floating number has 8 bits dedicated to holding the exponent (a signed integer) and 23 bits dedicated to
holding the mantissa, with the remaining 1 bit used to hold the sign.

Like integers, floating-point numbers come in several sizes. Unlike integers, floating-point numbers are
always signed:

float g; // 32 bits
double h; // 64 bits
long double i; // 128 bits

Tokens for displaying floating-point numbers
printf() can also display floating point numbers, most commonly using the tokens %f and %e. In
main.c, replace the integer-related code:

int main (int argc, const char * argv[])
{
 double y = 12345.6789;
 printf("y is %f\n", y);
 printf("y is %e\n", y);

 return 0;
}

When you build and run it, you should see:

y is 12345.678900
y is 1.234568e+04

So %f uses normal decimal notation, and %e uses scientific notation.

Notice that %f is currently showing 6 digits after the decimal point. This is often a bit much. Limit it to
two digits by modifying the token:

int main (int argc, const char * argv[])
{
 double y = 12345.6789;
 printf("y is %.2f\n", y);
 printf("y is %.2e\n", y);
 return 0;
}

When you run it, you should see:

y is 12345.68
y is 1.23e+04

The math library
If you will be doing a lot of math, you will need the math library. To see what is in the math library,
open the Terminal application on your Mac and type man math. You will get a great summary of
everything in the math library: trigonometry, rounding, exponentiation, square and cube root, etc.

ptg999

Challenge

53

If you use any of these math functions in your code, be sure to include the math library header at the
top that file:

#include <math.h>

One warning: all of the trig-related functions are done in radians, not degrees!

Challenge
Use the math library! Add code to main.c that displays the sine of 1 radian. Show the number rounded
to three decimal points. It should be 0.841. The sine function is declared like this:

double sin(double x);

A note about comments
As you type in exercises, do not be shy about adding comments of your own to help you remember
what code is doing. Get in the habit of commenting code. Write useful and specific comments that
could be understood by someone else reading your code or by you in the future coming back to review
the code.

Comments can be helpful when you tackle challenges. For example, say you get a challenge working
but are not sure it is solved in an elegant way. Leave yourself a note about what bugged you. When you
are further along in the book, review old challenges and see if you can improve your solutions. This
will also test your ability to write useful comments. Something like

// Not sure if this is right
...

will be useless to your future self.

ptg999

This page intentionally left blank

ptg999

55

8
Loops

In Xcode, create yet another new project: a C�Command�Line�Tool named Coolness.

The first program I ever wrote printed the words, “Aaron is Cool”. (I was 10 at the time.) Write a
program to do that now:

#include <stdio.h>

int main(int argc, const char * argv[])
{
 printf("Aaron is Cool\n");
 return 0;
}

Build and run the program.

Let’s suppose for a moment that you could make my 10-year-old self feel more confident if the
program printed the affirmation a dozen times. How would you do that?

Here is the dumb way:

#include <stdio.h>

int main(int argc, const char * argv[])
{
 printf("Aaron is Cool\n");
 printf("Aaron is Cool\n");
 printf("Aaron is Cool\n");
 printf("Aaron is Cool\n");
 printf("Aaron is Cool\n");
 printf("Aaron is Cool\n");
 printf("Aaron is Cool\n");
 printf("Aaron is Cool\n");
 printf("Aaron is Cool\n");
 printf("Aaron is Cool\n");
 printf("Aaron is Cool\n");
 printf("Aaron is Cool\n");

 return 0;
}

The smart way is to create a loop.

ptg999

Chapter 8 Loops

56

The while loop
The first loop you will use is a while loop. The while construct works something like the if construct
discussed in Chapter 4. You give it an expression and a block of code contained by curly braces. In the
if construct, if the expression is true, the block of code is run once. In the while construct, the block is
run again and again until the expression becomes false.

Rewrite the main() function to look like this:

#include <stdio.h>

int main(int argc, const char * argv[])
{
 int i = 0;
 while (i < 12) {
 printf("%d. Aaron is Cool\n", i);
 i++;
 }
 return 0;
}

Build and run the program.

The conditional (i < 12) is being checked before each execution of the block. The first time it
evaluates to false, execution leaps to the code after the block.

Notice that the second line of the block increments i. This is important. If i was not incremented, then
this loop, as written, would continue forever because the expression would always be true.

Here is a flow-chart of this while loop:

ptg999

The for loop

57

The for loop
The while loop is a general looping structure, but C programmers use the same basic pattern a lot:

some initialization
while (some check) {
 some code
 some last step
}

So, the C language has a shortcut: the for loop. In the for loop, the pattern shown above becomes:

for (some initialization; some check; some last step) {
 some code;
}

Change the program to use a for loop:

#include <stdio.h>

int main(int argc, const char * argv[])
{
 for (int i = 0; i < 12; i++) {
 printf("%d. Aaron is Cool\n", i);
 }
 return 0;
}

Note that in this simple loop example, you used the loop to dictate the number of times something
happens. More commonly, however, loops are used to iterate through a collection of items, such as
a list of names. For instance, you could modify this program to use a loop in conjunction with a list
of friends’ names. Each time through the loop, a different friend would get to be cool. You will learn
more about collections and loops starting in Chapter 17.

ptg999

Chapter 8 Loops

58

break
Sometimes it is necessary to stop the loop’s execution from inside the loop. For example, let’s say you
want to step through the positive integers looking for the number x, where x + 90 = x2. Your plan is to
step through the integers 0 through 11 and pop out of the loop when you find the solution. Change the
code:

#include <stdio.h>

int main(int argc, const char * argv[])
{
 int i;
 for (i = 0; i < 12; i++) {
 printf("Checking i = %d\n", i);
 if (i + 90 == i * i) {
 break;
 }
 }
 printf("The answer is %d.\n", i);
 return 0;
}

Build and run the program. You should see

Checking i = 0
Checking i = 1
Checking i = 2
Checking i = 3
Checking i = 4
Checking i = 5
Checking i = 6
Checking i = 7
Checking i = 8
Checking i = 9
Checking i = 10
The answer is 10.

Notice that when break is called, execution skips directly to the end of the code block.

ptg999

continue

59

continue
Sometimes you find yourself in the middle of the code block and you need to say, “Forget the rest of
this run through the code block and start the next run through the code block.” This is done with the
continue command. For example, what if you were pretty sure that no multiples of 3 satisfied the
equation? How would you avoid wasting precious time checking those?

#include <stdio.h>

int main(int argc, const char * argv[])
{
 int i;
 for (i = 0; i < 12; i++) {
 if (i % 3 == 0) {
 continue;
 }
 printf("Checking i = %d\n", i);
 if (i + 90 == i * i) {
 break;
 }
 }
 printf("The answer is %d.\n", i);
 return 0;
}

Build and run it:

Checking i = 1
Checking i = 2
Checking i = 4
Checking i = 5
Checking i = 7
Checking i = 8
Checking i = 10
The answer is 10.

ptg999

Chapter 8 Loops

60

The do-while loop
The cool kids seldom use the do-while loop, but for completeness, here it is. The do-while loop
does not check the expression until it has executed the block. Thus, it ensures that the block is always
executed at least once. If you rewrote the original exercise to use a do-while loop, it would look like
this:

int main(int argc, const char * argv[])
{
 int i = 0;
 do {
 printf("%d. Aaron is Cool\n", i);
 i++;
 } while (i < 12);
 return 0;
}

Notice the trailing semicolon. That is because unlike the other loops, a do-while loop is actually one
long statement:

do { something } while (something else stays true);

Here is a flow-chart of this do-while loop:

Challenge: counting down
Create a new project (C�Command�Line�Tool) named CountDown and write a program that counts
backward from 99 through 0 by 3, printing each number.

If the number is divisible by 5, it should also print the words “Found one!”. Thus, the output should
look something like this:

ptg999

Challenge: user input

61

99
96
93
90
Found one!
87
...
0
Found one!

Challenge: user input
So far, the programs you have written do some work and then output text to the console. In this
challenge, you will modify your CountDown solution to ask for input from the user. In particular, you
will ask the user what number the countdown should start from.

To make this happen, you need to know about two new functions: readline() and atoi()
(pronounced “A to I”).

The readline function is the opposite of printf(). Rather than printing text to the screen, it gets text
that user has entered.

Before you can use readline(), you must first add the library that contains it to your program.

In the project navigator, click the top-level Coolness item. In the editor area, click Build�Phases and
then the disclosure triangle next to the line that says Link�Binary�With�Libraries.

Figure 8.1 Link binary with libraries

Click the + button. A sheet will a appear with a list of available code libraries. Use the search box to
search for libreadline. When it appears in the list, select it and click Add.

ptg999

Chapter 8 Loops

62

Figure 8.2 Libraries

Select main.c in the project navigator to get back to your code.

What were these steps for? Sometimes, you want to use a function that is not already provided for you.
So you need to tell Xcode which code library contains the function you want to use.

Let’s look at an example that uses the readline() function. You started this chapter with code that
printed Aaron is Cool. What if the user could enter the name of the person that is cool? Here is what
the program would look like when run. (The user input is shown in bold)

Who is cool? Mikey
Mikey is cool!

The code would look like this:

#import <readline/readline.h>
#import <stdio.h>
int main(int argc, const char * argv[])
{
 printf("Who is cool? ");
 const char *name = readline(NULL);
 printf("%s is cool!\n\n",name);
 return 0;
}

(Type this code into your Coolness project and run it, if you would like to see it in action.)

The first line of this main function is a variable declaration:

 const char *name;

Remember that char * is a type you can use for strings.

ptg999

Challenge: user input

63

In the third line, you call the readline function, and pass NULL as its argument. This line gets what
the user typed in and stores it in the name variable.

Now let’s turn to the atoi function. This function takes a string and converts it into an integer. (The ‘i’
stands for integer, and the ‘a’ stands for ASCII.)

What good is atoi()? The following example code would cause an error because it attempts to store a
string in a variable of type int.

int num = "23";

You can use atoi() to convert that string into an integer with a value of 23, which you can happily
store in a variable of type int:

int num = atoi("23");

(If the string passed into atoi() cannot be converted into an integer, then atoi() returns 0.)

With these two functions in mind, modify your code to prompt the user for input and then kick off the
countdown from the desired spot. Your output should look something like this:

Where should I start counting? 42
42
39
36
33
30
Found one!
27
...

Note that Xcode has an interesting behavior when using the readline function. It will duplicate text
input as output:

Figure 8.3 readline() output

This is expected behavior in Xcode.

ptg999

This page intentionally left blank

ptg999

65

9
Addresses and Pointers

Your computer is, at its core, a processor (the Central Processing Unit or CPU) and a vast meadow of
switches (the Random-Access Memory or RAM) that can be turned on or off by the processor. We say
that a switch holds one bit of information. You will often see 1 used to represent “on” and 0 used to
represent “off.”

Eight of these switches make a byte of information. The processor can fetch the state of these switches,
do operations on the bits, and store the result in another set of switches. For example, the processor
might fetch a byte from here and another byte from there, add them together, and store the result in a
byte someplace else.

Figure 9.1 Memory and the CPU

The memory is numbered, and we typically talk about the address of a particular byte of data. When
people talk about a 32-bit CPU or a 64-bit CPU, they are usually talking about how big the address is.
A 64-bit CPU can deal with much, much more memory than a 32-bit CPU.

Getting addresses
In Xcode, create a new project: a C�Command�Line�Tool named Addresses.

The address of a variable is the location in memory where the value for that variable is stored. To get
the variable’s address, you use the & operator:

#include <stdio.h>

int main(int argc, const char * argv[])
{
 int i = 17;
 printf("i stores its value at %p\n", &i);
 return 0;
}

ptg999

Chapter 9 Addresses and Pointers

66

Notice the %p token. This is the token that you can replace with a memory address. Build and run the
program.

Your output will look something like:

i stores its value at 0xbffff738

although your computer may put i at a different address. Memory addresses are nearly always printed
in hexadecimal format.

In a computer, everything is stored in memory, and thus everything has an address. For example, a
function starts at some particular address. To get that address, you just use the function’s name:

int main(int argc, const char * argv[])
{
 int i = 17;
 printf("i stores its value at %p\n", &i);
 printf("this function starts at %p\n", main);
 return 0;
}

Build and run the program.

Storing addresses in pointers
What if you wanted to store an address in a variable? You could stuff it into an unsigned integer that
was the right size, but the compiler will help you catch your mistakes if you are more specific when
you give that variable its type. For example, if you wanted a variable named ptr that holds the address
where a float can be found, you would declare it like this:

 float *ptr;

We say that ptr is a variable that is a pointer to a float. It does not store the value of a float; it can
hold an address where a float may be stored.

Declare a new variable named addressOfI that is a pointer to an int. Assign it the address of i.

int main(int argc, const char * argv[])
{
 int i = 17;
 int *addressOfI = &i;
 printf("i stores its value at %p\n", addressOfI);
 printf("this function starts at %p\n", main);
 return 0;
}

Build and run the program. You should see no change in its behavior.

You are using integers right now for simplicity. But if you are wondering what the point of pointers is,
we hear you. It would be just as easy to pass the integer value assigned to this variable as it is to pass
its address. Soon, however, your data will be much larger and much more complex than single integers.
That is why we pass addresses. It is not always possible to pass a copy of data you want to work with,

ptg999

Getting the data at an address

67

but you can always pass the address of where that data begins. And it is easy to access data once you
have its address.

Getting the data at an address
If you have an address, you can get the data stored there using the * operator. Have the log display the
value of the integer stored at addressofI.

int main(int argc, const char * argv[])
{
 int i = 17;
 int *addressOfI = &i;
 printf("i stores its value at %p\n", addressOfI);
 printf("this function starts at %p\n", main);
 printf("the int stored at addressOfI is %d\n", *addressOfI);
 return 0;
}

Notice that the asterisk is used two different ways in this example:

• When you declared addressOfI to be an int *. That is, you told the compiler “It will hold an
address where an int can be stored.”

• When you read the int value that is stored at the address stored in addressOfI. (Pointers are
also called references. Thus, using the pointer to read data at the address is sometimes called
dereferencing the pointer.)

You can also use the * operator on the left-hand side of an assignment to store data at a particular
address:

int main(int argc, const char * argv[])
{
 int i = 17;
 int *addressOfI = &i;
 printf("i stores its value at %p\n", addressOfI);
 *addressOfI = 89;
 printf("Now i is %d\n", i);
 return 0;
}

Build and run your program.

Do not worry if you do not have pointers squared away in your mind just yet. You will spend a lot of
time working with pointers as you go through this book, so you will get plenty of practice.

How many bytes?
Given that everything lives in memory and that you now know how to find the address where data
starts, the next question is “How many bytes does this data type consume?”

Using sizeof() you can find the size of a data type. For example,

ptg999

Chapter 9 Addresses and Pointers

68

int main(int argc, const char * argv[])
{
 int i = 17;
 int *addressOfI = &i;
 printf("i stores its value at %p\n", addressOfI);
 *addressOfI = 89;
 printf("Now i is %d\n", i);
 printf("An int is %zu bytes\n", sizeof(int));
 printf("A pointer is %zu bytes\n", sizeof(int *));
 return 0;
}

Here there is yet another new token in the calls to printf(): %zu. The sizeof() function returns a
value of type size_t, for which %zu is the correct placeholder token.

Build and run the program. If your pointer is 4 bytes long, your program is running in 32-bit mode. If
your pointer is 8 bytes long, your program is running in 64-bit mode.

sizeof() will also take a variable as an argument, so you could have written the previous program like
this:

int main(int argc, const char * argv[])
{
 int i = 17;
 int *addressOfI = &i;
 printf("i stores its value at %p\n", addressOfI);
 *addressOfI = 89;
 printf("Now i is %d\n", i);
 printf("An int is %zu bytes\n", sizeof(i));
 printf("A pointer is %zu bytes\n", sizeof(addressOfI));
 return 0;
}

NULL
Sometimes you need a pointer to nothing. That is, you have a variable that can hold an address, and
you want to store something in it that makes it explicit that the variable is not set to anything. We use
NULL for this:

float *myPointer;
// Set myPointer to NULL for now, I'll store an address there
// later in the program
myPointer = NULL;

What is NULL? Remember that an address is just a number. NULL is zero. This is very handy in if
statements:

float *myPointer;
...
// Has myPointer been set?
if (myPointer) {
 // myPointer is not NULL
 ...do something with the data at myPointer...
} else {
 // myPointer is NULL
}

ptg999

Stylish pointer declarations

69

Sometimes NULL indicates that there is no value, so you might see something like this:

float *measuredGravityPtr = NULL;

// Some code that might set measuredGravityPtr to be non-NULL
…

float actualGravity;

// Did we measure the gravity?
if (measuredGravityPtr) {
 actualGravity = *measuredGravityPtr;
} else {
 actualGravity = estimatedGravity(planetRadius);
}

Or, you can use the ternary operator to do the same thing more tersely:

// If measuredGravityPtr is NULL, estimate the gravity
float actualGravity =
 measuredGravityPtr ? *measuredGravityPtr : estimatedGravity(planetRadius);

Later, when you are learning about pointers to objects, you will use nil instead of NULL. They are
equivalent, but Objective-C programmers use nil to mean the address where no object lives.

Stylish pointer declarations
When you declare a pointer to float, it looks like this:

float *powerPtr;

Because the type is a pointer to a float, you may be tempted to write it like this:

float* powerPtr;

This is fine, and the compiler will let you do it. However, stylish programmers do not.

Why? You can declare multiple variables in a single line. For example, if you wanted to declare
variables x, y, and z, you could do it like this:

float x, y, z;

Each one is a float.

What do you think these are?

float* b, c;

Surprise! b is a pointer to a float, but c is just a float. If you want them both to be pointers, you must
put a * in front of each one:

float *b, *c;

Putting the * directly next to the variable name makes this clearer.

A final note: Pointers can be difficult to get your head around at first. Do not worry if you have not
mastered these ideas yet. You will be working with them for the rest of the book, and they will make
more sense each time you do.

ptg999

Chapter 9 Addresses and Pointers

70

Challenge: how much memory?
Write a program that shows you how much memory a float consumes.

Challenge: how much range?
On a Mac, a short is a 2-byte integer, and one bit is used to hold the sign (positive or negative). What
is the smallest number that a short can store? What is the largest?

An unsigned short only holds non-negative numbers. What is the largest number that an unsigned
short can store?

ptg999

71

10
Pass-By-Reference

There is a standard C function called modf(). You give modf() a double, and it calculates the integer
part and the fraction part of the number. For example, if you give it 3.14, 3 is the integer part and 0.14
is the fractional part.

You, as the caller of modf(), want both parts. However, a C function can only return one value. How
can modf() give you both pieces of information?

When you call modf(), you will supply an address where it can stash one of the numbers. In particular,
it will return the fractional part and copy the integer part to the address you supply. Create a new
project: a C�Command�Line�Tool named PBR.

Edit main.c:

#include <stdio.h>
#include <math.h>

int main(int argc, const char * argv[])
{
 double pi = 3.14;
 double integerPart;
 double fractionPart;

 // Pass the address of integerPart as an argument
 fractionPart = modf(pi, &integerPart);

 // Find the value stored in integerPart
 printf("integerPart = %.0f, fractionPart = %.2f\n", integerPart, fractionPart);

 return 0;
}

This is known as pass-by-reference. That is, you supply an address (also known as “a reference”), and
the function puts the data there.

ptg999

Chapter 10 Pass-By-Reference

72

Figure 10.1 The stack as modf() returns

Here is another way to think about pass-by-reference. Imagine that you give out assignments to spies.
You might tell one, “I need photos of the finance minister with his girlfriend. I’ve left a short length of
steel pipe at the foot of the angel statue in the park. When you get the photos, roll them up and leave
them in the pipe. I’ll pick them up Tuesday after lunch.” In the spy biz, this is known as a “dead drop.”

modf() works just like a dead drop. You are asking it to execute and telling it a location where the
result can be placed so you can find it later. The only difference is that instead of a steel pipe, you are
giving it a location in memory where the result can be placed.

Writing pass-by-reference functions
The world is just awesome. The variety of cultures and peoples around the world inspires a great deal
of excellent output from the arts and sciences.

One complication of this diversity is that different people use different units for measuring the world
around them. The scientific and engineering communities tend to have a preference for metric units
(such as meters) over imperial units (such as feet and inches), due to their ease of use in mathematical
calculation.

If you were to write an application for consumption by users in certain parts of the world, however, you
might want to be able to print the results of your meter-based calculations using feet and inches.

How would you write a function that converts a distance in meters to the equivalent distance in feet and
inches? It would need to read a floating-point number and return two others. The declaration of such a
function would look like this:

void metersToFeetAndInches(double meters, unsigned int *ftPtr, double *inPtr);

When the function is called, it will be passed a value for meters. It will also be supplied with locations
where the values for feet and inches can be stored.

Now write the function near the top of your main.c file and call it from main():

ptg999

Writing pass-by-reference functions

73

#include <stdio.h>
#include <math.h>

void metersToFeetAndInches(double meters, unsigned int *ftPtr, double *inPtr)
{
 // This function assumes meters is non-negative.

 // Convert the number of meters into a floating-point number of feet
 double rawFeet = meters * 3.281; // e.g. 2.4536

 // How many complete feet as an unsigned int?
 unsigned int feet = (unsigned int)floor(rawFeet);

 // Store the number of feet at the supplied address
 printf("Storing %u to the address %p\n", feet, ftPtr);
 *ftPtr = feet;

 // Calculate inches
 double fractionalFoot = rawFeet - feet;
 double inches = fractionalFoot * 12.0;

 // Store the number of inches at the supplied address
 printf("Storing %.2f to the address %p\n", inches, inPtr);
 *inPtr = inches;
}

int main(int argc, const char * argv[])
{
 double meters = 3.0;
 unsigned int feet;
 double inches;

 metersToFeetAndInches(meters, &feet, &inches);
 printf("%.1f meters is equal to %d feet and %.1f inches.", meters, feet, inches);

 return 0;
}

Build and run the program.

Figure 10.2 The stack as metersToFeetAndInches() returns

ptg999

Chapter 10 Pass-By-Reference

74

Avoid dereferencing NULL
Sometimes a function can supply many values by reference, but you may only care about some of
them. How do you avoid declaring these variables and passing their addresses when you are not going
to use them anyway? Typically, you pass NULL as an address to tell the function “I do not need this
particular value.”

This means that you should always check to make sure the pointers are non-NULL before you
dereference them. Add these checks in metersToFeetAndInches():

void metersToFeetAndInches(double meters, unsigned int *ftPtr, double *inPtr)
{
 double rawFeet = meters * 3.281;
 unsigned int feet = (unsigned int)floor(rawFeet);

 // Store the number of feet at the supplied address
 if (ftPtr) {
 printf("Storing %u to the address %p\n", feet, ftPtr);
 *ftPtr = feet;
 }

 double fractionalFoot = rawFeet - feet;
 double inches = fractionalFoot * 12.0;

 if (inPtr) {
 printf("Storing %.2f to the address %p\n", inches, inPtr);
 *inPtr = inches;
 }
}

Challenge
In metersToFeedAndInches(), you used floor() and subtraction to break rawFeet into its integer and
fractional parts. Change metersToFeedAndInches() to use modf() instead.

ptg999

75

11
Structs

Sometimes you need a variable to hold several related chunks of data. In C, you can do this with a
structure, commonly called a struct. Each chunk of data is known as a member of the struct.

For example, consider a program that computes a person’s Body Mass Index, or BMI. BMI is a
person’s weight in kilograms divided by the square of the person’s height in meters. (BMI is a very
imprecise tool for measuring a person’s fitness, but it makes a fine programming example.)

Create a new project: a C�Command�Line�Tool named BMICalc. Edit main.c to declare a struct named
Person that has two members: a float named heightInMeters and an int named weightInKilos.
Then create two Person structs:

#include <stdio.h>

// Here is the declaration of the struct
struct Person {
 float heightInMeters;
 int weightInKilos;
};

int main(int argc, const char * argv[])
{
 struct Person mikey;
 mikey.heightInMeters = 1.7;
 mikey.weightInKilos = 96;

 struct Person aaron;
 aaron.heightInMeters = 1.97;
 aaron.weightInKilos = 84;

 printf("mikey is %.2f meters tall\n", mikey.heightInMeters);
 printf("mikey weighs %d kilograms\n", mikey.weightInKilos);
 printf("aaron is %.2f meters tall\n", aaron.heightInMeters);
 printf("aaron weighs %d kilograms\n", aaron.weightInKilos);
 return 0;
}

Notice that you access the members of a struct using a period (stylish programmers like to say “dot”).
Build and run the program and confirm the output.

Here is the frame for main() after the struct’s members have been assigned values.

ptg999

Chapter 11 Structs

76

Figure 11.1 Frame after member assignments

Most of the time, you use a struct declaration over and over again. So it is common to create a typedef
for the struct type. A typedef defines an alias for a type declaration and allows you to use it more like
the usual data types. Change main.c to create and use a typedef for struct Person. Notice that the
code to replace is shown struck-through.

#include <stdio.h>
// Here is the declaration of the struct
struct Person {
 float heightInMeters;
 int weightInKilos;
 };

// Here is the declaration of the type Person
typedef struct {
 float heightInMeters;
 int weightInKilos;
} Person;

int main(int argc, const char * argv[])
{
 struct Person mikey;
 Person mikey;
 mikey.heightInMeters = 1.7;
 mikey.weightInKilos = 96;

 struct Person aaron;
 Person aaron;
 aaron.heightInMeters = 1.97;
 aaron.weightInKilos = 84;

 printf("mikey is %.2f meters tall\n", mikey.heightInMeters);
 printf("mikey weighs %d kilograms\n", mikey.weightInKilos);
 printf("aaron is %.2f meters tall\n", aaron.heightInMeters);
 printf("aaron weighs %d kilograms\n", aaron.weightInKilos);
 return 0;
}

You can pass a Person to another function. Add a function named bodyMassIndex() that accepts a
Person as a parameter and calculates BMI. Then update main() to call this function:

ptg999

Challenge

77

#include <stdio.h>

// Here is the declaration of the type Person
typedef struct {
 float heightInMeters;
 int weightInKilos;
} Person;

float bodyMassIndex(Person p)
{
 return p.weightInKilos / (p.heightInMeters * p.heightInMeters);
}

int main(int argc, const char * argv[])
{
 Person mikey;
 mikey.heightInMeters = 1.7;
 mikey.weightInKilos = 96;

 Person aaron;
 aaron.heightInMeters = 1.97;
 aaron.weightInKilos = 84;

 printf("mikey is %.2f meters tall\n", mikey.heightInMeters);
 printf("mikey weighs %d kilograms\n", mikey.weightInKilos);
 printf("aaron is %.2f meters tall\n", aaron.heightInMeters);
 printf("aaron weighs %d kilograms\n", aaron.weightInKilos);

 float bmi;
 bmi = bodyMassIndex(mikey);
 printf("mikey has a BMI of %.2f\n", bmi);

 bmi = bodyMassIndex(aaron);
 printf("aaron has a BMI of %.2f\n", bmi);

 return 0;
}

Here you create a local variable bmi to hold the return value of bodyMassIndex(). You retrieve and
print out the Mikey’s BMI. Then you reuse the variable to retrieve and print out Aaron’s BMI.

Challenge
The first struct I had to deal with as a programmer was struct tm, which the standard C library uses to
hold time broken down into its components. The struct is defined:

ptg999

Chapter 11 Structs

78

struct tm {
 int tm_sec; /* seconds after the minute [0-60] */
 int tm_min; /* minutes after the hour [0-59] */
 int tm_hour; /* hours since midnight [0-23] */
 int tm_mday; /* day of the month [1-31] */
 int tm_mon; /* months since January [0-11] */
 int tm_year; /* years since 1900 */
 int tm_wday; /* days since Sunday [0-6] */
 int tm_yday; /* days since January 1 [0-365] */
 int tm_isdst; /* Daylight Savings Time flag */
 long tm_gmtoff; /* offset from CUT in seconds */
 char *tm_zone; /* timezone abbreviation */
};

The function time() returns the number of seconds since the first moment of 1970 in Greenwich,
England. localtime_r() can read that duration and pack a struct tm with the appropriate values.
(It actually takes the address of the number of seconds since 1970 and the address of an struct tm.)
Thus, getting the current time as a struct tm looks like this:

 long secondsSince1970 = time(NULL);
 printf("It has been %ld seconds since 1970\n", secondsSince1970);

 struct tm now;
 localtime_r(&secondsSince1970, &now);
 printf("The time is %d:%d:%d\n", now.tm_hour, now.tm_min, now.tm_sec);

Your challenge is to write a program that will tell you what the date (4-30-2015 format is fine) will be
in 4 million seconds.

(One hint: tm_mon = 0 means January, so be sure to add 1. Also, include the <time.h> header at the
start of your program.)

ptg999

79

12
The Heap

So far, your programs have used one kind of memory – frames on the stack. Recall that every function
has a frame where its local variables are stored. This memory is automatically allocated when a
function starts and automatically deallocated when the function ends. In fact, local variables are
sometimes called automatic variables because of this convenient behavior.

Sometimes, however, you need to claim a contiguous chunk of memory yourself – a buffer.
Programmers often use the word buffer to mean a long line of bytes of memory. The buffer comes from
a region of memory known as the heap, which is separate from the stack.

On the heap, the buffer is independent of any function’s frame. Thus, it can be used across many
functions. For example, you could claim a buffer of memory intended to hold some text. You could
then call a function that would read a text file into the buffer, call a second function that would count
all the vowels in the text, and call a third function to spellcheck it. When you were finished using the
text, you would return the memory that was in the buffer to the heap.

You request a buffer of memory using the function malloc(). When you are done using the buffer, you
call the function free() to release your claim on that memory and return it to the heap.

Let’s say, for example, you needed a chunk of memory big enough to hold 1,000 floats. Note the
crucial use of sizeof() to get the right number of bytes for your buffer.

#include <stdio.h>
#include <stdlib.h> // malloc() and free() are in stdlib.h

int main(int argc, const char * argv[])
{
 // Declare a pointer
 float *startOfBuffer;

 // Ask to use some bytes from the heap
 startOfBuffer = malloc(1000 * sizeof(float));

 // ...use the buffer here...

 // Relinquish your claim on the memory so it can be reused
 free(startOfBuffer);

 // Forget where that memory is
 startOfBuffer = NULL;

 return 0;
}

ptg999

Chapter 12 The Heap

80

startOfBuffer is a pointer to the address of the first floating point number in the buffer.

Figure 12.1 A pointer on the stack to a buffer on the heap

At this point, most C books would spend a lot of time talking about how to use startOfBuffer to read
and write data in different locations in the buffer of floating pointer numbers. This book, however, is
trying to get you to objects as quickly as possible. So, we will put off these concepts until later.

In Chapter 11, you created a struct as a local variable in main()’s frame on the stack. You can also
allocate a buffer on the heap for a struct. To create a Person struct on the heap, you could write a
program like this:

#include <stdio.h>
#include <stdlib.h>

typedef struct {
 float heightInMeters;
 int weightInKilos;
} Person;

float bodyMassIndex(Person *p)
{
 return p->weightInKilos / (p->heightInMeters * p->heightInMeters);
}

int main(int argc, const char * argv[])
{
 // Allocate memory for one Person struct
 Person *mikey = (Person *)malloc(sizeof(Person));

 // Fill in two members of the struct
 mikey->weightInKilos = 96;
 mikey->heightInMeters = 1.7;

 // Print out the BMI of the original Person
 float mikeyBMI = bodyMassIndex(mikey);
 printf("mikey has a BMI of %f\n", mikeyBMI);

 // Let the memory be recycled
 free(mikey);

 // Forget where it was
 mikey = NULL;

 return 0;
}

ptg999

81

Notice the operator ->. The code p->weightInKilos says, “Dereference the pointer p to the struct and
get me the member called weightInKilos.”

Figure 12.2 A pointer on the stack to a struct on the heap

This idea of structs on the heap is a very powerful one. It forms the basis for Objective-C objects,
which we turn to next.

ptg999

This page intentionally left blank

ptg999

Part III
Objective-C and Foundation

Now that you have an understanding of the basics of programs, functions, variables, and data types,
you are ready to learn Objective-C. We will stick with command-line programs for now to keep the
focus on programming essentials.

All Objective-C programming is done with the Foundation framework. A framework is library of
classes that you use to write programs. What is a class? That is what we will talk about first…

ptg999

This page intentionally left blank

ptg999

85

13
Objects

In this chapter, you will write your first Objective-C program. This program will be a command-line
tool like the ones you have written so far, but it will be written in Objective-C.

In the early 1980’s, Brad Cox and Tom Love created the Objective-C language. For objects, they built
upon the idea of structs allocated on the heap and added a message-sending syntax.

As you move from C programming to Objective-C programming, you are entering the world of objects
and object-oriented programming. Be prepared to encounter new concepts and to be patient. You will
be using these patterns again and again, and they will become clear with time and practice.

Objects
An object is similar to a struct (such as the struct Person you created in Chapter 11). Like a struct, an
object can contain several pieces of related data. In a struct, we called them members. In an object, we
call them instance variables (or you might hear “ivars”).

An object differs from a struct in that an object can also have its own functions that act on the data it
contains. These functions are called methods.

Classes
A class describes a certain type of object by listing the instance variables and methods that object will
have. A class can describe an object that represents

• a concept, like a date, a string, or a set

• something in the real world, like a person, a location, or a checking account

A class defines a kind of object. It also produces objects of that kind. You can think of a class as both
blueprint and factory.

In Chapter 18, you will rewrite the BMI-calculating program using objects instead of structs. You are
going to create a class named Person. The objects that it produces will be instances of the Person
class. These instances will have instance variables for height and weight and a method for calculating
the BMI.

ptg999

Chapter 13 Objects

86

Figure 13.1 A Person class and two Person instances

A note about our object diagrams: Classes, like the Person class, are diagrammed with a dashed
border. Instances are drawn with solid borders. This is a common diagramming convention for
distinguishing between classes and instances of a class.

At this point in this chapter, we are going to switch from theory to practice. Do not worry if objects,
classes, instances, and methods do not make perfect sense yet. Practice will help.

Instead of starting off by writing a new custom class, you are going to create instances of a class that
Apple has provided. This class is named NSDate. An instance of NSDate represents a point in time. You
can think of it as a timestamp. You will also be using methods from the NSDate class.

Creating your first object
Create a new Command�Line�Tool project named TimeAfterTime. Make its type Foundation – not C like
with your past projects (Figure 13.2).

ptg999

Creating your first object

87

Figure 13.2 Creating a Foundation command-line tool

Files containing Objective-C code are given the suffix .m. Find and open main.m.

At the top of this file, find the line that reads

#import <Foundation/Foundation.h>

When Xcode created your project, it imported the Foundation framework for you. A framework is a set
of related classes, functions, constants, and types. The Foundation framework contains fundamental
classes that are used in all iOS apps and OS X applications. The NSDate class is in the Foundation
framework.

What is the difference between #import and #include? #import is faster and more efficient. When
the compiler sees the #include directive, it makes a dumb copy-and-paste of the contents of the file to
include. When the compiler sees the #import directive, it first checks to see if another file may have
already imported or included the file.

In main.m, add the following line of code:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 NSDate *now = [NSDate date];

 }
 return 0;
}

ptg999

Chapter 13 Objects

88

On the left side of the assignment operator (=), you have a variable named now. You can tell from the *
that this variable is a pointer. This pointer holds the address in memory where the instance of NSDate
lives.

The code on the right side returns the address of an instance of NSDate. This code is known as a
message send, and you will learn about messages in the next section. First, add the following line that
writes the address of the NSDate instance using the function NSLog().

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 NSDate *now = [NSDate date];
 NSLog(@"This NSDate object lives at %p", now);
 }
 return 0;
}

NSLog() is a function in the Foundation framework that is a lot like printf(). It accepts a format string
and can have replaceable tokens.

Build and run the program. You should see something like:

2013-08-05 11:53:54.366 TimeAfterTime[4862:707] This NSDate object lives at 0x100116240

Unlike printf(), NSLog() prefaces its output with the date, time, program name, and process ID.
From now on, when we show output from NSLog(), we will skip this data – the page is just too narrow.

This NSDate object lives at 0x100116240

You have created an instance of NSDate, and it lives at the address stored in now. To understand how
this happened, you need to know about methods and messages.

Methods and messages
Methods are like functions. They contain code to be executed on command. In Objective-C, to execute
the code in a method, you send a message to the object or class that has that method.

The NSDate class has a date method. In the code you just wrote, you sent the date message to the
NSDate class to execute the date method.

NSDate *now = [NSDate date];

This was your first message send.

Message sends
A message send is surrounded by square brackets and has two parts: the receiver and the selector.

ptg999

Another message

89

Figure 13.3 A message send

What does sending the date message do? When the date method is executed, the NSDate class claims
some memory on the heap for an instance of NSDate, initializes the instance to the current date/time,
and returns the address of the new object.

Add another NSLog() call to your program.

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 NSDate *now = [NSDate date];
 NSLog(@"This NSDate object lives at %p", now);
 NSLog(@"The date is %@", now);

 }
 return 0;
}

Here you use a new token, %@. This Objective-C token asks the object for a description of itself. (You
will learn more about %@ in Chapter 20.)

Build and run the program. You should see something like this:

This NSDate object lives at 0x100116240
The date is 2013-08-05 16:09:14 +0000

Another message
Now that you have an instance of NSDate, you can send messages to this new object. You are going to
send it the message timeIntervalSince1970.

When you send this message to an instance of NSDate, you get back the difference in seconds between
the date/time that the NSDate instance represents and 12:00AM on Jan 1, 1970 in Greenwich, England.
(Why 1970? OS X and iOS are based on Unix, and 1970 is the start of the “Unix epoch.”)

Send the timeIntervalSince1970 message to the NSDate instance pointed to by now. The
timeIntervalSince1970 method returns a double. (Recall that a double is a floating-point number
that has more precision than a float.) Put the result in a variable named seconds.

ptg999

Chapter 13 Objects

90

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 NSDate *now = [NSDate date];
 NSLog(@"This NSDate object lives at %p", now);
 NSLog(@"The date is %@", now);

 double seconds = [now timeIntervalSince1970];
 NSLog(@"It has been %f seconds since the start of 1970.", seconds);

 }
 return 0;
}

Build and run the program to see the results.

Class methods vs. instance methods
Consider two messages that you have sent:

Figure 13.4 Two message sends

You sent the date message to the NSDate class. date is a class method. Typically, class methods create
an instance of the class and initialize its instance variables.

In the second message send, you sent the timeIntervalSince1970 message to the NSDate instance
pointed to by now. timeIntervalSince1970 is an instance method. Typically, instance methods give
you information about or perform an operation on an instance’s instance variables.

Instance methods tend to be more common in Objective-C programs. You send a message to a class
to create an instance. This message causes a class method to be executed. But once you have that
instance, the instance will likely receive many messages over the run of the program. These messages
will cause instance methods to be executed.

ptg999

Sending bad messages

91

Sending bad messages
What would happen if you sent the date class method to an NSDate instance or the
timeIntervalSince1970 instance method to the NSDate class? Try it:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 NSDate *now = [NSDate date];
 NSLog(@"This NSDate object lives at %p", now);
 NSLog(@"The date is %@", now);

 double seconds = [now timeIntervalSince1970];
 NSLog(@"It has been %f seconds since the start of 1970.", seconds);

 // Sending bogus messages to see errors...
 double testSeconds = [NSDate timeIntervalSince1970];
 NSDate *testNow = [now date];

 }
 return 0;
}

Build your program (Command-B), and Xcode will report build errors. On the first new line, find an
error that reads No�known�class�method�for�selector�'timeIntervalSince1970'.

(There is another error on this line about initializing a double. Ignore that one for now.)

The error is clear: The receiver in this message send is the NSDate class, so the selector should be the
name of an NSDate class method. This selector is not.

On your next faulty message send, find an error that reads No�visible�@interface�for�'NSDate'�declares
the�selector�'date'.

This error is less clear: It is telling you that NSDate has no instance method whose name matches the
date selector.

These errors are important for beginners to recognize. They appear when you mistype a message name.
Try it:

ptg999

Chapter 13 Objects

92

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 NSDate *now = [NSDate date];
 NSLog(@"This NSDate object lives at %p", now);
 NSLog(@"The date is %@", now);

 double seconds = [now timeIntervalSince1970];
 NSLog(@"It has been %f seconds since the start of 1970.", seconds);

 // Sending bogus messages to see errors...
 double testSeconds = [NSDate timeIntervalSince1970];
 NSDate *testNow = [now date];

 // Mistyped selector name
 testSeconds = [now fooIntervalSince1970];

 }
 return 0;
}

Build your program and you will be told that NSDate does not have an instance method named
fooIntervalSince1970.

Capitalization counts!
Objective-C code is case-sensitive. Thus, timeIntervalSince1970 and timeintervalsince1970 are
two distinct messages. Only one of these messages matches the name of an NSDate method. Try it:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 NSDate *now = [NSDate date];
 NSLog(@"This NSDate object lives at %p", now);
 NSLog(@"The date is %@", now);

 double seconds = [now timeIntervalSince1970];
 NSLog(@"It has been %f seconds since the start of 1970.", seconds);

 // Sending bogus messages to see errors...
 NSDate *testNow = [now date];
 double testSeconds = [NSDate timeIntervalSince1970];

 // Mistyped selector name
 testSeconds = [now fooIntervalSince1970];

 // Typo! Lowercase 'i' and 's'
 testSeconds = [now timeintervalsince1970];

 }
 return 0;
}

ptg999

A note on terminology

93

Keep the case-sensitivity of method names in mind. This is the source of many beginner errors.
Remove your bogus message sends before continuing:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 NSDate *now = [NSDate date];
 NSLog(@"This NSDate object lives at %p", now);
 NSLog(@"The date is %@", now);

 double seconds = [now timeIntervalSince1970];
 NSLog(@"It has been %f seconds since the start of 1970.", seconds);

 // Sending bogus messages to see errors...
 NSDate *testNow = [now date];
 double testSeconds = [NSDate timeIntervalSince1970];

 // Mistyped selector name
 testSeconds = [now fooIntervalSince1970];

 // Typo! Lowercase 'i' and 's'
 testSeconds = [now timeintervalsince1970];
 }
 return 0;
}

Objective-C naming conventions

• Variable names that point to instances use “camel case.” They begin with lowercase letters and the
first letter of each subsequent word is capitalized: now, weightLifter, myCurrentLocation

• Method names also use camel case: date, bodyMassIndex, timeIntervalSince1970

• Class names are capitalized, that is, they begin with capital letters but after that use camel case:
NSDate, Person, CLLocation, NSMutableArray

Typically, class names begin with prefixes to avoid confusion between similarly named classes.
Prefixes can also tell you what framework something belongs to. The NS prefix is used for the
Foundation framework: NSDate, NSLog(). NS is short for NeXTSTEP, the platform for which
Foundation was originally conceived.

• Many Apple-created types and constants are also capitalized. For example, NSInteger is not a
class, it is just a type of integer. NSOKButton is a constant that is equal to 1.

A note on terminology
When talking about code, typically, developers say “an NSDate” to refer to an instance of NSDate. It is
also common to refer to an instance by what it represents. You might refer to an instance of NSDate as
“a date object” or even just “a date.”

To refer to a class, developers typically use just the class name. For example, “NSDate was included in
OS X 10.0.”

ptg999

Chapter 13 Objects

94

The ideas of classes, objects, messages, and methods can be difficult to get your head around at the
beginning. Do not worry if you still feel uncertain about objects. This is just the beginning. You will be
using these concepts over and over again, and they will make more sense each time you do.

Challenge
In this challenge, you will write a Foundation�Command�Line�Tool that prints out the name of your
computer. This program will use two classes from the Foundation framework: NSHost and NSString.

First, you will get an instance of NSHost that has your computer’s information. Then you will ask the
NSHost object for your computer’s name. Finally, you will use NSLog() to print out this name.

Here are more details that you will need:

• To get an instance of NSHost, send the currentHost message to the NSHost class.

• Once you have an instance of NSHost, send it the localizedName message. The localizedName
method returns a pointer to an instance of NSString. Thus, you can store the result of sending this
message in a variable of type NSString *.

• Use NSLog() and the %@ token to print out your computer’s name.

This challenge is very much like what you did in this chapter: getting a new object, sending it a
message, and storing the result of that message in a variable. Do not let the new classes and methods
throw you. Also, this program can take a surprisingly long time to run.

ptg999

95

14
More Messages

Objects are very chatty by nature. They send and receive lots of messages about the work they are
doing. In this chapter, you will learn about messages with arguments, nested message sends, and more.

A message with an argument
The TimeAfterTime program has an NSDate initialized to the date and time at which it is created. What
if you want to represent a date in the future – say, 100,000 seconds from the first date? You can create
such a date by sending the dateByAddingTimeInterval: message to the original instance of NSDate.

Notice the colon at the end of the dateByAddingTimeInterval: method’s name. This tells you that
dateByAddingTimeInterval: accepts an argument. Methods, like functions, can have zero, one, or
more arguments.

Figure 14.1 A message send with an argument

The dateByAddingTimeInterval: method accepts the number of seconds by which the new NSDate
should differ from the original one. (A negative number would give you an NSDate in the past.)

In TimeAfterTime, use dateByAddingTimeInterval: to create a second date that is 100,000 seconds (a
bit over a day) later than the date pointed to by now:

ptg999

Chapter 14 More Messages

96

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 NSDate *now = [NSDate date];
 NSLog(@"This NSDate object lives at %p", now);
 NSLog(@"The date is %@", now);

 double seconds = [now timeIntervalSince1970];
 NSLog(@"It has been %f seconds since the start of 1970.", seconds);

 NSDate *later = [now dateByAddingTimeInterval:100000];
 NSLog(@"In 100,000 seconds it will be %@", later);

 }
 return 0;
}

When a method has an argument, the colon is an essential part of the method’s name. There is no
method named dateByAddingTimeInterval. There is only dateByAddingTimeInterval:.

Multiple arguments
What if you want to know the day of the month (e.g., June 1st) for an NSDate object? An NSDate does
not know this information. Instead, you must ask an instance of NSCalendar.

NSCalendar is another Foundation class. You can create an instance of NSCalendar by sending the
NSCalendar class the currentCalendar message.

The class method currentCalendar will return the address of an NSCalendar instance that matches the
user’s settings. (In most western countries, the Gregorian calendar is the default, but there are several
other calendars, like the Hebrew calendar and the Islamic calendar.) Ask the NSCalendar class for an
instance of NSCalendar.

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 NSDate *now = [NSDate date];
 NSLog(@"This NSDate object lives at %p", now);
 NSLog(@"The date is %@", now);

 double seconds = [now timeIntervalSince1970];
 NSLog(@"It has been %f seconds since the start of 1970.", seconds);

 NSDate *later = [now dateByAddingTimeInterval:100000];
 NSLog(@"In 100,000 seconds it will be %@", later);

 NSCalendar *cal = [NSCalendar currentCalendar];
 NSLog(@"My calendar is %@", [cal calendarIdentifier]);
 }
 return 0;
}

ptg999

Multiple arguments

97

NSCalendar has a method ordinalityOfUnit:inUnit:forDate: that can tell you more information
about an NSDate. This method takes three arguments. You can tell by the number of colons in the
method name.

Let’s start with the third argument. It is the NSDate object that you want more information about.
The first and second arguments are constants from the NSCalendar class that describe the type of
information you want. To get the day of the month, you pass NSDayCalendarUnit for the first argument
and NSMonthCalendarUnit for the second argument.

Figure 14.2 A message send with three arguments

This method takes three arguments, so its name has three parts, but this is one message send and it
triggers one method.

There are NSCalendar constants you can use to find information on hours, days, weeks, months,
quarters, etc. For instance, to find out what week of the month an NSDate falls in, you would send
the same message and pass NSWeekCalendarUnit and NSMonthCalendarUnit as the first and second
arguments.

In TimeAfterTime, ask the instance of NSCalendar to find the day of the month for the NSDate pointed
to by now.

ptg999

Chapter 14 More Messages

98

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 NSDate *now = [NSDate date];
 NSLog(@"This NSDate object lives at %p", now);
 NSLog(@"The date is %@", now);

 double seconds = [now timeIntervalSince1970];
 NSLog(@"It has been %f seconds since the start of 1970.", seconds);

 NSDate *later = [now dateByAddingTimeInterval:100000];
 NSLog(@"In 100,000 seconds it will be %@", later);

 NSCalendar *cal = [NSCalendar currentCalendar];
 NSLog(@"My calendar is %@", [cal calendarIdentifier]);
 unsigned long day = [cal ordinalityOfUnit:NSDayCalendarUnit
 inUnit:NSMonthCalendarUnit
 forDate:now];
 NSLog(@"This is day %lu of the month", day);

 }
 return 0;
}

Notice that you split the ordinalityOfUnit:inUnit:forDate: message send into three lines.
Objective-C programmers often line up the colons so that it is easy to tell the parts of the method name
from the arguments. (Xcode should do this for you: every time you start a new line, the previous line
should indent properly. If that is not happening, check your Xcode preferences for indention.)

Nesting message sends
Message sends can be nested. For instance, to find out the number of seconds since the start of 1970,
you could write your code this way:

 NSDate *now = [NSDate date];
 double seconds = [now timeIntervalSince1970];
 NSLog(@"It has been %f seconds since the start of 1970", seconds);

Or you could nest the two message sends like this:

 double seconds = [[NSDate date] timeIntervalSince1970];
 NSLog(@"It has been %f seconds since the start of 1970", seconds);

When message sends are nested, the system will handle the message send on the inside first and then
the message that contains it. So date is sent to the NSDate class, and the result of that (a pointer to the
newly-created instance) is sent timeIntervalSince1970.

You will often see nested message sends in code, and you need to know how to read them. However,
when writing your own code, you may find that nesting messages is counterproductive. It makes your
code harder to read and harder to debug because more than one thing is happening on one line.

ptg999

alloc and init

99

alloc and init
There is one case where it is always right and proper to nest two message sends. You always nest the
messages alloc and init.

The alloc method is a class method that every class has. It returns a pointer to a new instance that
needs to be initialized. An uninitialized instance may exist in memory, but it is not ready to receive
messages. The init method is an instance method that every class has. It initializes an instance so that
it is ready to work.

Practice using nested messages in your program. Create an NSDate object by sending alloc and init
messages instead of the date message.

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 NSDate *now = [NSDate date];
 NSDate *now = [[NSDate alloc] init];
 NSLog(@"This NSDate object lives at %p", now);
 NSLog(@"The date is %@", now);

 double seconds = [now timeIntervalSince1970];
 NSLog(@"It has been %f seconds since the start of 1970.", seconds);

 NSDate *later = [now dateByAddingTimeInterval:100000];
 NSLog(@"In 100,000 seconds it will be %@", later);

 NSCalendar *cal = [NSCalendar currentCalendar];
 NSLog(@"My calendar is %@", [cal calendarIdentifier]);

 unsigned long day = [cal ordinalityOfUnit:NSDayCalendarUnit
 inUnit:NSMonthCalendarUnit
 forDate:now];
 NSLog(@"This is day %lu of the month", day);

 }
 return 0;
}

There is no difference in the two ways of creating an instance of NSDate. The init method of NSDate
initializes the NSDate object to the current date and time – just like the date method does. The date
method is a convenient way to get an NSDate instance with minimal code. In fact, we call this sort of
method a convenience method.

Sending messages to nil
Nearly all object-oriented languages have the idea of nil, the pointer to no object. In Objective-C, we
use nil instead of NULL, which was discussed in Chapter 9. They really are the same thing: the zero
pointer. By convention, though, we use nil when referring to the value of an empty pointer declared
as pointing to an Objective-C object type, and NULL when referring to any other pointer, such as to a
struct.

ptg999

Chapter 14 More Messages

100

In most object-oriented languages, sending a message to nil is not allowed. As a result, you have to
check for non-nil-ness before accessing an object. So you see this sort of thing a lot:

if (fido != nil) {
 [fido goGetTheNewspaper];
}

When Objective-C was designed, it was decided that sending a message to nil would be OK; it would
simply do nothing. Thus, this code is completely legal:

Dog *fido = nil;
[fido goGetTheNewspaper];

Important thing #1: If you are sending messages and nothing is happening, make sure you are not
sending messages to a pointer that has been set to nil.

Important thing #2: If you send a message to nil, the return value is meaningless and should be
disregarded.

Dog *fido = nil;
Newspaper *daily = [fido goGetTheNewspaper];

In this case, daily will be zero. (In general, if you expect a number or a pointer as a result, sending
a message to nil will return zero. However, for other types like structs, you will get strange and
unexpected return values.)

id
When declaring a pointer to hold the address of an object, most of the time you specify the class of the
object that the pointer will refer to:

NSDate *expiration;

However, often you need a way to create a pointer without knowing exactly what kind of object the
pointer will refer to. For this case, you use the type id to mean “a pointer to some kind of Objective-C
object” Here is what it looks like when you use it:

id delegate;

Notice that there is no asterisk in this declaration. id implies the asterisk.

Challenge
Use two instances of NSDate to figure out how many seconds you have been alive.

First, NSDate has an instance method timeIntervalSinceDate:. This method takes one argument –
another instance of NSDate. It returns the number of seconds between the NSDate that received the
message and the NSDate that was passed in as the argument.

It looks something like this:

double secondsSinceEarlierDate = [laterDate timeIntervalSinceDate:earlierDate];

Second, you will need to create a new date object that is set to a given year, month, etc. You will do
this with the help of an NSDateComponents object and an NSCalendar object. Here is an example:

ptg999

Challenge

101

NSDateComponents *comps = [[NSDateComponents alloc] init];
[comps setYear:1969];
[comps setMonth:4];
[comps setDay:30];
[comps setHour:13];
[comps setMinute:10];
[comps setSecond:0];

NSCalendar *g = [[NSCalendar alloc] initWithCalendarIdentifier:NSGregorianCalendar];
NSDate *dateOfBirth = [g dateFromComponents:comps];

Good luck!

ptg999

This page intentionally left blank

ptg999

103

15
Objects and Memory

In this chapter, you will learn about the life of objects on the heap and how heap memory is managed.

On pointers and their values
Objects can only be accessed via a pointer, and it is practical, if inaccurate, to refer to an object by its
pointer, as in “now is an NSDate.” However, is important to remember that the pointer and the object
that it points at are not the same thing. Here is a more accurate statement: “now is a pointer that can
hold an address of a location in memory where an instance of NSDate lives.”

Create a new Command-line�Tool named TimesTwo. Make its type Foundation. In main.m, declare a
variable that points to an instance of NSDate.

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {
 NSDate *currentTime = nil;
 NSLog(@"currentTime's value is %p", currentTime);
 }
 return 0;
}

Here you have initialized the pointer variable to nil. Run the program, and you will find that
currentTime points at 0x0 which is the value of nil.

This diagram shows the currentTime local variable that is part of the frame for main(). Its current
value is nil, and there are no objects yet created on the heap.

ptg999

Chapter 15 Objects and Memory

104

Next, create an NSDate for currentTime to point at instead of pointing at nil.

...
 @autoreleasepool {
 NSDate *currentTime = [NSDate date];
 NSLog(@"currentTime's value is %p", currentTime);
 }
 return 0;
}

Build and run the program. The output will report the address of the object pointed to by currentTime.
An NSDate object now exists on the heap.

currentTime is a variable, so you can change it to point at a different NSDate. Make the program
sleep for two seconds after the first log statement and then point currentTime at a second instance of
NSDate.

 @autoreleasepool {
 NSDate *currentTime = [NSDate date];
 NSLog(@"currentTime's value is %p", currentTime);

 sleep(2);

 currentTime = [NSDate date];
 NSLog(@"currentTime's value is now %p", currentTime);
 }
 return 0;
}

Build and run the program. Two seconds after the first line of output, you will see a second line
reporting a different address for currentTime. currentTime now points at a different NSDate:

ptg999

Memory management

105

What about the original date object? From your code’s perspective, this object and the information it
contained are lost. If you lose your only pointer to an object, then you can no longer access it – even if
it continues to exist on the heap.

If you wanted to change currentTime’s value and still be able to access the original date, you could
declare another pointer to store the address of the original date.

 @autoreleasepool {
 NSDate *currentTime = [NSDate date];
 NSLog(@"currentTime's value is %p", currentTime);

 NSDate *startTime = currentTime;

 sleep(2);

 currentTime = [NSDate date];
 NSLog(@"currentTime's value is now %p", currentTime);
 NSLog(@"The address of the original object is %p", startTime);
 }
 return 0;
}

Build and run the program.

Now let’s look at this code progression from the perspective of memory management.

Memory management
When we talk about memory management, we are talking about managing heap memory. Consider
the difference between the stack and the heap. Recall from Chapter 5 that the stack is an orderly stack
of frames. Each frame is automatically deallocated when the function using it ends. The heap, on the
other hand, is a heaping pile of memory, and that is where your objects live.

Managing the heap is important because objects can be large and because your program only gets so
much heap memory for its own use. Each object that is created takes up some of that memory.

Running low on memory is a problem. It will cause a Mac app to perform badly and will cause an iOS
app to crash. Thus, it is essential that any objects that are no longer necessary are destroyed so that
their memory can be reclaimed and reused.

Take another look again at the program when you first change currentTime to a new value and before
you have startTime.

ptg999

Chapter 15 Objects and Memory

106

Nothing points to the original date object. From a memory management perspective, this object is
useless and is taking up valuable heap memory. It needs to be destroyed.

ARC
The setting that instructs the compiler to ensure the destruction of unreferenced objects is called
ARC. ARC is short for Automatic Reference Counting. If you recall that “reference” is another
word for pointer, then it is easy to understand what ARC is for: Each object keeps a count of how
many references to itself there are. When this reference count reaches zero, the object knows it is no
longer needed and will self-destruct. When your project has ARC enabled, the compiler adds code
to your project to tell each object when it gains or loses a reference. Once upon a time, developers
were required to write code to keep an object’s reference count up to date – hence the “Automatic” in
Automatic Reference Counting.

When you change currentTime to point at a new object, the original object loses a reference, and ARC
decrements its reference count. The new date object’s reference count is incremented.

Given that currentTime was the only reference to the original NSDate, the object will be destroyed so
that its memory can be used for something else.

When you create the startTime pointer and give it the same value as currentTime, the date object
gains another reference.

ptg999

ARC

107

When you change currentTime to point to a new date, the new date gains a reference and the original
date loses a reference.

This time, however, the original date still has another reference. So you still have access to this object,
and the object still exists.

Thus, as long as you have a pointer to an object, you can be sure that it will continue to exist. You will
never explicitly destroy an object, as you would a buffer with free() (as you learned in Chapter 12).
You can only add or remove a reference to the object. The object will destroy itself when its reference
count reaches zero.

What if you are done with an object? You set the pointer to nil, or let the pointer be destroyed when
it falls out of scope. To illustrate what happens, go ahead and manually nullify currentTime in your
program:

 @autoreleasepool {
 NSDate *currentTime = [NSDate date];
 NSLog(@"currentTime's value is %p", currentTime);
 NSDate *startTime = currentTime;

 sleep(2);

 currentTime = [NSDate date];
 NSLog(@"currentTime's value is now %p", currentTime);
 NSLog(@"The original object lives at %p", startTime);

 currentTime = nil;
 NSLog(@"currentTime's value is %p", currentTime);
 }
 return 0;
}

ptg999

Chapter 15 Objects and Memory

108

Build and run the program. At the end of the output, you will see that currentTime’s value is back to
0x0.

Setting currentTime to nil causes the NSDate object to lose a reference, and in this case, it will be
destroyed.

An object also loses a reference when the pointer variable itself is destroyed. Things get a little more
complicated when you have objects with instance variables pointing to other objects. You will learn
how to handle those cases starting in Chapter 21.

ptg999

109

16
NSString

NSString is another class like NSDate. Instances of NSString hold character strings. Objective-C
developers use NSString instances to hold and manipulate text in their programs.

Creating instances of NSString
In code, you can create an instance of NSString like this:

 NSString *lament = @"Why me!?";

Notice that there is no explicit message sent to the NSString class to create the instance. The @"..." is
Objective-C shorthand for creating an NSString object with the given character string. This shorthand
is known as literal syntax. When you use it, we say that you are creating a literal instance of NSString,
or more commonly, an NSString literal.

Instances of NSString can contain any Unicode character. To insert non-ASCII characters, use \u
followed by the Unicode number for that character in hexadecimal. For example, the symbol for the
white heart suit in cards is 0x2661:

 NSString *slogan = @"I \u2661 New York!";

Because NSString objects can hold Unicode characters, they make it easy to create applications that
can deal with strings from many languages.

Frequently, you will need to create strings dynamically. That is, you will need to create a string
whose contents will not be known until the program is running. To create an instance of NSString
dynamically, you can use the stringWithFormat: class method:

 NSString *dateString = [NSString stringWithFormat:@"The date is %@", now];

In the stringWithFormat: message, you send as an argument a format string with one or more tokens
and the variable(s) whose values will be used in place of the token(s). It works the same as the format
string that you have been passing to the NSLog function.

NSString methods
NSString is a class that developers use a lot. Like all Objective-C classes, it comes with useful
methods. If you want to do something with a string, there is likely an NSString method that can help.

Below are a few examples of NSString methods. To introduce these methods, we are showing you the
declaration of the method and then an example of it being used. The declaration tells you what you

ptg999

Chapter 16 NSString

110

need to know about a method: whether it is an instance or a class method, what it returns, its name, and
the types of its arguments, if any.

To get the number of characters in a string, you use the length method:

- (NSUInteger)length;

This method is an instance method. You can tell by the ‘-’ at the start of the declaration. (A class
method would have a ‘+’ instead.) This method returns an NSUInteger and does not have any
arguments. NSUInteger is a type in the Foundation framework. It is equivalent to the unsigned long
type that you learned about in Chapter 7.

 NSUInteger charCount = [dateString length];

To see if one string is equal to another, you can use the isEqualToString: method:

- (BOOL)isEqualToString:(NSString *)other;

This instance method will go through the two strings comparing them character by character to see
if they are the same. Its one argument is the string that you want to compare with the string that will
receive the isEqualToString: message. The method returns a BOOL that reports whether the two
strings are, in fact, equal.

 if ([slogan isEqualToString:lament]) {
 NSLog(@"%@ and %@ are equal", slogan, lament);
 }

To get an uppercase version of a string, you use the uppercaseString method.

- (NSString *)uppercaseString;

This instance method returns an instance of NSString that is equivalent to the receiver except all
uppercase:

 NSString *angryText = @"That makes me so mad!";
 NSString *reallyAngryText = [angryText uppercaseString];

Class references
So where do you find methods that you need? Apple maintains a class reference for each class in its
APIs. The class reference lists all of the methods of a class and basic information on how to use them.

In Xcode, select Help → Documentation�and�API�Reference. This will open Xcode’s documentation
browser.

ptg999

Class references

111

In the search field at the top of the window, enter NSString.

Figure 16.1 NSString class reference

(You can also access the documentation via Apple’s developer website. To get to the NSString
class reference, simply search for “NSString class reference.” The first result returned is usually the
NSString reference page at developer.apple.com.)

In the righthand pane is the table of contents for the NSString class reference. The Overview describes
the NSString class in general. There are also headings that list the class methods and instance methods.
If you know the name of the method you are looking for, then you can find it by name under one of
these headings and read all about its details.

ptg999

Chapter 16 NSString

112

Reveal the contents of the Class�Methods category. Find and select stringWithFormat: from the list to
see useful information about this method, like descriptions of its parameters and return value.

Figure 16.2 Documentation for stringWithFormat:

If you need to do something with an object but do not know of a specific method, then the best place
to start is the Tasks heading. One task that developers often need to accomplish with NSString is
searching one string to see if it contains a certain substring. A substring is a string that may make up
part or all of another string.

For instance, say you read in a comma-delimited list of names as an NSString object. Now you need to
check if a particular name is in the list. That single name would be a substring of the larger string.

ptg999

Class references

113

Reveal the contents under the Tasks heading. Find and select Finding�Characters�and�Substrings. This
will reveal several potentially useful methods.

Figure 16.3 Methods for finding characters and substrings

In the real world, you would browse through the details of candidate methods until you found one
that would work. For this example, we will give you a head start: click rangeOfString: in the list of
methods to see its details (Figure 16.4).

ptg999

Chapter 16 NSString

114

Figure 16.4 Documentation for rangeOfString:

You can see that rangeOfString: has one parameter that is an instance of NSString. This is the
“substring” for which you want to search – the single name to find in the list of names.

You can also see that this method returns an NSRange. What is an NSRange? Click NSRange to view its
definition (Figure 16.5).

ptg999

Class references

115

Figure 16.5 Documentation for NSRange

NSRange is a typedef for a struct, like you used in Chapter 11. It has two members, location and
length, that you can use to pinpoint a substring within a string.

However, in the current problem, you only want to see if the name occurs in the list or not. To figure
out how to do this, press the back button at the top lefthand corner of the documentation browser to
return to the previous page. Then find the Return�Value section in the rangeOfString: documentation.
This section states that when the passed-in substring does not occur, rangeOfString: returns an
NSRange whose location is the constant NSNotFound.

Thus, to determine whether the name is in the list of names, you can simply check the return value’s
location member. The code would look something like this:

NSString *listOfNames = @"..."; // a long list of names
NSString *name = @"Ward";
NSRange match = [listOfNames rangeOfString:name];
if (match.location == NSNotFound) {
 NSLog(@"No match found!");
 // Other actions to be taken
} else {
 NSLog(@"Match found!");
 // Other actions to be taken
}

ptg999

Chapter 16 NSString

116

Other parts of the documentation
Before you close the documentation, let’s look at few more items that can be especially helpful for new
Objective-C developers. Return to the top of the righthand pane and click the button to reveal some
basic details about the NSString class.

Figure 16.6 Details for NSString

Below these details are links to other parts of Apple’s documentation related to NSString.

Under the Sample�Code heading are small, complete projects that demonstrate how Apple expects
the class in question to be used. Many classes (especially commonly-used ones, like NSString) have
sample code links on their reference pages.

Under the Related heading are two of Apple’s developer guides. These guides are organized by topic
rather than by class or method, so they are excellent for learning about specific topics in Objective-C,
iOS development, and OS X development.

You can browse all of the developer guides at https://developer.apple.com/library. Select iOS
or OS�X to get to the developer library for that platform. The two platforms share the Foundation
framework, so anything you are learning now will be in either library.

Select Guides from the contents on the left to see a list of guides with a handy search field at the top.
Or you can select Getting�Started to see a smaller group of beginning tutorial guides.

https://developer.apple.com/library

ptg999

Challenge: finding more NSString methods

117

It would be difficult to overstate how important Apple’s documentation will be to you and how
important it is for programmers of all levels. As you go through this book, take a moment to look up
new classes and methods as you encounter them and see what else they can do. Also read through
developer guides and download sample code projects that peak your interest. The more comfortable
you get using the documentation, the faster your development will go.

Challenge: finding more NSString methods
The rangeOfString: method is case-sensitive. Return to the NSString class reference and find the
method that you would use if you needed to do a case-insensitive search.

Then find the NSString method that will return the actual portion of the string that was found.

Challenge: using readline()
The return value of the readline function from Chapter 8 is of type const char *, or a C string.
It is possible to get an NSString instance with the same characters as any given C string by sending
the stringWithUTF8String: class message to the NSString class and passing in the C string as its
argument.

Re-write the readline() challenge from Chapter 8 to use an NSString and NSLog() rather than a C
string and printf(). You will want to create a new Foundation�Command�Line�Tool.

ptg999

This page intentionally left blank

ptg999

119

17
NSArray

NSArray is another commonly used Objective-C class. An instance of NSArray holds a list of pointers
to other objects.

Create a new project: a Foundation�Command�Line�Tool called DateList. This program will create an
array that holds a list of pointers to NSDate objects.

Creating arrays
Open main.m and change main():

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[])
{
 @autoreleasepool {

 // Create three NSDate objects
 NSDate *now = [NSDate date];
 NSDate *tomorrow = [now dateByAddingTimeInterval:24.0 * 60.0 * 60.0];
 NSDate *yesterday = [now dateByAddingTimeInterval:-24.0 * 60.0 * 60.0];

 // Create an array containing all three
 NSArray *dateList = @[now, tomorrow, yesterday];

 }
 return 0;
}

Like NSString, NSArray has a literal syntax for creating instances. The array’s contents are in a
comma-delimited list, surrounded by square brackets, and preceded with @. No explicit message send is
necessary.

Figure 17.1 is an object diagram of your program. Notice that the instance of NSArray has pointers to
the NSDate objects.

ptg999

Chapter 17 NSArray

120

Figure 17.1 Object diagram for DateList

An instance of NSArray is immutable. Once an NSArray has been created, you can never add or remove
a pointer from that array. Nor can you change the order of the pointers in that array.

Accessing arrays
Arrays are ordered lists, and you access an item in an array by its index. Arrays are zero-based: the first
item is stored at index 0, the second item is stored at index 1, and so on.

You can access an individual item in the array using the name of the array followed by the index of the
item in square brackets. Add the following code to your program to access and print two items in the
array:

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[])
{
 @autoreleasepool {

 // Create three NSDate objects
 NSDate *now = [NSDate date];
 NSDate *tomorrow = [now dateByAddingTimeInterval:24.0 * 60.0 * 60.0];
 NSDate *yesterday = [now dateByAddingTimeInterval:-24.0 * 60.0 * 60.0];

 // Create an array containing all three
 NSArray *dateList = @[now, tomorrow, yesterday];

 // Print a couple of dates
 NSLog(@"The first date is %@", dateList[0]);
 NSLog(@"The third date is %@", dateList[2]);

 // How many dates are in the array?
 NSLog(@"There are %lu dates", [dateList count]);

 }
 return 0;
}

ptg999

Accessing arrays

121

Build and run the program and check your output.

You sent dateList the message count. To find out what the count method does, you could go to
NSArray’s class reference page. But there is a way to get a quick, on-the-spot summary right in Xcode.

Hold down the Option key and click on count. The Quick Help window will appear with information
about that method:

Figure 17.2 Quick Help pop-up window

Notice that there are links in the Quick Help window. If you click a link, it will open the appropriate
documentation in the Xcode’s documentation browser.

You can also open Quick Help in the utilities area in Xcode to see its information all the time.

In the upper righthand corner of the Xcode window, click the rightmost button of this group: .

This will reveal the utilities area. At the top of the utilities area, click the button to reveal Quick
Help.

Back in your code, click NSArray to see its documentation:

ptg999

Chapter 17 NSArray

122

Figure 17.3 Quick Help in utilities area

When you move the cursor somewhere else, Quick Help immediately updates if there is documentation
available.

Let’s get back to the purpose of the count method. You saw that this method returns the number of
items in the array. Knowing an array’s item count is more important than you might think. If the count
method reports that there are 100 items in the array, then you can ask for items at indices 0 to 99. If
you ask for an item with an index beyond 99, then you will get an out-of-range error that will crash
your program.

To see an example of an out-of-range error, add the following deadly line of code:

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[])
{
 @autoreleasepool {

 ...

 // How many dates are in the array?
 NSLog(@"There are %lu dates", [dateList count]);

 NSLog(@"The fourth date is %@", dateList[3]); // Crash!

 }
 return 0;
}

ptg999

Iterating over arrays

123

You are requesting the object at index 3 (the fourth object) in dateList when dateList only has three
objects. Build and run your program. When it crashes on this line, first stop the program using the stop
button in Xcode’s top left corner. Then delete the problematic line.

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[])
{
 @autoreleasepool {

 ...

 // How many dates are in the array?
 NSLog(@"There are %lu dates", [dateList count]);

 NSLog(@"The fourth date is %@", dateList[3]); // Crash!

 }
 return 0;
}

Build and run again to confirm that the problem is fixed. Out-of-range errors are common with
beginning programmers. Use the count method as a check and remember that arrays are always zero-
based.

Iterating over arrays
Programmers often need to loop and perform operations on each item in an array (or “iterate over an
array”). You can do this with a for-loop. Edit main.m:

ptg999

Chapter 17 NSArray

124

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[])
{
 @autoreleasepool {

 // Create three NSDate objects
 NSDate *now = [NSDate date];
 NSDate *tomorrow = [now dateByAddingTimeInterval:24.0 * 60.0 * 60.0];
 NSDate *yesterday = [now dateByAddingTimeInterval:-24.0 * 60.0 * 60.0];

 // Create an array containing all three
 NSArray *dateList = @[now, tomorrow, yesterday];

 // Print a couple of dates
 NSLog(@"The first date is %@", dateList[0]);
 NSLog(@"The third date is %@", dateList[2]);

 // How many dates are in the array?
 NSLog(@"There are %lu dates", [dateList count]);

 // Iterate over the array
 NSUInteger dateCount = [dateList count];
 for (int i = 0; i < dateCount; i++) {
 NSDate *d = dateList[i];
 NSLog(@"Here is a date: %@", d);
 }

 }
 return 0;
}

In the for-loop, notice that you use the array’s item count to limit the number of times the loop will run
to prevent an out-of-range error.

Programmers iterate over arrays so often that they made a special addition to the for-loop called fast
enumeration. This type of loop is an extremely efficient way to walk through the items in an array.
When you use fast enumeration, checking the array’s item count is handled for you. Edit your code to
use fast enumeration:

ptg999

NSMutableArray

125

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[])
{
 @autoreleasepool {

 // Create three NSDate objects
 NSDate *now = [NSDate date];
 NSDate *tomorrow = [now dateByAddingTimeInterval:24.0 * 60.0 * 60.0];
 NSDate *yesterday = [now dateByAddingTimeInterval:-24.0 * 60.0 * 60.0];

 // Create an array containing all three
 NSArray *dateList = @[now, tomorrow, yesterday];

 // Iterate over the array
 NSUInteger dateCount = [dateList count];
 for (int i = 0; i < dateCount; i++) {
 NSDate *d = dateList[i];
 for (NSDate *d in dateList) {
 NSLog(@"Here is a date: %@", d);
 }

 }
 return 0;
}

Build and run your program. The output will be the same as before, but your code is simpler and more
efficient.

NSMutableArray
An instance of NSMutableArray is similar to an instance of NSArray, but you can add, remove, and
reorder pointers. (NSMutableArray is a subclass of NSArray. You will learn about subclasses in
Chapter 20.)

Change your program to use an NSMutableArray and methods from the NSMutableArray class:

ptg999

Chapter 17 NSArray

126

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[])
{
 @autoreleasepool {

 // Create three NSDate objects
 NSDate *now = [NSDate date];
 NSDate *tomorrow = [now dateByAddingTimeInterval:24.0 * 60.0 * 60.0];
 NSDate *yesterday = [now dateByAddingTimeInterval:-24.0 * 60.0 * 60.0];

 // Create an array containing all three
 NSArray *dateList = @[now, tomorrow, yesterday];

 // Create an empty mutable array
 NSMutableArray *dateList = [NSMutableArray array];

 // Add two dates to the array
 [dateList addObject:now];
 [dateList addObject:tomorrow];

 // Add yesterday at the beginning of the list
 [dateList insertObject:yesterday atIndex:0];

 // Iterate over the array
 for (NSDate *d in dateList) {
 NSLog(@"Here is a date: %@", d);
 }

 // Remove yesterday
 [dateList removeObjectAtIndex:0];
 NSLog(@"Now the first date is %@", dateList[0]);

 }
 return 0;
}

You used the class method array to create the NSMutableArray. This method returns an empty array, to
which you can then add objects. You can also use alloc and init to get the same result:

 NSMutableArray *dateList = [[NSMutableArray alloc] init];

You used the addObject: method to populate the NSMutableArray. This method adds the object to the
end of the list. To add an object at a specific index, you can use insertObject:atIndex:. As objects
are added, an array will grow as big as necessary to hold them.

You removed an object from the array using removeObject:atIndex:. An array’s item count will
change as objects are removed. For example, if you were to ask for the object at index 2 in dateList
after removing the yesterday pointer, then the program would crash.

For future reference, when using fast enumeration with an NSMutableArray, you are not allowed to add
or remove items while iterating over the array. If you need to add or remove items while iterating, you
must use a standard for-loop.

Old-style array methods
Before a literal syntax was introduced for creating instances of NSArray, developers used the class
method arrayWithObjects:.

ptg999

Challenge: a grocery list

127

 // Create an array containing three pointers (nil terminates the list)
 NSArray *dateList = [NSArray arrayWithObjects:now, tomorrow, yesterday, nil];

The nil at the end tells the method to stop. Thus, this date array has three objects. (If you forget the
nil, it will probably crash your program, but you will at least get a compiler warning.)

The syntax that you used to access items in the dateList array is known as subscripting. Before
subscripting was introduced, developers used the objectAtIndex: method to access an item in an
array:

 // Print a couple of dates
 NSLog(@"The first date is %@", [dateList objectAtIndex:0]);
 NSLog(@"The third date is %@", [dateList objectAtIndex:2]);

The arrayWithObjects: and objectAtIndex: methods still exist and are not deprecated. Feel free to
use the literal syntax and subscripting or the old-style methods when working with arrays.

One problem that can occur with literal syntax and subscripting is that the different uses for square
brackets can make your code difficult to read. Consider that you now have three distinct uses for square
brackets:

1. sending messages NSUInteger dateCount = [dateList count];

2. creating an NSArray NSArray *dateList = @[now, tomorrow, yesterday];

3. asking for the item at a
particular index of an array

NSDate *firstDate = dateList[0];

At times in your code, these different uses will be mixed in together. When this happens, reverting to
the old-style array methods can make your code easier to read. For example, this might be confusing:

id selectedDog = dogs[[tableView selectedRow]];

In such situations, you might consider using the old-style array access. Here is the same line of code
rewritten:

id selectedDog = [dogs objectAtIndex:[tableView selectedRow]];

Challenge: a grocery list
Create a new Foundation�Command�Line�Tool named Groceries. Start by creating an empty
NSMutableArray object. Then add several grocery-like strings to the array. (You will have to create
those, too.) Finally, use fast enumeration to print out your grocery list.

My grocery list is:
Loaf of bread
Container of milk
Stick of butter

Challenge: interesting names
This challenge is more challenging. Read through the following program, which finds common proper
names that contain two adjacent A’s.

ptg999

Chapter 17 NSArray

128

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 // Read in a file as a huge string (ignoring the possibility of an error)
 NSString *nameString =
 [NSString stringWithContentsOfFile:@"/usr/share/dict/propernames"
 encoding:NSUTF8StringEncoding
 error:NULL];

 // Break it into an array of strings
 NSArray *names = [nameString componentsSeparatedByString:@"\n"];

 // Go through the array one string at a time
 for (NSString *n in names) {

 // Look for the string "aa" in a case-insensitive manner
 NSRange r = [n rangeOfString:@"AA" options:NSCaseInsensitiveSearch];

 // Was it found?
 if (r.location != NSNotFound) {
 NSLog(@"%@", n);
 }
 }

 }
 return 0;
}

The file /usr/share/dict/propernames came pre-installed on your Mac. It contains common proper
names. The file/usr/share/dict/words contains regular words and proper names. In the word files,
proper names are capitalized.

Write a program based on the one above that finds common proper names that are also regular words;
words present in the proper names list that are also present (lowercase) in the regular words list.

For example, if you only had these lists:

 (words) (names)
 woldy Wilson
 Wolf Win
 wolf Winnie
 wolfachite Winston
 wolfberry Wolf
 wolfdom Wolfgang
 wolfen Woody
 wolfer Yvonne
 Wolffia
 Wolffian
 Wolffianism
 Wolfgang
 wolfhood

then the solution would have only one pair that matches our criteria: “wolf” (the canine) in the words
list would match “Wolf” (the common last name) in the names list.

ptg999

129

18
Your First Class

So far, you have only used classes created by Apple. Now you get to write your own class. Remember
that a class describes objects in two ways: instance variables within each instance of the class and
methods implemented by the class.

You are going to write a BNRPerson class, which will be similar to the struct Person you wrote in
Chapter 11. This class, like all Objective-C classes, will be defined in two files:

• BNRPerson.h is the class’s header and will contain the declarations of instance variables and
methods.

• BNRPerson.m is the implementation file. This is where you write out the code for, or implement,
each method.

First, create a new project: a Foundation�Command�Line�Tool named BMITime.

To create a new class, select File → New → File.... From the OS�X section on the left, select Cocoa.
Choose the Objective-C�class template and click Next.

Figure 18.1 Creating a new class

ptg999

Chapter 18 Your First Class

130

Name your class BNRPerson and make it a subclass of NSObject. (You will learn about subclasses and
NSObject in Chapter 20.)

Figure 18.2 Naming your new class

Click Next. Finally, make sure the BMITime target is checked and then click Create.

Find BNRPerson.h and BNRPerson.m in the project navigator. Open BNRPerson.h and declare two
instance variables:

#import <Foundation/Foundation.h>

@interface BNRPerson : NSObject

{
 // BNRPerson has two instance variables
 float _heightInMeters;
 int _weightInKilos;
}

@end

A header file starts with @interface and finishes off with @end. Notice that you declared the instance
variables first and inside of curly braces.

By convention, instance variable names start with an underscore (“_”). Using the underscore prefix
lets you easily tell instance variables from local variables when reading code. The underscore does not
mean anything special to the compiler; it is simply the first character in the instance variable’s name.

Next, declare five instance methods after the instance variables and outside of the curly braces:

ptg999

131

#import <Foundation/Foundation.h>

@interface BNRPerson : NSObject

{
 // BNRPerson has two instance variables
 float _heightInMeters;
 int _weightInKilos;
}

// BNRPerson has methods to read and set its instance variables
- (float)heightInMeters;
- (void)setHeightInMeters:(float)h;
- (int)weightInKilos;
- (void)setWeightInKilos:(int)w;

// BNRPerson has a method that calculates the Body Mass Index
- (float)bodyMassIndex;

@end

To return to BNRPerson.m, use the keyboard shortcut Control-Command-up arrow. This shortcut moves
you back and forth between the header and implementation files of a class.

Implement the methods that you declared in BNRPerson.h. The methods that you implement must
exactly match the ones that you declared in the header. In Xcode, this is easy; when you start typing
a method in the implementation file, Xcode will suggest names of methods that you have already
declared.

#import "BNRPerson.h"

@implementation BNRPerson

- (float)heightInMeters
{
 return _heightInMeters;
}

- (void)setHeightInMeters:(float)h
{
 _heightInMeters = h;
}

- (int)weightInKilos
{
 return _weightInKilos;
}

- (void)setWeightInKilos:(int)w
{
 _weightInKilos = w;
}

- (float)bodyMassIndex
{
 return _weightInKilos / (_heightInMeters * _heightInMeters);
}

@end

ptg999

Chapter 18 Your First Class

132

Now that you have implemented the methods that you declared in BNRPerson.h, the BNRPerson class is
complete and you can use it in a program.

Open main.m and import BNRPerson.h so that main() can see the declarations in the BNRPerson class
header:

#import <Foundation/Foundation.h>
#import "BNRPerson.h"

int main(int argc, const char * argv[])
{
 ...
}

Why is Foundation.h inside angled brackets and BNRPerson.h inside quotation marks? The angled
brackets tell the compiler that Foundation/Foundation.h is a precompiled header found in Apple’s
libraries. The quotation marks tell the compiler to look for BNRPerson.h within the current project.

Next, add code to main() that uses the BNRPerson class:

int main(int argc, const char * argv[])
{
 @autoreleasepool {

 // Create an instance of BNRPerson
 BNRPerson *mikey = [[BNRPerson alloc] init];

 // Give the instance variables interesting values using setters
 [mikey setWeightInKilos:96];
 [mikey setHeightInMeters:1.8];

 // Log the instance variables using the getters
 float height = [mikey heightInMeters];
 int weight = [mikey weightInKilos];
 NSLog(@"mikey is %.2f meters tall and weighs %d kilograms", height, weight);

 // Log some values using custom methods
 float bmi = [mikey bodyMassIndex];
 NSLog(@"mikey has a BMI of %f", bmi);

 }
 return 0;
}

Build and run the program.

Figure 18.3 Object diagram for BMITime

ptg999

Accessor methods

133

Accessor methods
When you created struct Person back in Chapter 11, you accessed the data members of the structure
directly in main():

 mikey.weightInKilos = 96;
 mikey.heightInMeters = 1.8;

In object-oriented thinking, however, code that is outside of a class should not directly read or write to
the instance variables of an instance of that class. Only code within the class can do that.

Instead, a class will provide methods that let external code (like in main()) access the instance
variables of an instance. This is what you have done in BNRPerson. In main(), you send messages to
the BNRPerson instance to read the values of its instance variables:

 int weight = [mikey weightInKilos];
 float height = [mikey heightInMeters];

The heightInMeters and weightInKilos methods are getter methods. A getter method, or getter,
allows code outside of a class to read, or get, the value of an instance variable.

BNRPerson also has the methods setHeightInMeters: and setWeightInKilos:. These are setter
methods. A setter method, or setter, allows code outside of a class to change, or set, the value of an
instance variable.

Setter and getter methods are collectively known as accessor methods, or simply accessors.

Accessor naming conventions
In declaring accessor methods for BNRPerson, you followed important Objective-C naming
conventions. Getter methods are given the name of the instance variable minus the underscore.

// Instance variable declarations
{
 float _heightInMeters;
 int _weightInKilos;
}

// Getter method declarations
- (float)heightInMeters;
- (int)weightInKilos;

Setter methods start with set followed by the name of the instance variable minus the underscore.
Notice that the case of the setter’s name adjusts to preserve the camel-casing. Thus, the first letter of
the instance variable name is uppercase in the setter’s name.

// Setter method declarations - notice difference in casing!
- (void)setHeightInMeters:(float)h;
- (void)setWeightInKilos:(int)w;

Learning these conventions is important. In the next chapter, you will learn a shortcut where the
compiler creates accessor methods for you. The compiler will name the accessors according to these
conventions.

ptg999

Chapter 18 Your First Class

134

self
Inside any method, you have access to the implicit local variable self. self is a pointer to the object
that is running the method. It is used when an object wants to send a message to itself.

For example, many Objective-C programmers are quite religious about never reading or writing to an
instance variable directly. They even call accessors within implementations of other methods in the
same class.

Currently, your implementation of bodyMassIndex accesses the instance variables directly. In
BNRPerson.m, update bodyMassIndex to use the accessor methods instead:

- (float)bodyMassIndex
{
 return _weightInKilos / (_heightInMeters * _heightInMeters);
 float h = [self heightInMeters];
 return [self weightInKilos] / (h * h);
}

You can also pass self as an argument to let other objects know where the current object is. For
example, your BNRPerson class might have a method addYourselfToArray: that would look like this:

- (void)addYourselfToArray:(NSMutableArray *)theArray
{
 [theArray addObject:self];
}

Here you use self to tell the array where the instance of BNRPerson lives. It is literally the BNRPerson
instance’s address.

Multiple files
Notice that your project now has executable code in two files: main.m and BNRPerson.m. (BNRPerson.h
is a declaration of a class and has no executable code in it.) When you build the project, these files are
compiled separately and then linked together. It is not uncommon that a real-world project will consist
of hundreds of files of C and Objective-C code.

When Xcode builds your project, it compiles each of the .m and .c files into machine code. Then, it
links those files together with any libraries into the executable file. What libraries? In this section of the
book, all of your executables have been link to the Foundation framework.

There are many libraries of reusable code downloadable from the internet. A lot are free, some are not.

Class prefixes
Objective-C is not namespaced. This means that if you write a program with a class called Person in
it, and you link in a library of someone else’s code that also declares a Person class, then the compiler
will not be able to tell these two classes apart, and you will get a compiler error.

To prevent name collisions like this, Apple recommends that you prefix each of your class names with
three or more letters, to make your class names more unique and less likely to collide with someone
else’s class name. Most developers use either their company’s or their project’s initials. In this book,
we use the BNR class prefix.

ptg999

Challenge

135

Challenge
Create a new Foundation�Command�Line�Tool called Stocks. Then create a class called
BNRStockHolding to represent a stock that you have purchased. It will be a subclass of NSObject. For
instance variables, it will have two floats named _purchaseSharePrice and _currentSharePrice
and one int named _numberOfShares. Use properties to create accessor methods and instance
variables. Create two other instance methods:

- (float)costInDollars; // purchaseSharePrice * numberOfShares
- (float)valueInDollars; // currentSharePrice * numberOfShares

In main(), fill an array with three instances of BNRStockHolding. Then iterate through the array
printing out the value of each.

Figure 18.4 An array of BNRStockHolding objects

ptg999

This page intentionally left blank

ptg999

137

19
Properties

Objective-C has a convenient shortcut called properties that lets you skip declaring instance variables
and declaring and implementing accessor methods. Using properties simplifies your class’s code.

Declaring properties
In BNRPerson.h, remove the instance variable and accessor method declarations and replace them with
two properties: heightInMeters and weightInKilos.

#import <Foundation/Foundation.h>

@interface BNRPerson : NSObject

// BNRPerson has two properties
@property (nonatomic) float heightInMeters;
@property (nonatomic) int weightInKilos;

{
 // BNRPerson has two instance variables
 float _heightInMeters;
 int _weightInKilos;
}

// BNRPerson has methods to read and set its instance variables
- (float)heightInMeters;
- (void)setHeightInMeters:(float)h;
- (int)weightInKilos;
- (void)setWeightInKilos:(int)w;

// BNRPerson has a method that calculates the Body Mass Index
- (float)bodyMassIndex;

@end

A property declaration begins with @property and includes the type of the property and its name.
Ignore the (nonatomic) for now. This is a property attribute, which we will discuss later in the chapter.

Declaring properties makes your header file short and sweet. In the future, declaring properties will
save you a few lines of typing. But wait, there’s more. When you declare a property, the compiler not
only declares your accessors for you, it also implements them based on the property’s declaration.

ptg999

Chapter 19 Properties

138

This means you no longer need the accessor implementations that you wrote in BNRPerson.m. Open
BNRPerson.m and delete them:

@implementation BNRPerson

- (float)heightInMeters
{
 return _heightInMeters;
}

- (void)setHeightInMeters:(float)h
{
 _heightInMeters = h;
}

- (int)weightInKilos
{
 return _weightInKilos;
}

- (void)setWeightInKilos:(int)w
{
 _weightInKilos = w;
}

- (float)bodyMassIndex
{
 float h = [self heightInMeters];
 return [self weightInKilos] / (h * h);
}

@end

Build and run your program. It should work exactly as before. By using properties, you have not
changed this class at all. You did not have to make any changes in main.m because BNRPerson still has
all the same accessor methods with all the same names. They are simply written using a terser (and
more stylish) syntax.

What about the instance variables? The compiler created instance variables named _heightInMeters
and _weightInKilos. However, you do not see these variables in your code because there are no
longer any explicit accessor implementations. When using properties, you rarely need to use instance
variables directly and can rely on the accessors that the compiler created.

From here on out, you will almost always use properties when creating a class. Apple recommends
using properties, and so do we.

So why did you need to learn about instance variables and accessors methods first? There are some
exceptions that you will learn about later where you need to adjust the property declaration or
implement accessor methods yourself. It is much easier to work with properties when you understand
what they are doing for you in the first place.

Property attributes
A property declaration can have one or more property attributes. Property attributes give the compiler
more information about how the property should behave. Property attributes appear in a comma-
delimited list in parentheses after the @property annotation.

ptg999

Dot notation

139

In BNRPerson, the properties are declared as nonatomic.

@property (nonatomic) float heightInMeters;
@property (nonatomic) int weightInKilos;

Properties are either atomic or nonatomic. The difference has to do with multithreading, which is a
topic beyond the scope of this book. All of the properties that you will declare in this book will be
nonatomic.

Let’s consider another property attribute. Sometimes a class needs a “read-only” property – a property
whose value can be read but not changed. A property like this should have a getter method but no setter
method. You can instruct the compiler to create only a getter method by including a readonly value in
the list of property attributes.

@property (nonatomic, readonly) double circumferenceOfEarth;

When the compiler sees this declaration, it will create a circumferenceOfEarth getter method but not
a setCircumferenceOfEarth: setter method.

Properties are either readonly or readwrite.

@property (nonatomic, readwrite) double humanPopulation;

Based on this declaration, the compiler will create a humanPopulation getter method and a
setHumanPopulation: setter method.

Both BNRPerson properties are readwrite properties. However, you did not have to include the
readwrite attribute because readwrite is the default value. Default values are optional in declarations.

Sadly, atomic is the default value for the atomic/nonatomic attribute, so you must include the
nonatomic value in all of your property declarations.

Another attribute that you will see shortly is copy. Practically speaking, whenever you declare a
property that points to an NSString or an NSArray, you should include the copy attribute. You will find
out why in Chapter 34.

There are other property attributes and values that you will learn about as you continue through the
book.

Dot notation
Objective-C programmers call accessor methods a lot. When properties were introduced, Apple also
introduced a shorthand dot notation for calling those accessors.

Many Objective-C programmers prefer dot notation because it is easier to type. In main.m, try out dot
notation:

ptg999

Chapter 19 Properties

140

int main(int argc, const char * argv[])
{
 @autoreleasepool {

 // Create an instance of BNRPerson
 BNRPerson *mikey = [[BNRPerson alloc] init];

 // Give the instance variables interesting values using setters
 [mikey setWeightInKilos:96];
 [mikey setHeightInMeters:1.8];
 mikey.weightInKilos = 96;
 mikey.heightInMeters = 1.8;

 // Log the instance variables using the getters
 float height = [mikey heightInMeters];
 int weight = [mikey weightInKilos];
 float height = mikey.heightInMeters;
 int weight = mikey.weightInKilos;
 NSLog(@"mikey is %.2f meters tall and weighs %d kilos", height, weight);

 // Log some values using custom methods
 float bmi = [mikey bodyMassIndex];
 NSLog(@"mikey has a BMI of %.2f", bmi);

 }
 return 0;
}

This notation looks just like the notation used for accessing the members of a struct. It is critical to
remember, however, that when using dot notation with an object, a message is being sent.

These two lines do the exact same thing:

mikey.weightInKilos = 96;
[mikey setWeightInKilos:96];

and these two lines do the exact same thing:

float w = mikey.weightInKilos;
float w = [mikey weightInKilos];

Notice that mikey.weightInKilos sends one of two possible messages, depending on the context in
which it is being used. That is, it calls either the getter method (weightInKilos) or the setter method
(setWeightInKilos:) depending on whether it is being used to get or set mikey’s _weightInKilos.

ptg999

141

20
Inheritance

When you created the BNRPerson class, you declared it to be a subclass of NSObject. This means that
every instance of BNRPerson will have the instance variables and methods defined in NSObject as
well as the instance variables and methods defined in BNRPerson. We say that BNRPerson inherits the
instance variables and methods from NSObject.

In this chapter, you are going to create a new class named BNREmployee. BNREmployee will be a
subclass of BNRPerson.

Figure 20.1 BNREmployee inherits from BNRPerson

Makes sense, right? Employees are people. They have heights and weights. But not all people are
employees; employees can have characteristics specific to being an employee. Your BNREmployee class
adds two BNREmployee-specific characteristics – an employee ID and a hire date.

Open up the BMITime project and create a new file: an Objective-C�class. Name the class BNREmployee
and leave its superclass as NSObject for now.

ptg999

Chapter 20 Inheritance

142

Open BNREmployee.h. Import BNRPerson.h and change the superclass from NSObject to BNRPerson:

#import "BNRPerson.h"

@interface BNREmployee : BNRPerson

@end

BNREmployee is now a subclass of BNRPerson.

The main function of BMITime will need to access the employee ID and the hire date. Each employee
also has an alarm code to get into the office. Thus, you need three new properties, and you need to add
them in BNREmployee.h. Also declare a method that will calculate the years of employment based on
the employee’s hire date.

#import "BNRPerson.h"

@interface BNREmployee : BNRPerson

@property (nonatomic) unsigned int employeeID;
@property (nonatomic) unsigned int officeAlarmCode;
@property (nonatomic) NSDate *hireDate;
- (double)yearsOfEmployment;

@end

The hireDate property is the first property you have declared that points to another object. When a
property points to an object, there are memory management implications that you will learn about in
later chapters.

For now, recognize that you have declared a property named hireDate that is a pointer to an NSDate.
You tell the compiler that this property is to be nonatomic, like all the other properties.

Figure 20.2 BNREmployee has a pointer to an NSDate

And, like with your primitive type properties, by default you get an instance variable. This variable is
named _hireDate and is a pointer to an NSDate. The compiler also synthesizes two accessor methods:

- (void)setHireDate:(NSDate *)d;
- (NSDate *)hireDate;

ptg999

143

In BNREmployee.m, implement the yearsOfEmployment method:

@implementation BNREmployee

- (double)yearsOfEmployment
{
 // Do I have a non-nil hireDate?
 if (self.hireDate) {
 // NSTimeInterval is the same as double
 NSDate *now = [NSDate date];
 NSTimeInterval secs = [now timeIntervalSinceDate:self.hireDate];
 return secs / 31557600.0; // Seconds per year
 } else {
 return 0;
 }
}

@end

To try out the BNREmployee class, open main.m and make two changes: import BNREmployee.h and
create an instance of BNREmployee instead of a BNRPerson. Leave the person variable declared as a
pointer to a BNRPerson for now:

#import <Foundation/Foundation.h>
#import "BNRPerson.h"
#import "BNREmployee.h"

int main(int argc, const char * argv[])
{
 @autoreleasepool {

 // Create an instance of BNREmployee
 BNRPerson *mikey = [[BNREmployee alloc] init];

 // Give properties interesting values using setter methods
 mikey.weightInKilos = 96;
 mikey.heightInMeters = 1.8;

 // Log some properties using getter methods
 NSLog(@"mikey has a weight of %d", mikey.weightInKilos);
 NSLog(@"mikey has a height of %f", mikey.heightInMeters);

 // Log the body mass index
 float bmi = [mikey bodyMassIndex];
 NSLog(@"mikey has a BMI of %f", bmi);

 }
 return 0;
}

Think this will cause a problem? Build and run the program to see.

The program works fine, and nothing in the output has changed. An employee is a person – it can do
anything a person can. An instance of BNREmployee can respond to methods from BNRPerson (like
setWeightInKilos:). You can use an instance of BNREmployee anywhere that the program expects an
instance of BNRPerson. A instance of a subclass can stand in for an instance of the superclass without
problems because it inherits everything in the superclass.

ptg999

Chapter 20 Inheritance

144

Also note that you do not need to import BNRPerson.h. The compiler will find the #import
"BNRPerson.h" statement in the BNREmployee.h file, so including it in here would be redundant.

Now make the following changes in main.m to make fuller use of the BNREmployee class. Give mikey
an employee ID and set the hire date to the current date.

#import <Foundation/Foundation.h>
#import "BNREmployee.h"

int main(int argc, const char * argv[])
{
 @autoreleasepool {

 // Create an instance of BNREmployee
 BNREmployee *mikey = [[BNREmployee alloc] init];

 // Give the instance variables interesting values using setter methods
 mikey.weightInKilos = 96;
 mikey.heightInMeters = 1.8;
 mikey.employeeID = 12;
 mikey.hireDate = [NSDate dateWithNaturalLanguageString:@"Aug 2nd, 2010"];

 // Log the instance variables using the getters
 float height = mikey.heightInMeters;
 int weight = mikey.weightInKilos;
 NSLog(@"mikey is %.2f meters tall and weighs %d kilos", height, weight);
 NSLog(@"Employee %u hired on %@", mikey.employeeID, mikey.hireDate);

 // Log the body mass index using the bodyMassIndex method
 float bmi = [mikey bodyMassIndex];
 double years = [mikey yearsOfEmployment];
 NSLog(@"BMI of %.2f, has worked with us for %.2f years", bmi, years);
 }
 return 0;
}

Build and run the program and see your new output.

Overriding methods
Usually, a subclass needs to do something differently than its superclass. Let’s say, for example, that,
unlike people in general, employees always have a BMI of 19. In this case, you would override the
bodyMassIndex method in BNREmployee.

You override an inherited method by writing a new implementation.

ptg999

super

145

In BNREmployee.m, override bodyMassIndex:

#import "BNREmployee.h"
@implementation BNREmployee

- (double)yearsOfEmployment
{
 // Do I have a non-nil hireDate?
 if (self.hireDate) {
 // NSTimeInterval is the same as double
 NSTimeInterval secs = [self.hireDate timeIntervalSinceNow];
 return secs / 31557600.0; // Seconds per year
 } else {
 return 0;
 }
}

- (float)bodyMassIndex
{
 return 19.0;
}

@end

Because BNREmployee inherits from BNRPerson, everyone already knows that instances of BNREmployee
will respond to a bodyMassIndex message. There is no need to advertise it again, so you do not declare
it in BNREmployee.h.

This also means that, when you override a method, you can only change its implementation. You
cannot change how it is declared; the method’s name, return type, and argument types must stay the
same.

Build and run the program. Confirm that BNREmployee’s implementation of bodyMassIndex is the one
that gets executed – not the implementation from BNRPerson.

super
When overriding a method, a subclass can build on the implementation of its superclass rather than
replacing it wholesale. What if you decided that employees get 10% off their BMI as calculated in
BNRPerson’s implementation? It would be convenient to call BNRPerson’s version of bodyMassIndex
and then multiply the result by 0.9. To do this, you use the super directive. Try it in BNREmployee.m:

- (float)bodyMassIndex
{
 return 19.0;
 float normalBMI = [super bodyMassIndex];
 return normalBMI * 0.9;
}

Build and run the program.

ptg999

Chapter 20 Inheritance

146

Inheritance hierarchy
All objects inherit (either directly or indirectly) from NSObject:

Figure 20.3 Inheritance diagram of some classes you know

NSObject has many methods but only one instance variable: the isa pointer. Every object’s isa pointer
points at the class that created it. (Get it? When you have a BNRPerson instance, that object “is a”
BNRPerson. When you have an NSString instance, that object “is a[n]” NSString.)

Figure 20.4 Every object knows which class created it

When you send a message to an object, you kick off a search for a method of that name. The search
follows the object’s isa pointer to start looking for the method in the object’s class. If there is no
method of that name there, then it is on to the superclass. The hunt stops when the method is found or
when the top of the hierarchy (NSObject) is reached.

Let’s say that you send the message fido to an object. To respond to this message, the object uses the
isa pointer to find its class and ask, “Do you declare an instance method named fido?”

ptg999

description and %@

147

If the class has a method named fido, it gets executed. If the class does not have a fido method, it asks
its superclass, “Do you declare an instance method named fido?”

And up, up the hierarchy it goes on the hunt for the implementation of a method named fido. The hunt
stops when the method is found or when the top of the hierarchy is reached.

Figure 20.5 Object diagram for BMITime

At the top of the hierarchy, NSObject says, “Nope, no fido method.” At this point, you get an error
message that says something like, -[BNREmployee fido]: unrecognized selector sent to
instance 0x100106e102. This can be translated as, “There is no instance method of this name defined
anywhere in this object’s inheritance hierarchy.”

The first implementation that is found is the one that gets executed. BNREmployee and BNRPerson both
have implementations of bodyMassIndex, but if a BNREmployee is sent the bodyMassIndex message, the
implementation in BNREmployee will be found first and executed. The hunt ends before reaching the
BNRPerson class.

When you use the super directive, you are sending a message to the current object but saying, “Run a
method with this name, but start the search for its implementation at your superclass.”

description and %@
In calls to NSLog(), you have been using the token %@ to get an object to describe itself. The %@ token
sends a description message to the object pointed to by the corresponding variable.

ptg999

Chapter 20 Inheritance

148

The description method returns a string that is a useful description of an instance of the class. It is
an NSObject method, so every object implements it. The default NSObject implementation returns the
object’s address in memory as a string.

However, a memory address is often not the most useful way to describe an instance. A class can
override description:. For example, NSDate overrides description to return the date/time that the
instance holds. NSString overrides description to return the string itself.

In BNREmployee.m, override description to return a string that describes an instance of BNREmployee:

@implementation BNREmployee

...

- (NSString *)description
{
 return [NSString stringWithFormat:@"<Employee %d>", self.employeeID];
}

@end

Modify main.m to use BNREmployee’s implementation of description.

int main(int argc, const char * argv[])
{
 @autoreleasepool {

 // Create an instance of BNREmployee
 BNREmployee *mikey = [[BNREmployee alloc] init];

 ...

 NSLog(@"mikey is %.2f meters tall and weighs %d kilos", height, weight);
 NSDate *date = mikey.hireDate;
 NSLog(@"%@ hired on %@", mikey, date);

 // Log some values using custom methods
 float bmi = [mikey bodyMassIndex];
 double years = [mikey yearsOfEmployment];
 NSLog(@"BMI of %.2f, has worked with us for %.2f years", bmi, years);
 }
 return 0;
}

Challenge
This challenge builds on the challenge from the previous chapter.

Create a subclass of BNRStockHolding called BNRForeignStockHolding. Give
BNRForeignStockHolding an additional property: conversionRate, which will be a float. (The
conversion rate is what you need to multiply the local price by to get a price in US dollars. Assume
the purchasePrice and currentPrice are in the local currency.) Override costInDollars and
valueInDollars to do the right thing.

In main(), add a few instances of BNRForeignStockHolding to your array.

ptg999

Challenge

149

Figure 20.6 BNRStockHolding and BNRForeignStockHolding objects

ptg999

This page intentionally left blank

ptg999

151

21
Object Instance Variables and

Properties

Thus far, the instance variables of your objects have been mostly simple C types like int or float. It
is far more common for instance variables to be pointers to other objects, like _hireDate. An object
instance variable points to another object and describes a relationship between the two objects. Usually,
object instance variables fall into one of three categories:

• Object-type attributes: a pointer to a simple, value-like object like an NSString or an NSDate.
For example, an employee’s last name would be stored in an NSString. Thus, an instance of
BNREmployee would have an instance variable that would be a pointer to an instance of NSString.
We recommend that you always declare these as a property with an implicit instance variable; you
typically will not need to explicitly create accessors.

• To-one relationships: a pointer to a single complex object. For example, an employee might have
a spouse. Thus, an instance of BNREmployee would have an instance variable that would be a
pointer to an instance of BNRPerson. Once again, we will recommend that you always declare
these as a property with an implicit instance variable; you typically will not need to explicitly
create accessors.

• To-many relationships: a pointer to an instance of a collection class, such as an NSMutableArray.
(You will see other examples of collections in Chapter 24.) For example, an employee might have
children. In this case, the instance of BNREmployee would have an instance variable that would be
a pointer to an instance of NSMutableArray. The NSMutableArray would hold a list of pointers
to one or more BNRPerson objects. To-many relationships are trickier than attributes or to-one
relationships. You will often end up explicitly creating instance variables, accessors, and methods
for adding or removing objects from the relationship.

ptg999

Chapter 21 Object Instance Variables and Properties

152

Figure 21.1 A BNREmployee with object instance variables

Notice that, as in other diagrams, pointers are represented by arrows. In addition, those pointers
are named. So a BNREmployee would have three new instance variables: _lastName, _spouse, and
_children. The declaration of BNREmployee’s properties might look like this:

@interface BNREmployee : BNRPerson

@property (nonatomic) unsigned int employeeID;
@property (nonatomic) unsigned int officeAlarmCode;
@property (nonatomic) NSDate *hireDate;
@property (nonatomic) NSString *lastName;
@property (nonatomic) BNRPerson *spouse;
@property (nonatomic) NSMutableArray *children;

With the exception of employeeID and officeAlarmCode, these properties are all pointers. For
example, the variable spouse is a pointer to another object that lives on the heap. The pointer named
spouse is inside the BNREmployee object, but the BNRPerson object that spouse points to is not. Objects
do not live inside other objects. The employee object contains its employee ID (the variable and the
value itself), but it only knows where its spouse lives in memory.

There are two important side-effects to objects pointing to – rather than containing – other objects:

• One object can take on several roles. For example, it is likely that the employee’s spouse is also
listed as the emergency contact for the children:

ptg999

Object ownership and ARC

153

Figure 21.2 One object, multiple roles

• You end up with a lot of distinct objects using up your program’s memory. You need the objects
being used to stay around, but you want the unnecessary ones to be deallocated (have their
memory returned to the heap) so that their memory can be reused.

Object ownership and ARC
To manage these issues, we have the idea of object ownership. When an object has an object instance
variable, the object with the pointer is said to own the object that is being pointed to.

From the other end of things, because of ARC (discussed briefly in Chapter 15), an object knows how
many owners it currently has. For instance, in the diagram above, the instance of BNRPerson has three
owners: the BNREmployee object and the two Child objects. When an object has zero owners, it figures
no one needs it around anymore and deallocates itself. Before ARC was introduced in Xcode 4.2, we
managed ownership manually and spent a lot of time and effort doing so. (There is more about manual
reference counting and how it worked in the final section of Chapter 23. All the code in this book,
however, assumes that you are using ARC.)

Let’s expand the BMITime project to see how ownership works in practice. It is not uncommon for a
company to keep track of what assets have been issued to which employee. You are going to create an
BNRAsset class, and each BNREmployee will have an array containing his or her assets.

ptg999

Chapter 21 Object Instance Variables and Properties

154

Figure 21.3 Employees and assets

This is often called a “parent-child” relationship: The parent (an instance of BNREmployee) has a
collection of children (an NSMutableArray of BNRAsset objects).

Creating the BNRAsset class
Create a new file: an Objective-C subclass of NSObject. Name it BNRAsset. Open BNRAsset.h and
declare two properties:

#import <Foundation/Foundation.h>

@interface BNRAsset : NSObject

@property (nonatomic, copy) NSString *label;
@property (nonatomic) unsigned int resaleValue;

@end

Remember that when an object has no owners, it is deallocated. There is an NSObject method named
dealloc. If a class overrides dealloc, then this method will be executed when an instance of the class
is deallocated. You are going to override dealloc in BNRAsset to see when instances of BNRAsset are
being deallocated.

To make it clear which particular instance of BNRAsset is being deallocated, you will also override
description to return a string that includes the instance’s label and resaleValue.

Open BNRAsset.m. Override description and dealloc.

ptg999

Adding a to-many relationship to BNREmployee

155

#import "BNRAsset.h"

@implementation BNRAsset

- (NSString *)description
{
 return [NSString stringWithFormat:@"<%@: $%u>", self.label, self.resaleValue];
}

- (void)dealloc
{
 NSLog(@"deallocating %@", self);
}

@end

Try building what you have so far to see if you made any errors typing it in. You can build your
program without running it by using the keyboard shortcut Command-B. This is useful for testing
your code without taking the time to run the program or when you know the program is not ready to
run yet. Plus, it is always a good idea to build after making changes so that if you have introduced a
syntax error you can find and fix it right away. If you wait, you will not be as sure what changes are
responsible for your “new” bug.

Adding a to-many relationship to BNREmployee
Now you are going to add a to-many relationship to the BNREmployee class. Recall that a to-many
relationship includes a collection object (like an array) and the objects contained in the collection.
There are two other important things to know about collections and ownership:

• When an object is added to the collection, the collection establishes a pointer to the object,
and the object gains an owner.

• When an object is removed from a collection, the collection gets rid of its pointer to the object,
and the object loses an owner.

To set up the to-many relationship in BNREmployee, you will need a new instance variable to hold a
pointer to the mutable array of assets. You will also need a couple of methods. Open BNREmployee.h
and add them:

#import "BNRPerson.h"
@class BNRAsset;

@interface BNREmployee : BNRPerson
{
 NSMutableArray *_assets;
}

@property (nonatomic) unsigned int employeeID;
@property (nonatomic) unsigned int officeAlarmCode;
@property (nonatomic) NSDate *hireDate;
@property (nonatomic, copy) NSArray *assets;
- (double)yearsOfEmployment;
- (void)addAsset:(BNRAsset *)a;
- (unsigned int)valueOfAssets;

@end

ptg999

Chapter 21 Object Instance Variables and Properties

156

Notice the line that says @class BNRAsset;. As the compiler is reading this file, it will come across the
class name BNRAsset. If it does not know about the class, it will throw an error. The @class BNRAsset;
line tells the compiler “There is a class called BNRAsset. Do not panic when you see it in this file. That
is all you need to know for now.”

Using @class instead of #import gives the compiler less information, but makes the processing of
this particular file faster. You can use @class with BNREmployee.h and other header files because the
compiler does not need to know a lot to process a file of declarations.

The property has type NSArray, which tells other classes, “If you ask for my assets, you are going to
get something that is not mutable.” However, behind the scenes, the assets array is actually an instance
of NSMutableArray so that you can add and remove items in BNREmployee.m. That is why you are
declaring a property and an instance variable: in this case, the type of the property and the type of the
instance variable are not the same.

Now turn your attention to BNREmployee.m. With a to-many relationship, you need to create the
collection object (an array, in this case) before you put anything in it. You can do this when the original
object (an employee) is first created, or you can be lazy and wait until the collection is needed. Let’s be
lazy.

#import "BNREmployee.h"
#import "BNRAsset.h"

@implementation BNREmployee

// Accessors for assets properties
- (void)setAssets:(NSArray *)a
{
 _assets = [a mutableCopy];
}

- (NSArray *)assets
{
 return [_assets copy];
}

- (void)addAsset:(BNRAsset *)a
{
 // Is assets nil?
 if (!_assets) {

 // Create the array
 _assets = [[NSMutableArray alloc] init];
 }
 [_assets addObject:a];
}

- (unsigned int)valueOfAssets
{
 // Sum up the resale value of the assets
 unsigned int sum = 0;
 for (BNRAsset *a in _assets) {
 sum += [a resaleValue];
 }
 return sum;
}

ptg999

Adding a to-many relationship to BNREmployee

157

- (double)yearsOfEmployment
{
 ...

To process the BNREmployee.m file, the compiler needs to know a lot about the BNRAsset class. Thus,
you imported BNRAsset.h instead of using @class.

To track the deallocation of BNREmployee instances, modify the implementation of description and
implement dealloc in BNREmployee.m.

...

- (float)bodyMassIndex
{
 float normalBMI = [super bodyMassIndex];
 return normalBMI * 0.9;
}

- (NSString *)description
{
 return [NSString stringWithFormat:@"<Employee %u>", self.employeeID];
 return [NSString stringWithFormat:@"<Employee %u: $%u in assets>",
 self.employeeID, self.valueOfAssets];
}

- (void)dealloc
{
 NSLog(@"deallocating %@", self);
}

@end

Build the project to see if you have made any mistakes.

Now you need to create some assets and assign them to employees. Replace the contents of main.m:

ptg999

Chapter 21 Object Instance Variables and Properties

158

#import <Foundation/Foundation.h>
#import "BNREmployee.h"
#import "BNRAsset.h"

int main(int argc, const char * argv[])
{
 @autoreleasepool {

 // Create an array of BNREmployee objects
 NSMutableArray *employees = [[NSMutableArray alloc] init];

 for (int i = 0; i < 10; i++) {
 // Create an instance of BNREmployee
 BNREmployee *mikey = [[BNREmployee alloc] init];

 // Give the instance variables interesting values
 mikey.weightInKilos = 90 + i;
 mikey.heightInMeters = 1.8 - i/10.0;
 mikey.employeeID = i;

 // Put the employee in the employees array
 [employees addObject:mikey];
 }

 // Create 10 assets
 for (int i = 0; i < 10; i++) {
 // Create an asset
 BNRAsset *asset = [[BNRAsset alloc] init];

 // Give it an interesting label
 NSString *currentLabel = [NSString stringWithFormat:@"Laptop %d", i];
 asset.label = currentLabel;
 asset.resaleValue = 350 + i * 17;

 // Get a random number between 0 and 9 inclusive
 NSUInteger randomIndex = random() % [employees count];

 // Find that employee
 BNREmployee *randomEmployee = [employees objectAtIndex:randomIndex];

 // Assign the asset to the employee
 [randomEmployee addAsset:asset];
 }

 NSLog(@"Employees: %@", employees);

 NSLog(@"Giving up ownership of one employee");

 [employees removeObjectAtIndex:5];

 NSLog(@"Giving up ownership of arrays");

 employees = nil;

 }
 return 0;
}

Build and run the program. You should see something like this:

ptg999

Challenge: holding portfolio

159

Employees: (
 "<Employee 0: $0 in assets>",
 "<Employee 1: $153 in assets>",
 "<Employee 2: $119 in assets>",
 "<Employee 3: $68 in assets>",
 "<Employee 4: $0 in assets>",
 "<Employee 5: $136 in assets>",
 "<Employee 6: $119 in assets>",
 "<Employee 7: $34 in assets>",
 "<Employee 8: $0 in assets>",
 "<Employee 9: $136 in assets>"
)
Giving up ownership of one employee
deallocating <Employee 5: $136 in assets>
deallocating <Laptop 3: $51 >
deallocating <Laptop 5: $85 >
Giving up ownership of arrays
deallocating <Employee 0: $0 in assets>
deallocating <Employee 1: $153 in assets>
deallocating <Laptop 9: $153 >
…
deallocating <Employee 9: $136 in assets>
deallocating <Laptop 8: $136 >

When Employee 5 is removed from the array, it is deallocated because it has no owner. Then its assets
are deallocated because they have no owner. (And you will have to trust us on this: the labels (instances
of NSString) of the deallocated assets are also deallocated once they have no owner.)

When employees is set to nil, the array no longer has an owner. So it is deallocated, which sets
up an even larger chain reaction of memory clean-up and deallocation when, suddenly, none of the
employees has an owner.

Tidy, right? As the objects become unnecessary, they are being deallocated. This is good. When
unnecessary objects do not get deallocated, you are said to have a memory leak. Typically, a memory
leak causes more and more objects to linger unnecessarily over time, which will cause your application
to run low on memory.

Challenge: holding portfolio
Using the BNRStockHolding class from a previous challenge, make a tool that creates an instance of a
BNRPortfolio class and fills it with stock holdings. A portfolio can tell you what its current value is.

Also, add a symbol property to BNRStockHolding that holds the stock ticker symbol as an NSString.

ptg999

Chapter 21 Object Instance Variables and Properties

160

Figure 21.4 Create a BNRPortfolio class

Challenge: removing assets
Your BNREmployee class has an addAsset: method. Give it a working removeAsset: method and test it
in main().

ptg999

161

22
Class Extensions

So far, you have declared all of your properties, instance variables, and methods in the class header file.
The header is where a class advertises its properties and methods so that other objects will know how
to interact with it.

However, not every property or method should be advertised in a class’s header. Some properties or
methods may only be intended for use by the class or instances of the class. Such internal details are
better declared in a class extension. A class extension is a set of declarations that is private. Only the
class or instances of the class are able to use the properties, instance variables, or methods declared in a
class extension.

For example, the officeAlarmCode property of BNREmployee should be private. The employee object
needs to be able to access its alarm code, while non-employee objects do not need access to the alarm
code and should not have it. You can make this happen by moving the declaration of officeAlarmCode
from the header (BNREmployee.h) to a class extension.

Typically, class extensions are added to the class implementation file above the @implementation
block where methods are implemented. In BNREmployee.m, create a class extension. Then declare the
officeAlarmCode property there:

#import "BNREmployee.h"

// A class extension
@interface BNREmployee ()

@property (nonatomic) unsigned int officeAlarmCode;

@end

@implementation BNREmployee

...

A class extension starts with @interface and finishes off with @end. In fact, an extension looks a lot
like a header, and both are known as “interfaces.” However, in an extension, instead of the colon and
the superclass name found in the header, there is a pair of empty parentheses.

ptg999

Chapter 22 Class Extensions

162

In BNREmployee.h, remove the officeAlarmCode declaration:

#import "BNRPerson.h"
@class BNRAsset;

@interface BNREmployee : BNRPerson
{
 NSMutableArray *_assets
}
@property (nonatomic) unsigned int employeeID;
@property (nonatomic) unsigned int officeAlarmCode;
@property (nonatomic) NSDate *hireDate;
@property (nonatomic, copy) NSArray *assets;
- (void)addAsset:(BNRAsset *)a;
- (unsigned int)valueOfAssets;

@end

Build and run the program. Its behavior has not changed. However, moving the officeAlarmCode
declaration to a class extension has two related effects:

First, objects that are not instances of BNREmployee can no longer see this property. For instance, a
non-BNREmployee object could attempt to access an employee’s alarm code like this:

 BNREmployee *mikey = [[BNREmployee alloc] init];
 unsigned int mikeysCode = mikey.officeAlarmCode;

This attempt would result in a compiler error that reads “No visible @interface declares the instance
method officeAlarmCode”. The only interface that is visible to a non-BNREmployee object is the
BNREmployee header. And because the officeAlarmCode property is declared in a class extension
rather than in the header, it is not visible (and as such, is unavailable) to non-BNREmployee objects.

Second, the BNREmployee header has one less declaration and thus is a little bit simpler. This is a good
thing. The header is intended to be a billboard; its job is to advertise what other developers need to
know to make your class work in the code that they write. Too much information makes a header
difficult to for other developers to read and use.

Hiding mutability
Now let’s look at a slightly different case for putting a declaration in a class extension instead of the
class’s header. In BNREmployee.h, you declared an assets property that is an NSArray, an addAsset:
method, and an _assets instance variable that is an NSMutableArray. A developer will see both the
property and the instance variable advertised in the header and will be uncertain which you intended
outsiders to use.

Now that you know about class extensions, the solution is simple: move the _assets instance variable
to BNREmployee’s class extension. In BNREmployee.m, add this declaration:

ptg999

Headers and inheritance

163

#import "BNREmployee.h"

// A class extension
@interface BNREmployee ()
{
 NSMutableArray *_assets;
}

@property (nonatomic) unsigned int officeAlarmCode;

@end

@implementation BNREmployee

...

In BNREmployee.h, remove the _assets declaration:

#import "BNRPerson.h"
@class BNRAsset;

@interface BNREmployee : BNRPerson
{
 NSMutableArray *_assets
}
@property (nonatomic) unsigned int employeeID;
@property (nonatomic) NSDate *hireDate;
@property (nonatomic, copy) NSArray *assets;
- (void)addAsset:(BNRAsset *)a;
- (unsigned int)valueOfAssets;

@end

Now the array of assets is only advertised as an immutable array, so non-BNREmployee objects will
need to use the addAsset: method to manipulate this array. The fact that there is an NSMutableArray
instance backing the assets property is a private implementation detail of the BNREmployee class.

Headers and inheritance
A subclass has no access to its superclass’s class extensions. BNREmployee is a subclass of BNRPerson
and imports its superclass’s header file, BNRPerson.h. Thus, BNREmployee knows about what is
declared in BNRPerson’s header but knows nothing about anything that BNRPerson may have declared
in a class extension.

For example, if you implemented a hasDriversLicense method in BNRPerson.m but declared it in a
class extension rather than BNRPerson.h, then BNREmployee would not know that this method existed.
If you tried to call it in BNREmployee.m:

BOOL canDriveCompanyVan = [self hasDriversLicense];

you would get an error from the compiler: “No visible @interface declares the instance method
hasDriversLicense”.

ptg999

Chapter 22 Class Extensions

164

Headers and generated instance variables
When a class declares a property in its header, only the accessors for this property are visible to other
objects. Non-BNREmployee objects (including subclasses) cannot directly access the instance variables
generated by property declarations.

For example, imagine that BNRPerson.h declares this property:

 @property (nonatomic) NSMutableArray *friends;

In BNREmployee.m, even though BNREmployee is a subclass of BNRPerson, you cannot access the
_friends instance variable:

 [_friends addObject:@"Susan"]; // Error!

However, you can use the accessor:

 [self.friends addObject:@"Susan"];

Challenge
Re-open your project from the Chapter 21 challenge.

No one other than you (the creator of the BNRPortfolio class) needs to know that you are using an
NSMutableArray to hold the BNRStockHolding instances.

Move the property declaration for the array into a class extension in BNRPortfolio.m and add methods
to BNRPortfolio to allow the addition and removal of stock holdings.

ptg999

165

23
Preventing Memory Leaks

It is pretty common to have relationships that go in two directions. For example, maybe an asset should
know which employee is currently holding it. Let’s add that relationship. The new object diagram
would look like this:

Figure 23.1 Adding holder relationship

From a design standpoint, you would say that you are adding a pointer from the child (an instance of
BNRAsset) back to its parent (the instance of BNREmployee that is holding it).

In BNRAsset.h, add a pointer instance variable to hold on to the holding employee:

#import <Foundation/Foundation.h>
@class BNREmployee;

@interface BNRAsset : NSObject
@property (nonatomic, copy) NSString *label;
@property (nonatomic) BNREmployee *holder;
@property (nonatomic) unsigned int resaleValue;

@end

ptg999

Chapter 23 Preventing Memory Leaks

166

In BNRAsset.m, extend the description method to display the holder:

#import "BNRAsset.h"
#import "BNREmployee.h"

@implementation BNRAsset

- (NSString *)description
{
 return [NSString stringWithFormat:@"<%@: $%d>", self.label, self.resaleValue];
 // Is holder non-nil?
 if (self.holder) {
 return [NSString stringWithFormat:@"<%@: $%d, assigned to %@>",
 self.label, self.resaleValue, self.holder];
 } else {
 return [NSString stringWithFormat:@"<%@: $%d unassigned>",
 self.label, self.resaleValue];
 }
}

- (void)dealloc
{
 NSLog(@"deallocating %@", self);
}

@end

This brings us to a style question: When people use the BNRAsset class and BNREmployee class
together, how do you make sure that the two relationships are consistent? That is, an asset should
appear in an employee’s assets array if and only if the employee is the asset’s holder. There are three
options:

• Set both relationships explicitly:

[vicePresident addAsset:townCar];
[townCar setHolder:vicePresident];

• In the method that sets the child’s pointer, add the child to the parent’s collection.

- (void)setHolder:(BNREmployee *)e
{
 holder = e;
 [e addAsset:self];
}

(This approach is not at all common.)

• In the method that adds the child to the parent’s collection, set the child’s pointer.

In this exercise, you will take this last option. In BNREmployee.m, extend the addAsset: method to also
set holder:

ptg999

Strong reference cycles

167

- (void)addAsset:(BNRAsset *)a
{
 // Is assets nil?
 if (!assets) {
 // Create the array
 assets = [[NSMutableArray alloc] init];
 }
 [assets addObject:a];
 a.holder = self;
}

(For an entertaining bug, have both accessors automatically call the other. This creates an infinite loop:
addAsset: calls setHolder: which calls addAsset: which calls setHolder: which….)

Build and run the program. You should see something like this:

Employees: (
 "<Employee 0: $0 in assets>",
 "<Employee 1: $153 in assets>",
 "<Employee 2: $119 in assets>",
 "<Employee 3: $68 in assets>",
 "<Employee 4: $0 in assets>",
 "<Employee 5: $136 in assets>",
 "<Employee 6: $119 in assets>",
 "<Employee 7: $34 in assets>",
 "<Employee 8: $0 in assets>",
 "<Employee 9: $136 in assets>"
)
Giving up ownership of one employee
Giving up ownership of arrays
deallocating <Employee 0: $0 in assets>
deallocating <Employee 4: $0 in assets>
deallocating <Employee 8: $0 in assets>

Notice that now none of the employees with assets are getting deallocated properly. Also, none of the
assets are being deallocated, either. Why?

Strong reference cycles
The asset owns the employee, the employee owns the assets array, and the assets array owns the
asset. It is an island of garbage created by this circle of ownership. These objects should be getting
deallocated to free up memory, but they are not. This is known as a strong reference cycle. Strong
reference cycles are a very common source of memory leaks.

Figure 23.2 Every object owned by some other object

ptg999

Chapter 23 Preventing Memory Leaks

168

To find strong reference cycles in your program, you can use Apple’s profiling tool, Instruments. When
you profile a program, you monitor it while it runs to see what is happening behind the scenes with
your code and the system. However, your program runs and exits very, very quickly. To give you time
to profile, put in a hundred seconds of sleep() at the end of your main() function:

 ...
 }
 sleep(100);
 return 0;
}

In Xcode, choose Product → Profile in the menu. Instruments will launch. When the list of possible
profiling instruments appears, choose Leaks:

Figure 23.3 Picking a profiler

As your program runs, you can browse the state of things. You have two instruments to choose from on
the lefthand side of the window (Figure 23.4). Clicking on the Allocations instrument will let you see a
bar graph of everything that has been allocated in your heap:

ptg999

Strong reference cycles

169

Figure 23.4 Allocations instrument

To look for strong reference cycles, click Leaks on the menu bar above the table and choose Cycles�&
Roots from the drop-down menu. Select a particular cycle to see an object graph of it:

ptg999

Chapter 23 Preventing Memory Leaks

170

Figure 23.5 Leaks instrument

Weak references
How do you fix a strong reference cycle? Use a weak reference. A weak reference is a pointer that
does not imply ownership. To fix our strong reference cycle, an asset should not own its holder. Edit
BNRAsset.h to make holder a weak reference:

#import <Foundation/Foundation.h>
@class BNREmployee;

@interface BNRAsset : NSObject

@property (nonatomic, copy) NSString *label;
@property (nonatomic, weak) BNREmployee *holder;
@property (nonatomic) unsigned int resaleValue;
@end

Build and run the program. Note that all the objects are now being deallocated correctly.

In a parent-child relationship, the general rule for preventing this type of strong reference cycle is the
parent owns the child, but the child should not own the parent.

ptg999

Zeroing of weak references

171

Zeroing of weak references
To see weak references in action, let’s add another array to the mix. What if you wanted an array of all
assets – even ones that have not been assigned to a particular employee? You could add the assets to an
array as they are created. Add a few lines of code to main.m:

#import <Foundation/Foundation.h>
#import "BNREmployee.h"
#import "BNRAsset.h"

int main(int argc, const char * argv[])
{
 @autoreleasepool {

 // Create an array of Employee objects
 NSMutableArray *employees = [[NSMutableArray alloc] init];

 for (int i = 0; i < 10; i++) {

 // Create an instance of BNREmployee
 BNREmployee *mikey = [[BNREmployee alloc] init];

 // Give the instance variables interesting values
 [mikey setWeightInKilos:90 + i];
 [mikey setHeightInMeters:1.8 - i/10.0];
 [mikey setEmployeeID:i];

 // Put the employee in the employees array
 [employees addObject:mikey];
 }

 NSMutableArray *allAssets = [[NSMutableArray alloc] init];

 // Create 10 assets
 for (int i = 0; i < 10; i++) {

 // Create an asset
 BNRAsset *asset = [[BNRAsset alloc] init];

 // Give it an interesting label
 NSString *currentLabel = [NSString stringWithFormat:@"Laptop %d", i];
 asset.label = currentLabel;
 asset.resaleValue = i * 17;

 // Get a random number between 0 and 9 inclusive
 NSUInteger randomIndex = random() % [employees count];

 // Find that employee
 BNREmployee *randomEmployee = [employees objectAtIndex:randomIndex];

 // Assign the asset to the employee
 [randomEmployee addAsset:asset];

 [allAssets addObject:asset];
 }

 NSLog(@"Employees: %@", employees);

ptg999

Chapter 23 Preventing Memory Leaks

172

 NSLog(@"Giving up ownership of one employee");

 [employees removeObjectAtIndex:5];

 NSLog(@"allAssets: %@", allAssets);

 NSLog(@"Giving up ownership of arrays");

 allAssets = nil;
 employees = nil;
 }
 sleep(100);
 return 0;
}

Before you build and run your program, think about what you expect your output to look like. You will
see the contents of the allAssets array – after Employee 5 has been deallocated. What will the status
of Employee 5’s assets be at this point? These assets lose one owner (Employee 5), but they are still
owned by allAssets, so they will not be deallocated.

What about the holder for the assets previously owned by Employee 5? When the object that a weak
reference points to is deallocated, the pointer variable is zeroed, or set to nil. So Employee 5’s assets
will not be deallocated, and their holder variables will be automatically set to nil.

Now build and run the program and check your output:

Employees: (
 "<Employee 0: $0 in assets>",
...
 "<Employee 9: $136 in assets>"
)
Giving up ownership of one employee
deallocating <Employee 5: $136 in assets>
allAssets: (
 "<Laptop 0: $0, assigned to <Employee 3: $68 in assets>>",
 "<Laptop 1: $17, assigned to <Employee 6: $119 in assets>>",
 "<Laptop 2: $34, assigned to <Employee 7: $34 in assets>>",
 "<Laptop 3: $51 unassigned>",
 "<Laptop 4: $68, assigned to <Employee 3: $68 in assets>>",
 "<Laptop 5: $85 unassigned>",
 "<Laptop 6: $102, assigned to <Employee 6: $119 in assets>>",
 "<Laptop 7: $119, assigned to <Employee 2: $119 in assets>>",
 "<Laptop 8: $136, assigned to <Employee 9: $136 in assets>>",
 "<Laptop 9: $153, assigned to <Employee 1: $153 in assets>>"
)
Giving up ownership of arrays
deallocating <Laptop 3: $51 unassigned>
...
deallocating <Laptop 8: $136 unassigned>

Here is a quick summary: A strong reference will keep the object it points to from being deallocated. A
weak reference will not. Thus instance variables and properties that are marked as weak are pointing at
objects that might go away. If this happens, that instance variable or property will be set to nil, instead
of continuing to point to where the object used to live.

If you are explicitly declaring a pointer variable that should be weak, mark it with __weak like this:

__weak BNRPerson *parent;

ptg999

For the More Curious: manual reference counting and ARC history

173

For the More Curious: manual reference counting and
ARC history
As mentioned at the beginning of Chapter 21, before automatic reference counting (ARC) was added
to Objective-C, you had manual reference counting, which used retain counts. With manual reference
counting, ownership changes only happened when you sent an explicit message to an object that
decremented or incremented the retain count.

[anObject release]; // anObject loses an owner
[anObject retain]; // anObject gains an owner

You would see these sorts of calls primarily in accessor methods (where the new value was retained
and the old value was released) and in dealloc methods (where all the previously retained objects were
released). The setHolder: method for BNRAsset would have looked like this:

- (void)setHolder:(BNREmployee *)newEmp
{
 // Take ownership of the new holder
 [newEmp retain];

 // Give up ownership of the old holder
 [holder release];

 // Set the pointer to point to the new holder
 holder = newEmp;
}

The dealloc method would have looked like this:

- (void)dealloc
{
 // You're dying, so give up ownership of all objects you used to own
 [label release];
 [holder release];
 [super dealloc];
}

What about the description method? It creates and returns a string. Should BNRAsset claim
ownership of it? That would not make sense; the asset is giving away the string it created. When
you autorelease an object, you are marking it to be sent release in the future. Before ARC, the
description method for BNRAsset would look like this:

- (NSString *)description
{
 NSString *result = [[NSString alloc] initWithFormat:@"<%@: $%d >",
 [self label], [self resaleValue]];
 [result autorelease];
 return result;
}

When would it be sent release? When the current autorelease pool was drained:

ptg999

Chapter 23 Preventing Memory Leaks

174

// Create the autorelease pool
NSAutoreleasePool *arp = [[NSAutoreleasePool alloc] init];
BNRAsset *asset = [[BNRAsset alloc] init];

NSString *d = [asset description];
// The string that d points to is in the autorelease pool

NSLog(@"The asset is %@", d);

[arp drain]; // The string is sent the message release

ARC uses the autorelease pool automatically, but you must create and drain the pool. When ARC was
created, we also got a new syntax for creating an autorelease pool. The code above now looks like this:

// Create the autorelease pool
@autoreleasepool {
 BNRAsset *asset = [[BNRAsset alloc] init];

 NSString *d = [asset description];
 // The string that d points to is in the autorelease pool

} // The pool is drained

Retain count rules
There are a set of memory management conventions that all Objective-C programmers follow. If you
are using ARC, it is following these conventions behind the scenes.

In these rules, we use the word “you” to mean “an instance of whatever class you are currently working
on.” It is a useful form of empathy: you imagine that you are the object you are writing. So, for
example, “If you retain the string, it will not be deallocated.” really means “If an instance of the class
that you are currently working on retains the string, it will not be deallocated.”

Here, then, are the rules. (Implementation details are in parentheses.)

• If you create an object using a method whose name starts with alloc or new or contains copy, then
you have taken ownership of it. (That is, assume that the new object has a retain count of 1 and is
not in the autorelease pool.) You have a responsibility to release the object when you no longer
need it. Here are some of the common methods that convey ownership: alloc (which is always
followed by an init method), copy, and mutableCopy.

• An object created through any other means is not owned by you. (That is, assume it has a retain
count of one and is already in the autorelease pool, and thus is doomed unless it is retained before
the autorelease pool is drained.)

• If you do not own an object and you want to ensure its continued existence, take ownership by
sending it the message retain. (This increments the retain count.)

• When you own an object and no longer need it, give up ownership by sending it the message
release or autorelease. (release decrements the retain count immediately. autorelease causes
the message release to be sent when the autorelease pool is drained.)

• As long as an object has at least one owner, it will continue to exist. (When its retain count goes to
zero, it is sent the message dealloc.)

ptg999

Retain count rules

175

One of the tricks to understanding memory management is to think locally. The BNRAsset class does
not need to know anything about other objects that also care about its label. As long as a BNRAsset
instance retains objects it wants to keep, you will not have any problems. Programmers new to the
language sometimes make the mistake of trying to keep tabs on objects throughout an application. Do
not do this. If you follow these rules and always think local to a class, you never have to worry what
the rest of an application is doing with an object.

Following the idea of ownership, now it becomes clear why you need to autorelease the string in your
description method: The employee object created the string, but it does not want to own it. It wants
to give it away.

ptg999

This page intentionally left blank

ptg999

177

24
Collection Classes

A collection class is one whose instances hold pointers to other objects. You have already used
two collection classes: NSArray and its subclass NSMutableArray. In this chapter, you will delve
deeper into arrays and learn about some other collection classes: NSSet/NSMutableSet and
NSDictionary/NSMutableDictionary.

NSSet/NSMutableSet
A set is a collection that has no sense of order, and a particular object can only appear in a set once.

Sets are primarily useful for asking the question “Is it in there?” For example, you might have a set of
URLs that are not child-appropriate. Before displaying any web page to a child, you would do a quick
check to see if the URL is in the set. Sets are faster at testing object membership than arrays are.

Like arrays, sets come in immutable and mutable flavors: An NSSet is immutable — you cannot add or
remove objects after the set has been created. NSMutableSet is the subclass that adds the ability to add
and remove objects from a set.

In this section, you are going to change your program so that the employee-asset relationship uses an
NSMutableSet instead of an NSMutableArray.

NSMutableSet is a good choice to describe the employee-asset relationship: an employee’s assets
have no inherent order, and an asset should never appear twice in the same employee’s assets
collection.

ptg999

Chapter 24 Collection Classes

178

Figure 24.1 Using NSMutableSet for assets

In BNREmployee.h, change the property’s declaration:

#import "BNRPerson.h"
@class BNRAsset;

@interface BNREmployee : BNRPerson

@property (nonatomic) unsigned int employeeID;
@property (nonatomic) NSDate *hireDate;
@property (nonatomic, copy) NSSet *assets;
- (void)addAsset:(BNRAsset *)a;
- (unsigned int)valueOfAssets;

@end

In BNREmployee.m, update the instance variable declaration and make sure that you create an instance
of the correct class:

ptg999

NSSet/NSMutableSet

179

// A class extension
@interface BNREmployee ()
{
 NSMutableSet *_assets;
}
@property (nonatomic) unsigned int officeAlarmCode;
@end

@implementation BNREmployee

 ...

- (void)addAsset:(BNRAsset *)a
{
 if (!_assets) {
 _assets = [[NSMutableSet alloc] init];
 }
 [_assets addObject:a];
 a.holder = self;
}

 ...

Build and run the program. It should function the same.

You cannot access an object in a set by index because there is no sense of order in a set. Instead, all
you can do is ask “Is there one of these in there?” You ask this question with the following NSSet
method:

 - (BOOL)containsObject:(id)x;

When you send this message to a set, it goes through its collection of objects looking for an object
equal to x. If it finds one, it returns YES; otherwise it returns NO.

This brings us to a rather deep question: what does equal mean? The class NSObject defines a method
called isEqual:. To check if two objects are equal, you use the isEqual: method:

if ([myDoctor isEqual:yourTennisPartner]) {
 NSLog(@"my doctor is equal to your tennis partner");
}

NSObject has a simple implementation of isEqual:. It looks like this:

- (BOOL)isEqual:(id)other
{
 return (self == other);
}

Thus, if you have not overridden isEqual:, the code snippet is equivalent to:

if (myDoctor == yourTennisPartner) {
 NSLog(@"my doctor is equal to your tennis partner");
}

Some classes override isEqual:. For example, in NSString, isEqual: is overridden to compare the
characters in the string. For these classes, there is a difference between equal and identical. Consider a
situation in which you might have four NSString pointers:

ptg999

Chapter 24 Collection Classes

180

Figure 24.2 Equal vs. identical

You could describe the relationships between these pointers multiple ways:

• foo is not equal or identical to any of the others.

• bar and baz are equal and identical because the objects they point to have the same letters in the
same order, and in fact they point to the same object.

• baz and bug are equal, but they are not identical.

Thus, identical objects are always equal. Equal objects are not always identical.

Does this difference matter? Yes. For example, NSMutableArray has two methods:

- (NSUInteger)indexOfObject:(id)anObject;

- (NSUInteger)indexOfObjectIdenticalTo:(id)anObject;

The first steps through the collection asking each object “isEqual:anObject?” The second steps
through the collection asking each object “== anObject”?

NSDictionary/NSMutableDictionary
A dictionary is a collection of key-value pairs. The key is typically a string, and the value can be any
sort of object. Dictionaries are indexed by key: you provide a key and get back the value (an object)
associated with that particular key. Keys in a dictionary are unique and a dictionary’s key-value pairs
are not kept in any particular order.

Like arrays and sets, dictionaries can be mutable (NSMutableDictionary) or immutable
(NSDictionary). Like NSArray, NSDictionary has a shorthand you can use when creating an
immutable dictionary. The dictionary literal syntax is formed with the @ symbol and curly braces.
Within the curly braces, you provide a comma-delimited list of the key-value pairs and separate each
key from its value with a colon.

For example, say you wanted a place to keep the number of moons for each planet in the solar system.
Here is how you would create an NSDictionary with planet names as keys and number of moons as
values.

ptg999

NSDictionary/NSMutableDictionary

181

 NSDictionary *numberOfMoons = @{ @"Mercury" : @0,
 @"Venus" : @0,
 @"Earth" : @1,
 @"Mars" : @2,
 @"Jupiter" : @67,
 @"Saturn" : @62,
 @"Uranus" : @27,
 @"Neptune" : @13, };

The keys are NSString objects, and the values are NSNumber objects. Both are created on the spot using
literal syntax.

Here is how you would access an item from this dictionary:

 NSNumber *marsMoonCount = numberOfMoons[@"Mars"];

This is similar to how you access an item in an array except, within the square brackets, you give the
item’s key rather than its integer index.

Sometimes it is useful to nest collections. For example, here is an NSDictionary instance whose values
are NSArray instances.

 NSDictionary *innerPlanetsMoons = @{
 @"Mercury" : @[], // @[] is an empty array, equivalent to [NSArray array]
 @"Venus" : @[],
 @"Earth" : @[@"Luna"],
 @"Mars" : @[@"Deimos", @"Phobos"]
 };

Now you are going to add a mutable dictionary of executives to the BMITime project. The key will
be an executive title, and the value will be an instance of BNREmployee. The first employee in the
employees array will be put in the dictionary under @"CEO"; the second under @"CTO".

Figure 24.3 Two instances of BNREmployee in an NSMutableDictionary

This dictionary will be an NSMutableDictionary, so you will use alloc and init to create it and not
the literal syntax shown above.

Change main.m to create and populate an NSMutableDictionary. Print out some executive information
and then set the pointer to the dictionary to nil so that you can see the dictionary being deallocated.

ptg999

Chapter 24 Collection Classes

182

 // Create an array of BNREmployee objects
 NSMutableArray *employees = [[NSMutableArray alloc] init];

 // Create a dictionary of executives
 NSMutableDictionary *executives = [[NSMutableDictionary alloc] init];

 for (int i = 0; i < 10; i++) {

 // Create an instance of BNREmployee
 BNREmployee *mikey = [[BNREmployee alloc] init];

 // Give the instance variables interesting values
 [mikey setWeightInKilos:90 + i];
 [mikey setHeightInMeters:1.8 - i/10.0];
 [mikey setEmployeeID:i];

 // Put the employee in the employees array
 [employees addObject:mikey];

 // Is this the first employee?
 if (i == 0) {
 [executives setObject:mikey forKey:@"CEO"];
 }

 // Is this the second employee?
 if (i == 1) {
 [executives setObject:mikey forKey:@"CTO"];
 }

 }

 …

 NSLog(@"allAssets: %@", allAssets);

 // Print out the entire dictionary
 NSLog(@"executives: %@", executives);

 // Print out the CEO's information
 NSLog(@"CEO: %@", executives[@"CEO"]);
 executives = nil;

 NSLog(@"Giving up ownership of arrays");

 allAssets = nil;
 employees = nil;
 }
 return 0;
}

Build and run the program. The executives dictionary should log itself out:

executives = {
 CEO = "<Employee 0: $0 in assets>";
 CTO = "<Employee 1: $153 in assets>";
}

CEO: "<Employee 0: $0 in assets>"

Before Objective-C had subscripting, we used methods instead of square bracket:

ptg999

Immutable objects

183

NSMutableDictionary *dict = [[NSMutableDictionary alloc] init];
[dict setObject:@"Hola" forKey:@"Hello"];
NSString *greeting = [dict objectForKey:@"Hello"];

The keys in a dictionary are unique. If you try to add a second object under an existing key, the first
key-value pair gets replaced.

// Create a dictionary
NSMutableDictionary *friends = [NSMutableDictionary dictionary];

// Put an object under key "bestFriend"
[friends setObject:betty forKey:@"bestFriend"];

// Replace that object with a new best friend
[friends setObject:jane forKey:@"bestFriend"];

Now friends has only one key-value pair (bestFriend => jane).

Immutable objects
Most beginning programmers are surprised by the immutability of NSArray, NSSet, and NSDictionary.
Why would anyone want a list that cannot be changed? The reasons are performance and security:

You do not trust the people you work with. That is, you want to let them look at an array, but you do not
want them to be able change it. A gentler approach is to give them an NSMutableArray but tell them it
is an NSArray. For example, consider the following method:

// Returns an array of 30 odd numbers
- (NSArray *)odds
{
 NSMutableArray *oddsArray = [[NSMutableArray alloc] init];
 int i = 1;
 while ([oddsArray count] < 30) {
 [oddsArray addObject:[NSNumber numberWithInt:i];
 i += 2;
 }
 return oddsArray;
}

Anyone calling this method assumes from its declaration

 - (NSArray *)odds;

that it is returning an immutable NSArray. If the caller tries to add or remove items from the returned
array, the compiler will issue a warning – even though, it is, in fact, an instance of NSMutableArray.

Using an immutable collection conserves memory and improves performance because that collection
never needs to be copied. With a mutable object, there is the possibility that some other code might
change the object behind your back while you are in the middle of using it. To avoid this situation,
you would have to make a private copy of the collection. And so would everyone else, which leads to
multiple copies of a potentially large object.

With immutable objects, making a copy is unnecessary. In fact, where the copy method of
NSMutableArray makes a copy of itself and returns a pointer to the new array, the copy method of
NSArray does nothing – it just quietly returns a pointer to itself.

Immutable objects are fairly common in Objective-C programming. In Foundation, there are
many classes that create immutable instances: NSArray, NSString, NSAttributedString, NSData,
NSCharacterSet, NSDictionary, NSSet, NSIndexSet, and NSURLRequest.

ptg999

Chapter 24 Collection Classes

184

All of these have mutable subclasses: NSMutableArray, NSMutableString,
NSMutableAttributedString, etc.

NSDate and NSNumber are immutable but do not have mutable subclasses. If you need a new date or
number, then you must create a new object.

Sorting arrays
Arrays often require sorting. Immutable arrays cannot be sorted, but mutable ones can. There are
several ways to sort an NSMutableArray. The most common is using the NSMutableArray method:

 - (void)sortUsingDescriptors:(NSArray *)sortDescriptors;

The argument is an array of NSSortDescriptor objects. A sort descriptor has the name of a property
of the objects contained in the array and whether that property should be sorted in ascending or
descending order. Imagine you had a list of doctors. If you wanted to sort the list by last name in
ascending (A-Z) order, then you would create the following sort descriptor:

 NSSortDescriptor *lastAsc = [NSSortDescriptor sortDescriptorWithKey:@"lastName"
 ascending:YES];

The property you sort on can be any instance variable or the result of any method of the object.

Why do you pass an array of sort descriptors? What if two doctors have the same last name? You can
specify “Sort by last name ascending, and if the last names are the same, sort by first name ascending,
and if the first and last names are the same, sort by zip code.”

Figure 24.4 Sort by lastName, then firstName, then zipCode

Let’s return to the BMITime project to see sorting in practice. In main(), just before logging the
employees array, sort it by valueOfAssets. If two employees are holding assets of the same value, sort
them by employeeID. Edit main.m:

 ...

 [allAssets addObject:asset];
 }

 NSSortDescriptor *voa = [NSSortDescriptor sortDescriptorWithKey:@"valueOfAssets"
 ascending:YES];
 NSSortDescriptor *eid = [NSSortDescriptor sortDescriptorWithKey:@"employeeID"
 ascending:YES];
 [employees sortUsingDescriptors: @[voa, eid]];

 NSLog(@"Employees: %@", employees);

 ...

ptg999

Filtering

185

Build and run the program. You should see the employees list ordered correctly:

Employees: (
 "<Employee 0: $0 in assets>",
 "<Employee 4: $0 in assets>",
 "<Employee 8: $0 in assets>",
 "<Employee 7: $34 in assets>",
 "<Employee 3: $68 in assets>",
 "<Employee 2: $119 in assets>",
 "<Employee 6: $119 in assets>",
 "<Employee 5: $136 in assets>",
 "<Employee 9: $136 in assets>",
 "<Employee 1: $153 in assets>"

Sets and dictionaries are unordered by nature, so they are not typically sorted.

Filtering
When you filter a collection, you compare its objects to a logical statement to get a resultant collection
that only contains objects for which the statement is true.

A predicate contains a statement that might be true, like “The employeeID is greater than 75.” There is
a class called NSPredicate. NSMutableArray has a handy method for discarding all the objects that do
not satisfy the predicate:

- (void)filterUsingPredicate:(NSPredicate *)predicate;

With NSArray, you cannot remove objects that do not match the predicate. Instead, NSArray has a
method that creates a new array that contains all the objects that satisfy the predicate:

- (NSArray *)filteredArrayUsingPredicate:(NSPredicate *)predicate;

Imagine that you are going to reclaim all the assets given to employees who currently hold assets worth
more than $70 total. Add the code near the end of main.m:

 ...

 // Print out the CEO's information
 NSLog(@"CEO: %@", executives[@"CEO"]);
 executives = nil;

 NSPredicate *predicate = [NSPredicate predicateWithFormat:
 @"holder.valueOfAssets > 70"];
 NSArray *toBeReclaimed = [allAssets filteredArrayUsingPredicate:predicate];
 NSLog(@"toBeReclaimed: %@", toBeReclaimed);
 toBeReclaimed = nil;

 NSLog(@"Giving up ownership of arrays");

 allAssets = nil;
 employees = nil;
 }
 return 0;
}

Build and run the program. You should see a list of assets:

ptg999

Chapter 24 Collection Classes

186

toBeReclaimed: (
 "<Laptop 1: $17, assigned to <Employee 6: $119 in assets>>",
 "<Laptop 3: $51, assigned to <Employee 5: $136 in assets>>",
 "<Laptop 5: $85, assigned to <Employee 5: $136 in assets>>",
 "<Laptop 6: $102, assigned to <Employee 6: $119 in assets>>",
 "<Laptop 8: $136, assigned to <Employee 9: $136 in assets>>",
 "<Laptop 9: $153, assigned to <Employee 1: $153 in assets>>"
)

The format string used to create the predicate can be very complex. If you do a lot of filtering of
collections, be sure to read Apple’s Predicate Programming Guide.

Filtering can be done with sets as well as arrays. NSSet has the method:

 - (NSSet *)filteredSetUsingPredicate:(NSPredicate *)predicate;

and NSMutableSet has the method:

 - (void)filterUsingPredicate:(NSPredicate *)predicate;

Collections and ownership
When you add an object to a collection, the collection claims ownership of it. When you remove
the object from the collection, the collection gives up ownership. This is true for NSMutableArray,
NSMutableSet, and NSMutableDictionary. (An immutable collection also claims ownership of its
objects, but the immutability of the collection means that all the objects in the collection are owned
when the collection is created and disowned when the collection is deallocated.)

C primitive types
The collections covered in this chapter only hold objects. What if you want a collection of floats or
ints? You can wrap common C number types using NSNumber.

You can create a literal NSNumber instance using the @ symbol – similar to how you create literal
NSString instances. For instance, if you wanted to put the numbers 4 and 5.6 into an array, you would
create the instance of NSNumber and then add the NSNumber object to the array:

NSMutableArray *list = [[NSMutableArray alloc] init];
[list addObject:@4];
[list addObject:@5.6];

Note that you cannot do math directly with an NSNumber, only with primitives. You must first extract
the primitive value using one of several NSNumber methods, do the math, and then re-wrap the result
into an NSNumber. You can find the methods for extracting and rewrapping primitive values in the
NSNumber class reference.

What about structs? You can wrap a pointer to a struct in an instance of another wrapper class –
NSValue (the superclass of NSNumber). Commonly-used structs such as NSPoint (which contains the x
and y values of a coordinate) can be boxed using instances of NSValue:

 NSPoint somePoint = NSMakePoint(100, 100);
 NSValue *pointValue = [NSValue valueWithPoint:somePoint];
 [list addObject:pointValue];

ptg999

Collections and nil

187

NSValue instances can be used to hold just about any scalar value. Read the NSValue class reference to
learn more.

Collections and nil
You are not allowed to add nil to any of the collection classes we have covered. What if you need to
put that idea of nothingness, a “hole,” into a collection? There is a class called NSNull. There is exactly
one instance of NSNull, and it is an object that represents nothingness. Here is an example:

NSMutableArray *hotel = [[NSMutableArray alloc] init];

// Lobby on the ground floor
[hotel addObject:lobby];

// Pool on the second
[hotel addObject:pool];

// The third floor has not been built out
[hotel addObject:[NSNull null]];

// Bedrooms on fourth floor
[hotel addObject:bedrooms];

Challenge: reading up
Explore the class references for NSArray, NSMutableArray, NSDictionary, and NSMutableDictionary.
You will use these classes every day.

Challenge: top holdings
This challenge and the next one build on the challenge from Chapter 22. Add a method to the
BNRPortfolio class that returns an NSArray of only the top three most valuable holdings, sorted by
current value in dollars. Test it in main().

Challenge: sorted holdings
Add another method to BNRPortfolio that returns an NSArray of all of its stock holdings, sorted
alphabetically by symbol. Test this method in main() as well.

ptg999

This page intentionally left blank

ptg999

189

25
Constants

We have spent a lot of time discussing variables, which, as the name indicates, change their values as
the program runs. There are, however, pieces of information that do not change value. For example,
the mathematical constant π never changes. We call these things constants, and there are two common
ways that Objective-C programmers define them: #define and global variables.

In Xcode, create a new Foundation�Command�Line�Tool called Constants.

In the standard C libraries, constants are defined using the #define preprocessor directive. The math
part of the standard C library is declared in the file math.h. One of the constants defined there is M_PI.
Use it in main.m:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 NSLog(@"\u03c0 is %f", M_PI);

 }
 return 0;
}

When you build and run it, you should see:

π is 3.141593

To the definition for the M_PI constant, press the Command key and then click on M_PI in your code.

ptg999

Chapter 25 Constants

190

Figure 25.1 Definition for M_PI

Where are you? If you look at the navigation bar at the top of the editor area, you will see that you are
now in math.h.

Command-clicking is useful whenever you need to see how something is defined. You can use it with
constants, functions, classes, methods, types, and more.

To get back to main.m, click the button to the left of the navigation bar at the top of the editor area.
Or select main.m in the project navigator.

You may be wondering why you did not have to explicitly include math.h in main.m to use M_PI. When
you created a new Foundation command-line tool, the template imported Foundation/Foundation.h
for you. Foundation/Foundation.h includes CoreFoundation/CoreFoundation.h, which includes
math.h.

Preprocessor directives
Compiling a file of C, C++, or Objective-C code is done in two passes. First, the preprocessor runs
through the file. The output from the preprocessor then goes into the real compiler. Preprocessor
directives start with #, and the three most popular are #include, #import, and #define.

ptg999

#include and #import

191

#include and #import
#include and #import do essentially the same thing: request that the preprocessor read a file and add it
to its output. Usually, you are including a file of declarations (a .h file), and those declarations are used
by the compiler to understand the code it is compiling.

What is the difference between #include and #import? #import ensures that the preprocessor only
includes a file once. #include will allow you to include the same file many times. C programmers tend
to use #include. Objective-C programmers tend to use #import.

When specifying the name of the file to be imported, you can wrap the filename in quotes or angle
brackets. Quotes indicate that the header is in your project directory. Angle brackets indicate that the
header is in one of the standard locations that the preprocessor knows about. (<math.h>, for example, is
/Applications/Xcode46-DP3.app/Contents/Developer/Platforms/MacOSX.platform/Developer/
SDKs/MacOSX10.8.sdk/usr/include/math.h.) Here are two examples of #import directives:

// Include the headers I wrote for Pet Store operations
#import "PetStore.h"

// Include the headers for the OpenLDAP libraries
#import <ldap.h>

In a project, it used to be pretty common to include a collection of headers in every file of code. This
led to clutter at the beginning of your file and made compiles take longer. To make life easier and
compiles faster, most Xcode projects have a file that lists headers to be precompiled and included in
every file. In your Constants project, this file is called Constants-Prefix.pch.

So, how did a constant from math.h get included when main.m was compiled? Your main.m file has the
following line:

#import <Foundation/Foundation.h>

The file Foundation.h has this line:

#include <CoreFoundation/CoreFoundation.h>

And the file CoreFoundation.h has this line:

#include <math.h>

#define
#define tells the preprocessor, “Whenever you encounter A, replace it with B before the compiler sees
it.” Look at the line from math.h again:

#define M_PI 3.14159265358979323846264338327950288

In the #define directive, you just separate the two parts (the token and its replacement) with
whitespace.

#define can be used to make something like a function. In main.m, print the larger of two numbers:

ptg999

Chapter 25 Constants

192

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 NSLog(@"\u03c0 is %f", M_PI);
 NSLog(@"%d is larger", MAX(10, 12));

 }
 return 0;
}

MAX is not a function; it is a #define. The most basic C version of MAX is:

#define MAX(A,B) ((A) > (B) ? (A) : (B))

So, by the time the compiler saw the line you just added, it looked like this:

NSLog(@"%d is larger", ((10) > (12) ? (10) : (12)));

When you use #define to do function-like stuff instead of simply substituting a value, you are creating
a macro.

Global variables
Instead of using #define, Objective-C programmers commonly use global variables to hold constant
values.

Let’s add to your program to explain. First, there is a class named NSLocale that stores information
about different geographical locations. You can get an instance of the user’s current locale and then ask
it questions. For instance, if you wanted to know what the currency is in the user’s locale, you could
ask for it like this:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 NSLog(@"\u03c0 is %f", M_PI);
 NSLog(@"%d is larger", MAX(10, 12));

 NSLocale *here = [NSLocale currentLocale];
 NSString *currency = [here objectForKey:@"currency"];
 NSLog(@"Money is %@", currency);

 }
 return 0;
}

Build and run it. Depending on where you are, you should see something like

Money is USD

If, however, you mistype the key as @"Kuruncy", you will not get anything back. To prevent this
problem, the Foundation framework defines a global variable called NSLocaleCurrencyCode. It is no

ptg999

enum

193

easier to type, but if you do mistype it, the compiler will complain. Also, code completion in Xcode
works properly for a global variable, but not for the string @"currency". Change your code to use the
constant:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 NSLog(@"\u03c0 is %f", M_PI);
 NSLog(@"%d is larger", MAX(10, 12));

 NSLocale *here = [NSLocale currentLocale];
 NSString *currency = [here objectForKey:NSLocaleCurrencyCode];
 NSLog(@"Money is %@", currency);

 }
 return 0;
}

When the class NSLocale was written, this global variable appeared in two places. In NSLocale.h, the
variable was declared something like this:

extern NSString * const NSLocaleCurrencyCode;

The const means that this pointer will not change for the entire life of the program. The extern means
“I promise this exists, but it will be defined in some other file.” In the file NSLocale.m (which lives in a
vault at Apple), there is certainly a line like this:

NSString * const NSLocaleCurrencyCode = @"currency";

enum
Often you will need to define a set of constants. For example, imagine that you were developing a
blender with five speeds: Stir, Chop, Liquefy, Pulse, and Ice Crush. Your class Blender would have a
method called setSpeed:. It would be best if the type indicated that only one of the five speeds was
allowed. To do this, you would define an enumeration:

enum BlenderSpeed {
 BlenderSpeedStir = 1,
 BlenderSpeedChop = 2,
 BlenderSpeedLiquify = 5,
 BlenderSpeedPulse = 9,
 BlenderSpeedIceCrush = 15
};

@interface Blender : NSObject
{
 // speed must be one of the five speeds
 enum BlenderSpeed speed;
}

// setSpeed: expects one of the five speeds
- (void)setSpeed:(enum BlenderSpeed)x;
@end

ptg999

Chapter 25 Constants

194

Developers get tired of typing enum BlenderSpeed, so they often use typedef to create a shorthand for
it:

typedef enum {
 BlenderSpeedStir = 1,
 BlenderSpeedChop = 2,
 BlenderSpeedLiquify = 5,
 BlenderSpeedPulse = 9,
 BlenderSpeedIceCrush = 15
} BlenderSpeed;

@interface Blender : NSObject
{
 // speed must be one of the five speeds
 BlenderSpeed speed;
}

// setSpeed: expects one of the five speeds
- (void)setSpeed:(BlenderSpeed)x;
@end

Often you will not care what numbers the five speeds represent – only that they are different from each
other. You can leave out the values, and the compiler will make up values for you:

typedef enum {
 BlenderSpeedStir,
 BlenderSpeedChop,
 BlenderSpeedLiquify,
 BlenderSpeedPulse,
 BlenderSpeedIceCrush
} BlenderSpeed;

Starting with OS X 10.8 and iOS 6, Apple introduced a new enum declaration syntax: NS_ENUM(). Here
is what your enum looks like using this syntax:

typedef NS_ENUM(int, BlenderSpeed) {
 BlenderSpeedStir,
 BlenderSpeedChop,
 BlenderSpeedLiquify,
 BlenderSpeedPulse,
 BlenderSpeedIceCrush
};

NS_ENUM() is actually a preprocessor macro that takes two arguments: a data type and a name.

Apple has adopted NS_ENUM() for enum declarations. The most important advantage of NS_ENUM() over
the other syntax is the ability to declare the integral data type that the enum will represent (short,
unsigned long, etc.).

With the old syntax, the compiler would choose an appropriate data type for the enum, usually int. If
your enum will only have four options whose values do not matter, you do not need four bytes to store
it; one byte will represent integral numbers up to 255 just fine. Recalling from Chapter 3 that a char is
a one-byte integer, you can declare a space-saving enum:

ptg999

#define vs. global variables

195

typedef NS_ENUM(char, BlenderSpeed) {
 BlenderSpeedStir,
 BlenderSpeedChop,
 BlenderSpeedLiquify,
 BlenderSpeedPulse,
 BlenderSpeedIceCrush
};

#define vs. global variables
Given that you can define a constant using #define or a global variable (which includes the use
of enum), why do Objective-C programmers tend to use global variables? In some cases, there are
performance advantages to using global variables. For example, you can use == instead of isEqual:
to compare strings if you consistently use the global variable (a pointer comparison is faster than a
message send and scanning two strings character-by-character). Also, global variables are easier to
work with when you are in the debugger.

In general, you should use global variables and enum for constants, not #define.

ptg999

This page intentionally left blank

ptg999

197

26
Writing Files with NSString and

NSData

The Foundation framework gives the developer a few easy ways to read from and write to files. In this
chapter, you will try a few of them out.

Writing an NSString to a file
First, let’s see how you would take the contents of an NSString and put it into a file. When you write
a string to a file, you need to specify which string encoding you are using. A string encoding describes
how each character is stored as an array of bytes. ASCII is a string encoding that defines the letter ‘A’
as being stored as 01000001. In UTF-16, the letter ‘A’ is stored as 0000000001000001.

The Foundation framework supports about 20 different string encodings, but we end up using UTF a
lot because it can handle an incredible collection of writing systems. It comes in two flavors: UTF-16,
which uses two or more bytes for every character, and UTF-8, which uses one byte for the first 128
ASCII characters and two or more for other characters. For most purposes, UTF-8 is a good fit.

Create a new project: a Foundation�Command�Line�Tool called Stringz. In main(), use methods from
the NSString class to create a string and write it to the filesystem:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {
 @autoreleasepool {

 NSMutableString *str = [[NSMutableString alloc] init];
 for (int i = 0; i < 10; i++) {
 [str appendString:@"Aaron is cool!\n"];
 }
 [str writeToFile:@"/tmp/cool.txt"
 atomically:YES
 encoding:NSUTF8StringEncoding
 error:NULL];
 NSLog(@"done writing /tmp/cool.txt");

 }
 return 0;
}

This program will create a text file that you can read and edit in any text editor. The string /tmp/
cool.txt is known as the file path.

ptg999

Chapter 26 Writing Files with NSString and NSData

198

File paths can be absolute or relative: absolute paths start with a / that represents the top of the file
system, whereas relative paths start at the working directory of the program. Relative paths do not start
with a /. In Objective-C programming, you will find that you nearly always use absolute paths because
you typically do not know what the working directory of the program is.

Build and run the program. (To find the /tmp directory in Finder, use the Go → Go�to�Folder menu
item.)

NSError
As you might imagine, all sorts of things can go wrong when you try to write a string to a file. For
example, the user may not have write-access to the directory where the file would go. Or the directory
may not exist at all. Or the filesystem may be full. For situations like these, where an operation may be
impossible to complete, the method needs a way to return a description of what went wrong in addition
to the boolean value for success or failure.

Recall from Chapter 10 that when you need a function to return something in addition to its return
value, you can use pass-by-reference. You pass the function (or method) a reference to a variable where
it can directly store or manipulate a value. The reference is the memory address for that variable.

For error handling, many methods take an NSError pointer by reference. Add error handling to Stringz:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {
 @autoreleasepool {

 NSMutableString *str = [[NSMutableString alloc] init];
 for (int i = 0; i < 10; i++) {
 [str appendString:@"Aaron is cool!\n"];
 }

 // Declare a pointer to an NSError object, but do not instantiate it.
 // The NSError instance will only be created if there is, in fact, an error.
 NSError *error;

 // Pass the NSError pointer by reference to the NSString method
 BOOL success = [str writeToFile:@"/tmp/cool.txt"
 atomically:YES
 encoding:NSUTF8StringEncoding
 error:&error];

 // Test the returned BOOL, and query the NSError if the write failed
 if (success) {
 NSLog(@"done writing /tmp/cool.txt");
 } else {
 NSLog(@"writing /tmp/cool.txt failed: %@", [error localizedDescription]);
 }

 }
 return 0;
}

Build and run it. Now change the code to pass the write method a file path that does not exist, like @"/
too/darned/bad.txt". You should get a friendly error message.

ptg999

NSError

199

Notice that you declare a pointer to an instance of NSError in this code, but you do not create, or
instantiate, an NSError object to assign to that pointer.

Why not? You want to avoid creating an unnecessary error object if there is no error. If there is an
error, writeToFile:atomically:encoding:error: will be responsible for creating a new NSError
instance and then modifying the error pointer you declared to point to the new error object. Then you
can ask that object what went wrong via your error pointer.

This conditional creation of the NSError requires you to pass a reference to error (&error) because
there is no object yet to pass. However, unlike the passing by reference you did in Chapter 10, where
you passed the reference of a primitive C variable, here you are passing the address of a pointer
variable. In essence, you are passing the address of another address (which may become the address of
an NSError object).

Figure 26.1 Errors are passed by reference

To revisit our international espionage analogy from Chapter 10, you might tell your spy, “If anything
goes wrong, make a complete report (much too large to put in the steel pipe) and hide it in a book at
the library. I need to know where you hid it, so put the call number of the book in the steel pipe.” That
is, you are giving the spy a location where she can put the address of an error report she created.

Here is a look inside the NSString class where writeToFile:atomically:encoding:error: is
declared:

- (BOOL)writeToFile:(NSString *)path
 atomically:(BOOL)useAuxiliaryFile
 encoding:(NSStringEncoding)enc
 error:(NSError **)error

Notice the double asterisk. Many programmers would say “The method expects a pointer to a pointer
to an NSError.” However, that sounds more confusing than it needs to be. In our opinion, this is more
descriptive: “The method expects an address where it can put a pointer to an instance of NSError.”

Methods that pass an NSError by reference always return a value that indicates whether there was an
error or not. This method, for example, returns NO if there is an error. Do not try to access the NSError
unless the return value indicates that an error occurred; if the NSError object does not actually exist,
trying to access it will crash your program.

ptg999

Chapter 26 Writing Files with NSString and NSData

200

Reading files with NSString
Reading a file into a string is very similar:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {
 @autoreleasepool {

 NSError *error;
 NSString *str = [[NSString alloc] initWithContentsOfFile:@"/etc/resolv.conf"
 encoding:NSASCIIStringEncoding
 error:&error];
 if (!str) {
 NSLog(@"read failed: %@", [error localizedDescription]);
 } else {
 NSLog(@"resolv.conf looks like this: %@", str);
 }

 }
 return 0;
}

Here you are creating a new string by reading in the contents of a file as ASCII text. If the read fails
(for example, if you did not have permission to read the file), then the method returns nil. In that case,
you print out the error’s localized description.

Writing an NSData object to a file
An NSData object represents a buffer of bytes. For example, if you fetch some data from a URL, you
get an instance of NSData. And you can ask an NSData to write itself to a file. Create a new Foundation
Command�Line�Tool named ImageFetch that fetches an image from the Google website into an instance
of NSData. Then ask the NSData to write its buffer of bytes to a file:

ptg999

Writing an NSData object to a file

201

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 NSURL *url = [NSURL URLWithString:
 @"http://www.google.com/images/logos/ps_logo2.png"];
 NSURLRequest *request = [NSURLRequest requestWithURL:url];
 NSError *error = nil;
 NSData *data = [NSURLConnection sendSynchronousRequest:request
 returningResponse:NULL
 error:&error];

 if (!data) {
 NSLog(@"fetch failed: %@", [error localizedDescription]);
 return 1;
 }

 NSLog(@"The file is %lu bytes", (unsigned long)[data length]);

 BOOL written = [data writeToFile:@"/tmp/google.png"
 options:0
 error:&error];

 if (!written) {
 NSLog(@"write failed: %@", [error localizedDescription]);
 return 1;
 }

 NSLog(@"Success!");

 }
 return 0;
}

Build and run the program. Open the resulting image file in Preview.

Note that the writeToFile:options:error: method takes a number that indicates options to be used
in the saving process. The most common option is NSDataWritingAtomic. Let’s say that you have
already fetched an image and you are just re-fetching and replacing it with a newer version. While the
new image is being written, the power goes off. A half-written file is worthless. In cases where a half-
written file is worse than no file at all, you can make the writing atomic. Add this option:

 NSLog(@"The file is %lu bytes", (unsigned long)[data length]);

 BOOL written = [data writeToFile:@"/tmp/google.png"
 options:NSDataWritingAtomic
 error:&error];

 if (!written) {
 NSLog(@"write failed: %@", [error localizedDescription]);
 return 1;
 }

ptg999

Chapter 26 Writing Files with NSString and NSData

202

Now, the data will be written out to a temporary file, and, when the writing is done, the file is renamed
the correct name. This way, you either get the whole file or nothing. (Note that this nothing to do with
atomic/nonatomic properties.)

Reading an NSData from a file
You can also create an instance of NSData from the contents of a file. Add two lines to your program:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 NSURL *url = [NSURL URLWithString:
 @"http://www.google.com/images/logos/ps_logo2.png"];
 NSURLRequest *request = [NSURLRequest requestWithURL:url];
 NSError *error;

 // This method will block until all the data has been fetched
 NSData *data = [NSURLConnection sendSynchronousRequest:request
 returningResponse:NULL
 error:&error];

 if (!data) {
 NSLog(@"fetch failed: %@", [error localizedDescription]);
 return 1;
 }

 NSLog(@"The file is %lu bytes", (unsigned long)[data length]);

 BOOL written = [data writeToFile:@"/tmp/google.png"
 options:NSDataWritingAtomic
 error:&error];

 if (!written) {
 NSLog(@"write failed: %@", [error localizedDescription]);
 return 1;
 }

 NSLog(@"Success!");

 NSData *readData = [NSData dataWithContentsOfFile:@"/tmp/google.png"];
 NSLog(@"The file read from the disk has %lu bytes",
 (unsigned long)[readData length]);

 }
 return 0;
}

Build and run the program.

Finding special directories
Users expect files to be saved to specific directories. For example, my browser, by default, will
download files to /Users/aaron/Downloads/. To make it easy for the programmer to do the right

ptg999

Finding special directories

203

thing, Apple has created a function that will tell you the right directories for the appropriate purpose.
For example, this piece of code will get you the path for the user’s Desktop directory:

// The function returns an array of paths
NSArray *desktops =
 NSSearchPathForDirectoriesInDomains(NSDesktopDirectory, NSUserDomainMask, YES);

// But I know the user has exactly one desktop directory
NSString *desktopPath = desktops[0];

What other special directories are there? Here are the commonly used constants:

• NSApplicationDirectory

• NSLibraryDirectory

• NSUserDirectory

• NSDocumentDirectory

• NSDesktopDirectory

• NSCachesDirectory

• NSApplicationSupportDirectory

• NSDownloadsDirectory

• NSMoviesDirectory

• NSMusicDirectory

• NSPicturesDirectory

• NSTrashDirectory

ptg999

This page intentionally left blank

ptg999

205

27
Callbacks

Thus far, your code has been the boss. It has been sending messages to standard Foundation objects,
like instances of NSString and NSArray, and telling them what to do. When your code has finished
executing, the program ends.

In this chapter, you are going to create a program that does not just start, execute, and end. Instead, this
program is event-driven. It will start and wait for an event. When that event happens, the program will
execute code in response. This program will not end by itself; it will keep sitting and waiting for the
next event until you tell it to stop.

The events that can happen on a Mac or an iOS device are many and varied. Here are a few examples:
the user clicks the mouse or taps a button, some period of time elapses, the device runs low on
memory, the system connects to the network, the user closes a window.

A callback lets you write a piece of code and then associate that code with a particular event. When the
event happens, your code is executed.

In Objective-C, there are four forms that a callback can take:

• Target-action: Before the wait begins, you say “When this event happens, send this message to
this object.” The object receiving the message is the target. The selector for the message is the
action.

• Helper objects: Before the wait begins, you say “Here is an object that will take on a role that
helps another object do its job. When one of the events related to this role occurs, send a message
to the helper object.” Helper objects are often known as delegates or data sources.

• Notifications: There is an object called the notification center. When an event happens, a
notification associated with that event will be posted to the notification center. Before the wait
begins, you tell the notification center “This object is interested in this kind of notification. When
one is posted, send this message to the object.”

• Blocks: A block is a just a chunk of code to be executed. Before the wait begins, you say “Here is
a block. When this event happens, execute this block.”

In this chapter, you will implement the first three types of callbacks and learn which to employ in what
circumstances. Blocks will be covered in Chapter 28.

ptg999

Chapter 27 Callbacks

206

The run loop
In an event-driven program, there needs to be an object that does the sitting and waiting for events. In
OS X and iOS, this object is an instance of NSRunLoop. We say that when an event happens, the run
loop causes a callback to occur.

Create a new project: a Foundation�Command�Line�Tool named Callbacks. First, you are just going to
get a run loop and start it running. Edit main.m:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 [[NSRunLoop currentRunLoop] run];

 }
 return 0;
}

Build and run the program. Notice that the run method never returns. The console does not report
the familiar Program ended with exit code: 0. The run loop is waiting for something to happen.
Choose Product → Stop to stop the program.

Now that you have a run loop, you can start implementing callbacks.

Target-action
Timers use a target-action mechanism. You create a timer with a time interval, a target, and an action.
After the interval has elapsed, the timer sends the action message to its target.

You are going to add an instance of NSTimer to your program. Every two seconds, the timer will send
the action message to its target. You will also create a class named BNRLogger. An instance of that class
will be the timer’s target.

Figure 27.1 BNRLogger is the target of the NSTimer

Create a new file: an Objective-C class called BNRLogger that is a subclass of NSObject.

In BNRLogger.h, declare a property that holds a date, a method that returns the date as a string, and the
action method to be triggered by the timer:

#import <Foundation/Foundation.h>

@interface BNRLogger : NSObject
@property (nonatomic) NSDate *lastTime;
- (NSString *)lastTimeString;
- (void)updateLastTime:(NSTimer *)t;
@end

ptg999

Target-action

207

Action methods always take one argument – the object that is sending the action message. In this case,
it is the timer object.

In BNRLogger.m, implement the methods:

#import "BNRLogger.h"

@implementation BNRLogger

- (NSString *)lastTimeString
{
 static NSDateFormatter *dateFormatter = nil;
 if (!dateFormatter)
 {
 dateFormatter = [[NSDateFormatter alloc] init];
 [dateFormatter setTimeStyle:NSDateFormatterMediumStyle];
 [dateFormatter setDateStyle:NSDateFormatterMediumStyle];
 NSLog(@"created dateFormatter");
 }
 return [dateFormatter stringFromDate:self.lastTime];
}

- (void)updateLastTime:(NSTimer *)t
{
 NSDate *now = [NSDate date];
 [self setLastTime:now];
 NSLog(@"Just set time to %@", self.lastTimeString);
}

@end

This may be the first time you have seen the static modifier used this way. If you have a thousand
instances of BNRLogger and all of them format their strings the same way, you want all of the instances
of BNRLogger to share a single instance of NSDateFormatter. Many object-oriented languages have
class variables (rather than instance variables) for this sort of thing. Objective-C just uses static
variables, which were discussed in Chapter 5.

ptg999

Chapter 27 Callbacks

208

In main.m, create an instance of BNRLogger and make it the target of an instance of NSTimer. Set the
action to be updateLastTime:.

#import <Foundation/Foundation.h>
#import "BNRLogger.h"

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 BNRLogger *logger = [[BNRLogger alloc] init];

 NSTimer *timer =
 [NSTimer scheduledTimerWithTimeInterval:2.0
 target:logger
 selector:@selector(updateLastTime:)
 userInfo:nil
 repeats:YES];

 [[NSRunLoop currentRunLoop] run];

 }
 return 0;
}

Notice the @selector syntax that you use to pass the name of the action message to this method.
This is required for this argument; you cannot simply pass the method’s name. There is more about
@selector and passing selectors at the end of this chapter.

Build and run the program. (You will get an unused variable warning. Ignore it for now.) The log
statement with the current date and time will appear in the console every 2 seconds.

Now look at the unused variable warning from the compiler. It is saying, “Hey, you created this timer
variable, but you never use it. That might be a problem.” In some settings, like this one, it is not a
problem, and you can flag a variable as purposefully unused to silence this warning. This is done with
the __unused modifier.

In main.m, flag the timer variable as unused:

 __unused NSTimer *timer =
 [NSTimer scheduledTimerWithTimeInterval:2.0
 target:logger
 selector:@selector(updateLastTime:)
 userInfo:nil
 repeats:YES];

Build again, and the warning will go away.

Timers are simple. They only do one thing: fire. Thus, target-action is a good fit. A lot of simple user
interface controls, like buttons and sliders, use the target-action mechanism. What about something
more complex?

ptg999

Helper objects

209

Helper objects
In Chapter 26, you used an NSURLConnection to fetch data from a web server. This connection was
synchronous – all the data was delivered at one time. It worked fine, but there are two problems with a
synchronous connection:

• It blocks the main thread while waiting for all the data to arrive. If you use this type of connection
in an interactive application, the user interface will be unresponsive while the data was fetched.

• It has no way to call back if, for example, the web server asks for a username and password.

For these reasons, it is more common to use an NSURLConnection asynchronously. In an asynchronous
connection, the data comes in chunks rather than all at once. This means that there are connection-
related events that you must be ready to respond to. Some examples of connection-related events are a
chunk of data arrives, the web server demands credentials, and the connection fails.

To manage this more complex connection, you must give it a helper object. In the helper object, you
implement the methods to be executed in response to different connection-related events.

In your Callbacks program, you are going to use an asynchronous NSURLConnection to fetch data
from a website. The instance of BNRLogger will serve as the NSURLConnection’s helper object. More
specifically, the BNRLogger will be the delegate of the NSURLConnection.

Figure 27.2 BNRLogger is the delegate of the NSURLConnection

ptg999

Chapter 27 Callbacks

210

In main.m, create an NSURL and an NSURLRequest like you did in Chapter 26. Then create an
NSURLConnection and set the instance of BNRLogger to be its delegate:

#import <Foundation/Foundation.h>
#import "BNRLogger.h"

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 BNRLogger *logger = [[BNRLogger alloc] init];

 NSURL *url = [NSURL URLWithString:
 @"http://www.gutenberg.org/cache/epub/205/pg205.txt"];

 NSURLRequest *request = [NSURLRequest requestWithURL:url];

 __unused NSURLConnection *fetchConn =
 [[NSURLConnection alloc] initWithRequest:request
 delegate:logger
 startImmediately:YES];

 __unused NSTimer *timer =
 [NSTimer scheduledTimerWithTimeInterval:2.0
 target:logger
 selector:@selector(updateLastTime:)
 userInfo:nil
 repeats:YES];

 [[NSRunLoop currentRunLoop] run];

 }
 return 0;
}

Now, in BNRLogger, you need to implement the callback methods – the methods to be executed in
response to specific events.

You do not come up with or declare these methods yourself. They have already been declared
in a protocol. A protocol is a list of method declarations. You will learn more about protocols in
Chapter 29, but for now, think of a protocol as a prearranged set of messages that an object can send its
helper object.

In BNRLogger.h, declare that BNRLogger will implement methods from the NSURLConnectionDelegate
and NSURLConnectionDataDelegate protocols:

#import <Foundation/Foundation.h>

@interface BNRLogger : NSObject
 <NSURLConnectionDelegate, NSURLConnectionDataDelegate>

@property (nonatomic) NSDate *lastTime;
- (NSString *)lastTimeString;
- (void)updateLastTime:(NSTimer *)t;
@end

ptg999

Helper objects

211

There are three messages that BNRLogger will need to respond to as the delegate of the
NSURLConnection. Two are from the NSURLConnectionDataDelegate protocol:

- (void)connection:(NSURLConnection *)connection
 didReceiveData:(NSData *)data;

- (void)connectionDidFinishLoading:(NSURLConnection *)connection;

The other is from the NSURLConnectionDelegate protocol:

- (void)connection:(NSURLConnection *)connection
 didFailWithError:(NSError *)error;

(How do you know what methods a protocol has and which ones you should implement? Go to the
developer documentation. Protocols have references, similar to class references, with information about
their methods. You will also learn more about protocols and their methods in Chapter 29.)

Before you get to implementing these methods, BNRLogger needs a new instance variable. When you
created a synchronous NSURLConnection in Chapter 26, you used an instance of NSData to hold the
bytes coming from the server. In an asynchronous connection, you need an instance of NSMutableData.
As the chunks of data arrive, you will add them to this object.

In BNRLogger.h, add an NSMutableData instance variable:

#import <Foundation/Foundation.h>

@interface BNRLogger : NSObject
 <NSURLConnectionDelegate, NSURLConnectionDataDelegate>

{
 NSMutableData *_incomingData;
}
@property (nonatomic) NSDate *lastTime;
- (NSString *)lastTimeString;
- (void)updateLastTime:(NSTimer *)t;
@end

In BNRLogger.m, implement the three protocol methods:

ptg999

Chapter 27 Callbacks

212

#import "BNRLogger.h"

@implementation BNRLogger

 ...

// Called each time a chunk of data arrives
- (void)connection:(NSURLConnection *)connection
 didReceiveData:(NSData *)data
{
 NSLog(@"received %lu bytes", [data length]);

 // Create a mutable data if it does not already exist
 if (!_incomingData) {
 _incomingData = [[NSMutableData alloc] init];
 }

 [_incomingData appendData:data];
}

// Called when the last chunk has been processed
- (void)connectionDidFinishLoading:(NSURLConnection *)connection
{
 NSLog(@"Got it all!");
 NSString *string = [[NSString alloc] initWithData:_incomingData
 encoding:NSUTF8StringEncoding];
 _incomingData = nil;
 NSLog(@"string has %lu characters", [string length]);

 // Uncomment the next line to see the entire fetched file
 // NSLog(@"The whole string is %@", string);

}

// Called if the fetch fails
- (void)connection:(NSURLConnection *)connection
 didFailWithError:(NSError *)error
{
 NSLog(@"connection failed: %@", [error localizedDescription]);
 _incomingData = nil;
}

@end

Build and run the program. You will see the data coming from the web server in chunks. Eventually,
the BNRLogger will be informed that the fetch is complete.

Here are the rules, so far, for callbacks: When sending one callback to one object, Apple uses target-
action. When sending an assortment of callbacks to one object, Apple uses a helper object with a
protocol. These helper objects are typically called delegates or data sources.

What if the callback needs to go to multiple objects?

Notifications
Imagine the user changes the time zone on a Mac. Many objects in your program might want to know
that this event has happened. Each of them can register as an observer with the notification center.

ptg999

Notifications

213

When the time zone is changed, the notification NSSystemTimeZoneDidChangeNotification will be
posted to the center, and the center will forward it to all the relevant observers.

In main.m, register the instance of BNRLogger to receive a notification when the time zone changes:

#import <Foundation/Foundation.h>
#import "BNRLogger.h"

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 BNRLogger *logger = [[BNRLogger alloc] init];

 [[NSNotificationCenter defaultCenter]
 addObserver:logger
 selector:@selector(zoneChange:)
 name:NSSystemTimeZoneDidChangeNotification
 object:nil];

 NSURL *url = [NSURL URLWithString:
 @"http://www.gutenberg.org/cache/epub/205/pg205.txt"];
 NSURLRequest *request = [NSURLRequest requestWithURL:url];

 __unused NSURLConnection *fetchConn =
 [[NSURLConnection alloc] initWithRequest:request
 delegate:logger
 startImmediately:YES];

 __unused NSTimer *timer =
 [NSTimer scheduledTimerWithTimeInterval:2.0
 target:logger
 selector:@selector(updateLastTime:)
 userInfo:nil
 repeats:YES];

 [[NSRunLoop currentRunLoop] run];

 }
 return 0;
}

In a class extension in BNRLogger.m, declare the method that will get called. Then in your class
implementation, implement the method:

#import "BNRLogger.h"
@interface BNRLogger ()
- (void)zoneChange:(NSNotification *)note;
@end

@implementation
...
- (void)zoneChange:(NSNotification *)note
{
 NSLog(@"The system time zone has changed!");
}
...
@end

ptg999

Chapter 27 Callbacks

214

Build and run the program. While it is running, open System�Preferences and change the time zone for
your system. You should see that your zoneChange: method gets called. (On some systems, it seems to
get called twice. This is not cause for concern.)

Many of the classes that Apple has written post notifications when interesting things happen. You can
find out what notifications a class posts in its reference in the developer documentation.

When you register as an observer with the notification center, you can specify the name of the
notification (for example, NSWindowDidResizeNotification) and which posters of this notification
you care about (“I only want to hear about the resize notification from this particular window.”).
For either of these parameters, you can supply nil, which works as the wild card. If you supply nil
for both, you will receive every notification posted by every object in your program. On a desktop
application, this is a lot of notifications.

Which to use?
In this chapter, you have seen three kinds of callbacks. How does Apple decide which one to use in any
particular situation?

• Objects that do just one thing (like NSTimer) use target-action.

• Objects that have more complicated lives (like an NSURLConnection) use helper objects, and the
most common type of helper object is the delegate.

• Objects that might need to trigger callbacks in several other objects (like NSTimeZone) use
notifications.

Callbacks and object ownership
Inherent in any of these callback schemes is the risk of strong reference cycles. Often the object you
create has a pointer to the object that is going to call back. And it has a pointer to the object you
created. If they each have strong references to each other, you end up with a strong reference cycle –
neither of them will ever get deallocated.

Figure 27.3 Strong reference cycle

Thus, it was decided that:

• Notification centers do not own their observers. If an object is an observer, it will typically
remove itself from the notification center in its dealloc method:

ptg999

For the more curious: how selectors work

215

- (void)dealloc
{
 [[NSNotificationCenter defaultCenter] removeObserver:self];
}

• Objects do not own their delegates or data sources. If you create an object that is a delegate or
data source, your object should “excuse” itself in its dealloc method:

- (void)dealloc
{
 [windowThatBossesMeAround setDelegate:nil];
 [tableViewThatBegsForData setDataSource:nil];
}

• Objects do not own their targets. If you create an object that is a target, your object should zero
the target pointer in its dealloc method:

- (void)dealloc
{
 [buttonThatKeepsSendingMeMessages setTarget:nil];
}

None of these issues exist in this program because your BNRLogger object will not be deallocated
before the program terminates. (Also, in a bit of a fluke, in this exercise you happen to have used
two well-documented exceptions to the rules: an NSURLConnection does own its delegate while the
connection is running, and an NSTimer does own its target while the timer is valid.)

For the more curious: how selectors work
You learned in Chapter 20 that when you send a message to an object, the object’s class is asked if it
has a method with that name. The search goes up the inheritance hierarchy until a class responds with
“Yeah, I have a method with that name.”

Figure 27.4 The search for a method with the right name

ptg999

Chapter 27 Callbacks

216

As you can imagine, this search needs to happen very, very quickly. If the compiler used the actual
name of the method (which could be very long), method lookup would be really slow. To speed things
up, the compiler assigns a unique number to each method name it encounters. At runtime, it uses that
number instead of the method name.

Figure 27.5 How it really works

Thus, a selector is the unique number that represents a particular
method name. When a method expects a selector as an argument (like
scheduledTimerWithTimeInterval:target:selector:userInfo:repeats: does), it is expecting this
number. You use the @selector compiler directive to tell the compiler to look up the selector for the
given method name.

ptg999

217

28
Blocks

A block is a chunk of code. Here is a block:

^{
 NSLog(@"This is an instruction within a block.");
}

It looks like a C function; it is a set of instructions inside curly braces. It does not, however, have a
name. Instead, the caret (^) identifies this bit of code as a block.

Like a function, a block can take arguments and return values. Here is another block:

^(double dividend, double divisor) {
 double quotient = dividend / divisor;
 return quotient;
}

This block takes two doubles as arguments and returns a double.

You can pass a block as an argument to a method that accepts a block. Many of Apple’s classes have
methods that accept blocks as arguments.

For instance, NSArray, NSDictionary, and NSSet allow block-based enumeration: Each class has at
least one method that accepts a block. When one of these methods is called, it will execute the code
within the passed-in block once for each object in the collection. In this chapter, you are going to use
NSArray’s enumerateObjectsUsingBlock: method.

(If you have a background in another programming language, you might know blocks as anonymous
functions, closures, or lambdas. If you are familiar with function pointers, blocks may seem similar,
but blocks allow for more elegant code than can be written with function pointers.)

Create a new Foundation�Command�Line�Tool and call it VowelMovement. This program will iterate
through an array of strings, remove the vowels from each string, and store the “devowelized” strings in
a new array.

In main.m, set up three arrays: one for the original strings, one for the devowelized strings, and a third
for a list of vowels.

ptg999

Chapter 28 Blocks

218

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 // Create array of strings and a container for devowelized ones
 NSArray *originalStrings = @[@"Sauerkraut", @"Raygun",
 @"Big Nerd Ranch", @"Mississippi"];

 NSLog(@"original strings: %@", originalStrings);

 NSMutableArray *devowelizedStrings = [NSMutableArray array];

 // Create a list of characters to be removed from the string
 NSArray *vowels = @[@"a", @"e", @"i", @"o", @"u"];

 }
 return 0;
}

Nothing new here; you are just setting up arrays. Build your program, and ignore the warnings about
unused variables for now.

Using blocks
Soon you will compose your first block. This block will make a copy of a given string, remove the
vowels from the copied string, and then add this string to the devowelizedStrings array.

You are going to send the originalStrings array the enumerateObjectsUsingBlock: message with
your devowelizing block as its argument. But first, there is some more block syntax to learn.

Declaring a block variable
A block can be stored in a variable. In main.m, type in the following block variable declaration.

int main (int argc, const char * argv[])
{
 @autoreleasepool {
 // Create array of strings and a container for devowelized ones
 NSArray *originalStrings = @[@"Sauerkraut", @"Raygun",
 @"Big Nerd Ranch", @"Mississippi"];

 NSLog(@"original strings: %@", originalStrings);

 NSMutableArray *devowelizedStrings = [NSMutableArray array];

 // Create a list of characters to be removed from the string
 NSArray *vowels = @[@"a", @"e", @"i", @"o", @"u"];

 // Declare the block variable
 void (^devowelizer)(id, NSUInteger, BOOL *);

 }
 return 0;
}

Let’s break down this declaration. The name of the block variable (devowelizer) is in a set of
parentheses right after the caret. The declaration includes the block’s return type (void) and the types
of its arguments (id, NSUInteger, BOOL *), just like in a function declaration.

ptg999

Composing a block

219

Figure 28.1 Block variable declaration

What is the type of this block variable? It is not simply “block.” Its type is “a block that takes
an object, an integer, and a BOOL pointer, and returns nothing.” This is the type of block that
enumerateObjectsUsingBlock: expects. You will learn what each of these arguments is used for
shortly.

Composing a block
Now you need to compose a block of the declared type and assign it to the new variable. In main.m,
compose a block that makes a mutable copy of the original string, removes its vowels, and then adds
the new string to the array of devowelized strings and assigns it to devowelizer:

int main (int argc, const char * argv[])
{
 @autoreleasepool {
 ...

 // Declare the block variable
 void (^devowelizer)(id, NSUInteger, BOOL *);

 // Compose a block and assign it to the variable
 devowelizer = ^(id string, NSUInteger i, BOOL *stop) {

 NSMutableString *newString = [NSMutableString stringWithString:string];

 // Iterate over the array of vowels, replacing occurrences of each
 // with an empty string
 for (NSString *s in vowels) {
 NSRange fullRange = NSMakeRange(0, [newString length]);
 [newString replaceOccurrencesOfString:s
 withString:@""
 options:NSCaseInsensitiveSearch
 range:fullRange];
 }

 [devowelizedStrings addObject:newString];

 }; // End of block assignment

 }
 return 0;
}

Notice that the block assignment ends with a semi-colon just like any variable assignment would. Build
your program to check your typing. The warnings about unused variables should disappear.

ptg999

Chapter 28 Blocks

220

As with any variable, you can perform the declaration and assignment of devowelizer in one or two
steps. Here is what it would look like in one step:

void (^devowelizer)(id, NSUInteger, BOOL *) = ^(id string, NSUInteger i, BOOL *stop) {

 NSMutableString *newString = [NSMutableString stringWithString:string];

 // Iterate over the array of vowels, replacing occurrences of each
 // with an empty string.
 for (NSString *s in vowels) {
 NSRange fullRange = NSMakeRange(0, [newString length]);
 [newString replaceOccurrencesOfString:s
 withString:@""
 options:NSCaseInsensitiveSearch
 range:fullRange];
 }

 [devowelizedStrings addObject:newString];
};

Passing in a block
In main.m, send the enumerateObjectsUsingBlock: message with devowelizer to the array of
original strings and then print out the devowelized strings.

ptg999

Passing in a block

221

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 ...

 // Declare the block variable
 void (^devowelizer)(id, NSUInteger, BOOL *);

 // Assign a block to the variable
 devowelizer = ^(id string, NSUInteger i, BOOL *stop) {

 NSMutableString *newString = [NSMutableString stringWithString:string];

 // Iterate over the array of vowels, replacing occurrences of each
 // with an empty string.
 for (NSString *s in vowels) {
 NSRange fullRange = NSMakeRange(0, [newString length]);
 [newString replaceOccurrencesOfString:s
 withString:@""
 options:NSCaseInsensitiveSearch
 range:fullRange];
 }

 [devowelizedStrings addObject:newString];

 }; // End of block assignment

 // Iterate over the array with your block
 [originalStrings enumerateObjectsUsingBlock:devowelizer];
 NSLog(@"devowelized strings: %@", devowelizedStrings);

 }
 return 0;
}

Build and run your program. You will see two arrays logged to the console.

2011-09-03 10:27:02.617 VowelMovement[787:707] original strings: (
 Sauerkraut,
 Raygun,
 "Big Nerd Ranch",
 Mississippi
)
2011-09-03 10:27:02.618 VowelMovement[787:707] new strings: (
 Srkrt,
 Rygn,
 "Bg Nrd Rnch",
 Msssspp
)

The three arguments of this block type are specifically designed for iterating through an array. The
first is a pointer to the current object. Notice that this pointer’s type is id so that it will work no matter
what kind of objects the array contains. The second argument is an NSUInteger that is the index of the
current object. The third argument is a pointer to a BOOL, which defaults to NO. Changing it to YES will
stop executing the block after the current iteration.

ptg999

Chapter 28 Blocks

222

Modify your block to check for an uppercase or lowercase ‘y’ character. If there is one, set the
pointer to YES (which will prevent the block from performing any more iterations) and end the current
iteration.

devowelizer = ^(id string, NSUInteger i, BOOL *stop){

 NSRange yRange = [string rangeOfString:@"y"
 options:NSCaseInsensitiveSearch];

 // Did I find a y?
 if (yRange.location != NSNotFound) {
 *stop = YES; // Prevent further iterations
 return; // End this iteration
 }

 NSMutableString *newString = [NSMutableString stringWithString:string];

 // Iterate over the array of vowels, replacing occurrences of each
 // with an empty string.
 for (NSString *s in vowels) {
 NSRange fullRange = NSMakeRange(0, [newString length]);
 [newString replaceOccurrencesOfString:s
 withString:@""
 options:NSCaseInsensitiveSearch
 range:fullRange];
 }

 [devowelizedStrings addObject:newString];

}; // End of block assignment

Build and run the program. Again, two arrays are logged to the debugger output, but this time, the
array enumeration was cancelled during the second iteration when the block encountered a word with
the letter ‘y’ in it. All you get is Srkrt.

typedef
Block syntax can be confusing, but you can make it clearer using the typedef keyword that you
learned about in Chapter 11. Remember that typedefs belong at the top of the file or in a header,
outside of any method implementations. In main.m, add the following line of code:

#import <Foundation/Foundation.h>

typedef void (^ArrayEnumerationBlock)(id, NSUInteger, BOOL *);

int main (int argc, const char * argv[])
{

Notice that this looks identical to a block variable declaration. However, here you are defining a type
rather than a variable, hence the appropriate type name next to the caret. This allows you to simplify
declarations of similar blocks.

Now you can declare devowelizer using your new type:

ptg999

Blocks vs. other callbacks

223

int main(int argc, const char * argv[])
{

 @autoreleasepool {

 ...

 // Declare the block variable
 void (^devowelizer)(id, NSUInteger, BOOL *);
 ArrayEnumerationBlock devowelizer;

 // Compose and assign a block to the variable
 devowelizer = ^(id string, NSUInteger i, BOOL *stop) {
 ...

Note that the block type itself only defines the block’s arguments and return types; it has no bearing on
the set of instructions within a block of that type.

Blocks vs. other callbacks
In Chapter 27, you learned about the callback mechanisms helper objects and notifications. Callbacks
allow other objects to call methods in your object in response to events. While perfectly functional,
these approaches break up your code. Pieces of your program that you would like to be close together
for clarity’s sake usually are not.

The Callbacks program includes the following code that calls back to the zoneChange: method:

[[NSNotificationCenter defaultCenter]
 addObserver:logger
 selector:@selector(zoneChange:)
 name:NSSystemTimeZoneDidChangeNotification
 object:nil];

It is natural, then, for someone reading your code to wonder, “What does this zoneChange: method
do?” To answer this question, the programmer must hunt down the implementation of zoneChange:,
which could be hundreds of lines away.

Blocks, on the other hand, keep the code to be triggered by an event close by. For instance,
NSNotificationCenter has a method addObserverForName:object:queue:usingBlock:.
This method is similar to addObserver:selector:name:object:, but it accepts
a block instead of a selector. That block can be defined right next to the call to
addObserverForName:object:queue:usingBlock:. Then your curious programmer friend can see
what your code does from start to finish in one place.

You will get to make this change to the Callbacks program in the second challenge at the end of this
chapter.

More on blocks
Here are some other things you can do with blocks.

Return values
The block that you created for VowelMovement does not have a return value, but many blocks will.
When a block returns a value, you can get the return value by calling the block variable like a function.

ptg999

Chapter 28 Blocks

224

Let’s look again at one of the sample blocks you saw at the beginning of the chapter:

^(double dividend, double divisor) {
 double quotient = dividend / divisor;
 return quotient;
}

This block takes two doubles and returns a double. To store this block in a variable, you would declare
a variable of that type and assign the block to it:

// Declare divBlock variable
double (^divBlock)(double,double);

// Assign block to variable
divBlock = ^(double dividend, double divisor) {
 double quotient = dividend / divisor;
 return quotient;
}

You can then call divBlock like a function to get its return value:

double myQuotient = divBlock(42.0, 12.5);

Anonymous blocks
An anonymous block is a block that you pass directly to a method without assigning it to a block
variable first.

Let’s consider the case of an anonymous integer first. When you want to pass an integer to a method,
you have three options:

// Option 1: Totally break it down
int i;
i = 5;
NSNumber *num = [NSNumber numberWithInt:i];

// Option 2: Declare and assign on one line
int i = 5;
NSNumber *num = [NSNumber numberWithInt:i];

// Option 3: Skip the variable entirely
NSNumber *num = [NSNumber numberWithInt:5];

If you take the third option, you are passing the integer anonymously. It is anonymous because it does
not have a name (or a variable) associated with it.

You have the same options when you want to pass a block to a method. Currently, your code
puts the block declaration, assignment, and usage on three separate lines of code. But it is more
common to pass blocks anonymously. The first challenge at the end of this chapter is to modify the
VowelMovement program to use an anonymous block.

External variables
A block typically uses other variables (both primitive variables and pointers to objects) that were
created outside of the block. These are called external variables. To make sure that they will be
available for as long as the block needs them, these variables are captured by the block.

ptg999

External variables

225

For primitive variables, the values are copied and stored as local variables within the block. For
pointers, the block will keep a strong reference to the objects it references. This means that any objects
referred to by the block are guaranteed to live as long as the block itself. (If you have been wondering
about the difference between blocks and function pointers, it is right here. Let’s see a function pointer
do that!)

Using self in blocks
If you need to write a block that uses self, you must take a couple of extra steps to avoid a strong
reference cycle. Consider an example where an instance of BNREmployee creates a block that will log
the BNREmployee instance each time it executes:

myBlock = ^{
 NSLog(@"Employee: %@", self);
};

The BNREmployee instance has a pointer to a block (myBlock). The block captures self, so it has a
pointer back to the BNREmployee instance. You have a strong reference cycle.

To break the strong reference cycle, you declare a __weak pointer outside the block that points to self.
Then you can use this pointer inside the block instead of self:

__weak BNREmployee *weakSelf = self; // a weak reference
myBlock = ^{
 NSLog(@"Employee: %@", weakSelf);
};

The block’s reference to the BNREmployee instance is now a weak one, and the strong reference cycle is
broken.

However, because the reference is weak, the object that self points to could be deallocated while the
block is executing.

You can eliminate this risk by creating a strong local reference to self inside the block:

__weak BNREmployee *weakSelf = self; // a weak reference
myBlock = ^{
 BNREmployee *innerSelf = weakSelf; // a block-local strong reference
 NSLog(@"Employee: %@", innerSelf);
};

By creating the strong innerSelf reference, you have again created a strong reference cycle between
the block and the BNREmployee instance. But because the innerSelf reference is local to the scope of
the block, the strong reference cycle will only exist while the block is executing and will be broken
automatically when the block ends.

This is good programming practice whenever you write a block that must reference self.

Unexpectedly using self in blocks
If you use an instance variable directly within a block, the block will capture self instead of the
instance variable. This is because of a little-known nuance of instance variables. Consider this code
that accesses an instance variable directly:

ptg999

Chapter 28 Blocks

226

__weak BNREmployee *weakSelf = self;
myBlock = ^{
 BNREmployee *innerSelf = weakSelf; // a block-local strong reference
 NSLog(@"Employee: %@", innerSelf);
 NSLog(@"Employee ID: %d", _employeeID);
};

The compiler interprets the direct variable access like this:

__weak BNREmployee *weakSelf = self;
myBlock = ^{
 BNREmployee *innerSelf = weakSelf; // a block-local strong reference
 NSLog(@"Employee: %@", innerSelf);
 NSLog(@"Employee ID: %d", self->_employeeID);
};

Does the -> syntax look familiar? It is the syntax for accessing the member of a struct on the heap. At
their deepest darkest cores, objects are actually structs.

Because the compiler reads _employeeID as self->_employeeID, self is unexpectedly captured by the
block. This will cause the same strong reference cycle that you avoided with the use of weakSelf and
innerSelf.

The fix? Don’t access instance variables directly. Use your accessors!

__weak BNREmployee *weakSelf = self;
myBlock = ^{
 BNREmployee *innerSelf = weakSelf; // a block-local strong reference
 NSLog(@"Employee: %@", innerSelf);
 NSLog(@"Employee ID: %d", innerSelf.employeeID);
};

Now there is no direct use of self, so there is no unintentional strong reference cycle. Problem solved.

In this situation, it is important to understand what the compiler is thinking to avoid the hidden strong
reference cycle. However, you should never use the -> syntax to access an object’s instance variables
in your code. Doing so is dangerous for reasons beyond the scope of this book. Accessors are your
friends, and you should use them.

Modifying external variables
By default, variables captured by a block are constant within the block, and you cannot change their
values. If you want to be able to modify an external variable within a block, you must declare the
external variable using the __block keyword.

For instance, in the following code, you increment the external variable counter within the block.

__block int counter = 0;
void (^counterBlock)() = ^{ counter++; };
...
counterBlock(); // Increments counter to 1
counterBlock(); // Increments counter to 2

Without the __block keyword, you would get a compilation error.

ptg999

Challenge: an anonymous block

227

Challenge: an anonymous block
Modify the exercise in this chapter to pass the block anonymously as an argument to
enumerateObjectsUsingBlock:. That is, keep the block, but get rid of the devowelizer variable.

Challenge: using a block with NSNotificationCenter
In Chapter 27, you used NSNotificationCenter’s addObserver:selector:name:object: method
to register to receive callbacks via your zoneChange: method. Update that exercise to use the
addObserverForName:object:queue:usingBlock: method instead.

This method takes a block as an argument and then executes the block instead of calling back to your
object when the specified notification is posted. This means that your zoneChange: method will never
be called. The code that was inside this method will instead be in the block.

The passed-in block should take a single argument (an NSNotification *) and return nothing, just as
the zoneChange: method does.

Pass nil as the argument for queue:; this argument is used for concurrency, a topic we will not cover
in this book.

For more important details about addObserverForName:object:queue:usingBlock:, check the
developer documentation.

ptg999

This page intentionally left blank

ptg999

229

29
Protocols

At this point, we need to talk about a slightly abstract concept. Someone once said, “Who you are is
different from what you do.” The same is true of objects: the class of an object is different from its role
in a working system. For example, an object may be an instance of NSMutableArray, but its role in an
application may be as a queue of print jobs to be run.

Like the array-as-print-queue example, really great classes are more general than the role they may
play in any particular application. Thus, instances of that class can be used in several different ways.

For example, in an iOS application, you frequently display data in an instance of UITableView.
However, the UITableView object does not contain the data that it displays; it has to get data from a
helper object. You have to tell it “Here is the object that will fill the role of your data source.”

Figure 29.1 UITableView data source

A protocol can specify a role that an object can fill. (If you are coming to Objective-C from Java or C#,
protocols are called “interfaces” in those communities.)

As you learned in Chapter 27, a protocol is a list of method declarations. Some of these methods are
required, and some are optional. If an object is to fill the specified role, then it must implement the
required methods. It may choose to implement one or more of the optional methods.

The developer who created the UITableView class specified the role of UITableView’s data source by
creating the UITableViewDataSource protocol. Here it is:

ptg999

Chapter 29 Protocols

230

// Just like classes, protocols can inherit from other protocols
// This protocol inherits from the NSObject protocol
@protocol UITableViewDataSource <NSObject>

// The following methods must be implemented by any table view data source
@required

// A table view has sections, each section can have several rows
- (NSInteger)tableView:(UITableView *)tv numberOfRowsInSection:(NSInteger)section;

// This index path is two integers (a section and a row)
// The table view cell is what the user sees in that section/row
- (UITableViewCell *)tableView:(UITableView *)tv
 cellForRowAtIndexPath:(NSIndexPath *)ip;

// These methods may be implemented by a table view data source
@optional

// If data source does not implement this method, table view has only one section
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tv;

// Rows can be deleted and moved
- (BOOL)tableView:(UITableView *)tv canEditRowAtIndexPath:(NSIndexPath *)ip;

- (BOOL)tableView:(UITableView *)tv canMoveRowAtIndexPath:(NSIndexPath *)ip;

- (void)tableView:(UITableView *)tv
commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
 forRowAtIndexPath:(NSIndexPath *)ip;

- (void)tableView:(UITableView *)tv
moveRowAtIndexPath:(NSIndexPath *)sourceIndexPath
 toIndexPath:(NSIndexPath *)destinationIndexPath;

// To save ink and paper, we are leaving out a few optional method declarations.

@end

Like classes, protocols that Apple provides have reference pages in the developer documentation. You
can browse a protocol’s reference to see the methods that it contains.

The UITableView class has dataSource property. Here is its declaration:

@property(nonatomic, assign) id<UITableViewDataSource> dataSource;

So a table view’s data source can be an object of any type (id), so long as the object conforms to the
UITableViewDataSource protocol. The compiler considers an object to have successfully conformed to
a protocol if the object has implemented all of the protocol’s required methods.

When you create a class to fill the role of UITableView’s data source, you explicitly say, “This class
conforms to the UITableViewDataSource protocol” in the header file. It looks like this:

@interface TerrificViewController : UIViewController <UITableViewDataSource>
...
@end

That is, “TerrificViewController is a subclass of UIViewController and conforms to the
UITableViewDataSource protocol.”

ptg999

Calling optional methods

231

If your class conforms to several protocols, you list them within the angle brackets:

@interface TerrificViewController : UIViewController
 <UITableViewDataSource, UITableViewDelegate, UITextFieldDelegate>

Then, in the TerrificViewController.m file, you must implement the required methods. If you forget
to implement one of the required methods, you will get a stern warning from the compiler.

Calling optional methods
In Chapter 20, you learned that if you send a message to an object and that method is not implemented
by the object’s class, then the program will crash. How, then, do optional methods in protocols work?
For example, if a class acting as a table view’s data source chooses not to implement the optional
numberOfSectionsInTableView: protocol method, then you would expect the program to crash if the
table view sends that message to its data source.

To avoid this situation, the table view asks first to see if its data source implements
numberOfSectionsInTableView:.

You can ask an object if it implements a method using respondsToSelector:. This method is
implemented in NSObject, so you can send the message to any object in your program. You pass in the
selector for the method that you are asking about. The return value will be YES if the object has that
method and NO if it does not.

Here is what it looks like:

 ...

 if ([_dataSource respondsToSelector:@selector(numberOfSectionsInTableView:)]) {
 _numberOfSections = [_dataSource numberOfSectionsInTableView:self];
 } else {
 _numberOfSections = 1; // 1 is the default number of sections
 }

 ...

ptg999

This page intentionally left blank

ptg999

233

30
Property Lists

Sometimes you need a file format that can be read by both computers and people. For example, let’s
say that you want to keep a description of your stock portfolio in a file. As you add new stocks, it
would be nice to be able to edit that file easily by hand. But, it might also be handy for one of your
programs to be able to read it. When facing this problem, most Objective-C programmers use a
property list.

A property list is a combination of any of the following things:

• NSArray

• NSDictionary

• NSString

• NSData

• NSDate

• NSNumber (integer, float, or Boolean)

For example, an array of dictionaries with string keys and date objects is a property list (or just a
“P-list”).

Reading and writing a property list to a file is really easy. In Xcode, create a new project: a Foundation
Command�Line�Tool named Stockz. In main.m, add the following code:

ptg999

Chapter 30 Property Lists

234

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[])
{
 @autoreleasepool {

 NSMutableArray *stocks = [[NSMutableArray alloc] init];

 NSMutableDictionary *stock;

 stock = [NSMutableDictionary dictionary];
 [stock setObject:@"AAPL"
 forKey:@"symbol"];
 [stock setObject:[NSNumber numberWithInt:200]
 forKey:@"shares"];
 [stocks addObject:stock];

 stock = [NSMutableDictionary dictionary];
 [stock setObject:@"GOOG"
 forKey:@"symbol"];
 [stock setObject:[NSNumber numberWithInt:160]
 forKey:@"shares"];
 [stocks addObject:stock];

 [stocks writeToFile:@"/tmp/stocks.plist"
 atomically:YES];

 }
 return 0;
}

(Notice that you reuse the stock pointer. You use it to point to the first dictionary and then to the
second.)

Figure 30.1 An array of dictionaries

When you run the program, you will get a file: stocks.plist. If you open it in a text editor, it looks
like this:

ptg999

235

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC
 "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
 <dict>
 <key>shares</key>
 <integer>200</integer>
 <key>symbol</key>
 <string>AAPL</string>
 </dict>
 <dict>
 <key>shares</key>
 <integer>160</integer>
 <key>symbol</key>
 <string>GOOG</string>
 </dict>
</array>
</plist>

Nice, eh? Human-readable. XML. One line of code.

If you find yourself creating property lists by hand, you should know that Xcode has a built-in editor
specifically for property lists.

Now add the code that reads the file in:

ptg999

Chapter 30 Property Lists

236

int main(int argc, const char * argv[])
{
 @autoreleasepool {

 NSMutableArray *stocks = [[NSMutableArray alloc] init];

 NSMutableDictionary *stock;

 stock = [NSMutableDictionary dictionary];
 [stock setObject:@"AAPL"
 forKey:@"symbol"];
 [stock setObject:[NSNumber numberWithInt:200]
 forKey:@"shares"];
 [stocks addObject:stock];

 stock = [NSMutableDictionary dictionary];
 [stock setObject:@"GOOG"
 forKey:@"symbol"];
 [stock setObject:[NSNumber numberWithInt:160]
 forKey:@"shares"];
 [stocks addObject:stock];

 [stocks writeToFile:@"/tmp/stocks.plist"
 atomically:YES];

 NSArray *stockList = [NSArray arrayWithContentsOfFile:@"/tmp/stocks.plist"];

 for (NSDictionary *d in stockList) {
 NSLog(@"I have %@ shares of %@",
 [d objectForKey:@"shares"], [d objectForKey:@"symbol"]);
 }

 }
 return 0;
}

Build and run the program.

Challenge
Write a tool that creates a property list that has all 8 types in it: array, dictionary, string, data, date,
integer, float, and boolean.

ptg999

Part IV
Event-Driven Applications

Here is where we have been heading and why you have been reading this book – writing iOS
and Cocoa apps. In the next two chapters, you will get a taste of application development. Your
applications will have a GUI (graphical user interface), and they will be event-driven.

First, you will write an iOS application and then a similar Cocoa application. Cocoa is the collection
of frameworks written by Apple that you use to write applications on the Mac. You are already familiar
with one of these frameworks – Foundation.

To write iOS apps, you use another set of frameworks called Cocoa Touch. Cocoa and Cocoa Touch
have some frameworks in common, like Foundation. Others are specific to one platform or the other.

ptg999

This page intentionally left blank

ptg999

239

31
Your First iOS Application

In this chapter, you are going to create an iOS application: a simple to-do list application called
iTahDoodle that stores its data as a property list. Here is what it will look like when you are done.

Figure 31.1 Complete iTahDoodle application

We have intentionally kept this chapter and this application very simple. It is not intended to
prepare you to build iOS apps on your own, but it will give you a quick taste of iOS development. It
introduces some important concepts and patterns, and we hope that it will inspire you to dive into iOS
programming after you have finished this book.

GUI-based applications
None of the programs that you have written so far have had a user interface. Now you are going to
write an application that has a graphical user interface, or GUI.

A GUI-based application is event-driven. When the application is launched, it starts a run loop that
sits and waits for events. Events can be generated by the user (like a button tap) or by the system (like

ptg999

Chapter 31 Your First iOS Application

240

a low-memory warning). When an event happens, the application leaps into action to respond to the
specific event. All iOS applications are event-driven applications.

Getting started with iTahDoodle
In Xcode, choose File → New → Project... Under the iOS section (not the OS�X section), click
Application. From the template choices that appear, select Empty�Application.

Figure 31.2 Creating a new iOS application

Xcode’s project templates contain boilerplate code that can speed up development. However, you are
using the Empty�Application template, which is as close to a blank template as you can get. Allowing
Xcode to generate too much boilerplate code at this point gets in the way of learning how things work.

The names of the templates often change with new Xcode releases, so do not worry if you do not see
an Empty�Application template. Look for the simplest-sounding template and then make changes to
match your code with the book’s code. If you have trouble reconciling your code or project templates,
visit the Big Nerd Ranch forum for this book at forums.bignerdranch.com for help.

Click Next, and in the window that appears, name this project iTahDoodle (Figure 31.3).

http://forums.bignerdranch.com

ptg999

BNRAppDelegate

241

Figure 31.3 Configuring the iTahDoodle project

For the Company�Identifier, enter com.bignerdranch. The Company�Identifier is used to generate the
Bundle�Identifier, which uniquely identifies each app in the App Store.

The Class�Prefix will be prepended to the name of the class that the template creates for you and will
keep your classes distinct from classes that others have written.

Finally, make iTahDoodle an iPhone (as opposed to Universal or iPad) application. iTahDoodle will not
use Core Data. Click Next and finish creating the project.

BNRAppDelegate
When Xcode created this project, it created a class named BNRAppDelegate. The “app delegate” is the
starting point of an application, and every iOS application has one.

Open BNRAppDelegate.h. You can see that UIKit.h was imported by the template. UIKit is the
framework that contains most of the iOS-specific classes, like UITableView, UITextField, and
UIButton. Also notice that BNRAppDelegate is a subclass of UIResponder and conforms to the
UIApplicationDelegate protocol.

BNRAppDelegate has one property that points to an instance of UIWindow. This object fills the screen
of your iOS application. You add other objects (e.g., an instance of UIButton) to the window to create
your application’s user interface.

ptg999

Chapter 31 Your First iOS Application

242

In BNRAppDelegate.h, add four properties and an instance method:

#import <UIKit/UIKit.h>

@interface BNRAppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@property (nonatomic) UITableView *taskTable;
@property (nonatomic) UITextField *taskField;
@property (nonatomic) UIButton *insertButton;

@property (nonatomic) NSMutableArray *tasks;

- (void)addTask:(id)sender;

@end

The first three properties are pointers to objects that the user can see and interact with – a table view
that will display all the tasks to be done, a text field where you can enter a new task, and a button that
will add the new task to the table. The fourth object is a mutable array. This is where you will store the
tasks as strings.

Figure 31.4 is a diagram of the six objects that will make up iTahDoodle. There is the instance of
BNRAppDelegate, and this object has pointers to five others: instances of UIWindow, UITableView,
UITextField, UIButton, and NSMutableArray.

Figure 31.4 Object diagram for iTahDoodle

Xcode may warn you that addTask: has not yet been implemented. This is true, but you can ignore the
warning for now. You will implement addTask: later in the chapter.

Before you continue work on the objects shown in Figure 31.4, let’s look at some theory about objects
and their relationships.

Model-View-Controller
Model-View-Controller, or MVC, is a design pattern that is based on the idea that any class that you
create should fall into one of three job categories: model, view, or controller. Here is a breakdown of
the division of labor:

ptg999

Model-View-Controller

243

• Models are responsible for storing data and making it available to other objects. Models have
no knowledge of the user interface or how to draw themselves on the screen; their sole purpose
is holding and managing data. NSString, NSDate, and NSArray are traditional model objects. In
iTahDoodle, the NSMutableArray where tasks are stored is a model object. Later, each individual
task will be described in an instance of NSString, and these will also be model objects.

• Views are the visual elements of an application. Views know how to draw themselves on the
screen and how to respond to user input. Views have no knowledge of the actual data that they
display or how it is structured and stored. UIView and its various subclasses, including UIWindow,
are common examples of view objects. In iTahDoodle, your view objects are the instances of
UITableView, UITextField, and UIButton. A simple rule of thumb is: if you can see it, it is a
view.

• Controllers perform the logic necessary to connect and drive the different parts of your
application. They process events and coordinate the other objects in your application. Controllers
are the real workhorses of any application. While BNRAppDelegate is the only controller in
iTahDoodle, a complex application will have many different controllers that coordinate model and
view objects as well as other controllers.

Figure 31.5 shows the flow of control between objects in response to a user event, like a button tap.
Notice that models and views do not talk to each other directly; controllers sit squarely in the middle of
everything, receiving messages from some objects and dispatching instructions to others.

Figure 31.5 MVC flow with user input

Most of the Cocoa and Cocoa Touch APIs are written with MVC in mind, and your own code should
be, too. Figure 31.6 shows this division of labor in iTahDoodle.

ptg999

Chapter 31 Your First iOS Application

244

Figure 31.6 iTahDoodle object diagram

Now let’s get back to your controller, the instance of BNRAppDelegate.

The application delegate
When an iOS application first launches, a lot of setup is happening behind the scenes. An instance of
UIApplication is created to control the application’s state and act as liaison to the operating system.
An instance of BNRAppDelegate is also created and set as the delegate of the UIApplication instance
(which explains the name “app delegate”).

This makes BNRAppDelegate a busy class. In fact, all of the code that you will write for this application
will be in BNRAppDelegate.m. It would be good to have a way to organize the class so that it would be
easy to find methods quickly. You can use #pragma mark to group methods within a class for easier
navigation.

In BNRAppDelegate.m, add a #pragma mark that identifies the existing methods as application delegate
callbacks:

#import "BNRAppDelegate.h"

@implementation BNRAppDelegate

#pragma mark - Application delegate callbacks

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{

...

ptg999

Setting up views

245

Next, on the navigation bar at the top of the editor area, find the item to the right of
BNRAppDelegate.m. Click this item, and Xcode will show you a list of locations in this file. You can
click any of the method names to be taken directly to that method’s implementation. Notice that your
pragma mark appears at the top.

Figure 31.7 Navigating using pragma mark

Currently, the BNRAppDelegate class only contains application delegate callbacks. But soon you will
add methods with different roles and will use #pragma mark to group them.

The first application delegate callback under the pragma mark is
application:didFinishLaunchingWithOptions:. This method is very important.
While the application is being launched, it is not ready for work or input. When the
application becomes ready, the UIApplication instance sends its delegate the message
application:didFinishLaunchingWithOptions:. It is where you put everything that needs to be done
before the user interacts with the application.

Setting up views
One thing that you need to do before the application is ready for the user is set up your view objects:
the text field, the button, and the table view. This means creating them, configuring them, and putting
them on the screen.

In iTahDoodle, you are going to set up your views programmatically in
application:didFinishLaunchingWithOptions:. Xcode also has a visual “drag-and-drop” tool for
setting up views, which you will use in Chapter 32.

ptg999

Chapter 31 Your First iOS Application

246

The code for creating and configuring views is dense, and we are not going to cover it in detail. The
detailed syntax of creating and showing views on the screen is a topic for a book specifically about iOS
application programming.

Still, you can follow the gist of what is happening. First, you create each object and then configure
it by setting some of its properties. Next, the configured view objects are added as subviews of the
window object, and, finally, the window is placed on the screen.

Figure 31.8 View objects in iTahDoodle

In BNRAppDelegate.m, remove any boilerplate code from
application:didFinishLaunchingWithOptions: and replace it with the following code:

ptg999

Setting up views

247

#pragma mark - Application delegate callbacks

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 // Create and configure the UIWindow instance
 // A CGRect is a struct with an origin (x,y) and a size (width,height)
 CGRect winFrame = [[UIScreen mainScreen] bounds];
 UIWindow *theWindow = [[UIWindow alloc] initWithFrame:winFrame];
 self.window = theWindow;

 // Define the frame rectangles of the three UI elements
 // CGRectMake() creates a CGRect from (x, y, width, height)
 CGRect tableFrame = CGRectMake(0, 80, winFrame.size.width,
 winFrame.size.height - 100);
 CGRect fieldFrame = CGRectMake(20, 40, 200, 31);
 CGRect buttonFrame = CGRectMake(228, 40, 72, 31);

 // Create and configure the UITableView instance
 self.taskTable = [[UITableView alloc] initWithFrame:tableFrame
 style:UITableViewStylePlain];
 self.taskTable.separatorStyle = UITableViewCellSeparatorStyleNone;

 // Tell the table view which class to instantiate whenever it
 // needs to create a new cell
 [self.taskTable registerClass:[UITableViewCell class]
 forCellReuseIdentifier:@"Cell"];

 // Create and configure the UITextField instance where new tasks will be entered
 self.taskField = [[UITextField alloc] initWithFrame:fieldFrame];
 self.taskField.borderStyle = UITextBorderStyleRoundedRect;
 self.taskField.placeholder = @"Type a task, tap Insert";

 // Create and configure the UIButton instance
 self.insertButton = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 self.insertButton.frame = buttonFrame;

 // Give the button a title
 [self.insertButton setTitle:@"Insert"
 forState:UIControlStateNormal];

 // Add our three UI elements to the window
 [self.window addSubview:self.taskTable];
 [self.window addSubview:self.taskField];
 [self.window addSubview:self.insertButton];

 // Finalize the window and put it on the screen
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];

 return YES;
}

Now that you have set up your views, you can run iTahDoodle on the iOS simulator to see them.

ptg999

Chapter 31 Your First iOS Application

248

Running on the iOS simulator
Xcode comes with an iOS simulator that lets you run iOS applications on your Mac. The simulator
is an easy way to see how your app will behave when it runs on an iOS device. In particular, you are
going to simulate iTahDoodle running on an iPhone with a 3.5-inch retina display.

First, look to the right of the run and stop buttons on Xcode’s toolbar. You will see iTahDoodle and then
a device description.

Figure 31.9 Simulating an iPhone with a 3.5-inch retina display

If the description does not read iPhone�Retina�(3.5-inch), then click the description to see a drop-down
menu with the available options. Choose iPhone�Retina�(3.5-inch) from the menu.

Build and run the application. The simulator will start up right away, but it may take a minute for
iTahDoodle to come on screen for the first time.

You can see the text field and the button. By default, the table view and window have no borders or
shading, which makes them hard to see. But they are there!

Figure 31.10 View objects on screen

If you click the text field, the keyboard will appear and you can type text into the field. This is default
behavior for an instance of UITextField. However, the UIButton does not do anything when tapped,
and the UITableView does not display anything.

Your next step is to write code that tells these objects how to behave. Developers often refer to
implementing the behavior of view objects as “wiring” or “wiring up.”

ptg999

Wiring up the button

249

Wiring up the button
A button works using target-action, like you learned about in Chapter 27. The button’s action is the
message that you want sent when the button is tapped. The button’s target is the object to which that
message should be sent.

In BNRAppDelegate.m, give the Insert button a target-action pair:

#pragma mark - Application delegate callbacks

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 ...

 // Create and configure a rounded rect Insert button
 self.insertButton = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 self.insertButton.frame = buttonFrame;

 // Give the button a title
 [self.insertButton setTitle:@"Insert"
 forState:UIControlStateNormal];

 // Set the target and action for the Insert button
 [self.insertButton addTarget:self
 action:@selector(addTask:)
 forControlEvents:UIControlEventTouchUpInside];

 ...

 return YES;
}

The target is self, and the action is addTask:. Thus, when the Insert button is tapped, it will send the
addTask: message to the BNRAppDelegate. The next step, then, is to implement the addTask: method
in BNRAppDelegate.

Eventually, addTask: will retrieve the text entered in taskField and add it to the tasks array. The task
will then appear in the table view. But because you have not yet wired up the table view, you are going
to implement addTask: to retrieve the text from taskField and simply log it to the console.

In BNRAppDelegate.m, add an implementation of addTask: at the bottom of the file along with a new
pragma mark:

ptg999

Chapter 31 Your First iOS Application

250

@implementation BNRAppDelegate

#pragma mark - Application delegate callbacks

...

#pragma mark - Actions

- (void)addTask:(id)sender
{
 // Get the task
 NSString *text = [self.taskField text];

 // Quit here if taskField is empty
 if ([text length] == 0) {
 return;
 }

 // Log text to console
 NSLog(@"Task entered: %@", text);

 // Clear out the text field
 [self.taskField setText:@""];
 // Dismiss the keyboard
 [self.taskField resignFirstResponder];
}

@end

What is this resignFirstResponder business? Here is the short version:

Some view objects are also controls. A control is a view that the user can interact with. Buttons,
sliders, and text fields are examples of controls. (Keep in mind that the term “control” has nothing to
do with “controllers” in MVC.)

When there are controls on the screen, one of them can be the first responder. When a control has first
responder status, it gets the first chance to handle text input from the keyboard and shake events (such
as when the user shakes the device to undo the last action).

When the user interacts with a control that can accept first responder status, that control is sent the
becomeFirstResponder message. When a control that accepts text input (like a text field) becomes the
first responder, the keyboard appears on the screen. At the end of addTask:, you tell the text field to
resign its status, which causes the keyboard to disappear.

Build and run the application. (You will need to stop the currently running instance of iTahDoodle
before Xcode can build and run again.)

Once iTahDoodle is running again, enter something in the text field, click Insert, and confirm that the
text is logged to the console.

You may also see a warning in the console that reads Application windows are expected to have
a root view controller at the end of application launch. You can ignore this. To stick with
the absolute basics, you are not implementing a “root view controller” for iTahDoodle, and this simple
application will work fine without one. You will learn all about view controllers in iOS Programming:
The Big Nerd Ranch Guide or any other book on iOS development.

ptg999

Wiring up the table view

251

Here is an updated object diagram showing the target-action pair.

Figure 31.11 Updated iTahDoodle object diagram

Wiring up the table view
You have a table view on the screen, but it does not display anything. As a view object, the table view
does not contain anything about actual data. It needs an object to act as its data source. A table view’s
data source tells the table view what to display.

In iTahDoodle, the table view’s data source will be the instance of BNRAppDelegate. For
BNRAppDelegate to do this job, it must conform to the UITableViewDataSource protocol.

In BNRAppDelegate.h, declare that BNRAppDelegate conforms to UITableViewDataSource:

@interface BNRAppDelegate : UIResponder
 <UIApplicationDelegate, UITableViewDataSource>

@property (strong, nonatomic) UIWindow *window;

@property (nonatomic) UITableView *taskTable;
@property (nonatomic) UITextField *taskField;
@property (nonatomic) UIButton *insertButton;

@property (nonatomic) NSMutableArray *tasks;

- (void)addTask:(id)sender;

In BNRAppDelegate.m, update application:didFinishLaunchingWithOptions: to send a message to
the table view that makes the BNRAppDelegate instance its data source:

ptg999

Chapter 31 Your First iOS Application

252

...
// Create and configure the table view
self.taskTable = [[UITableView alloc] initWithFrame:tableFrame
 style:UITableViewStylePlain];
self.taskTable.separatorStyle = UITableViewCellSeparatorStyleNone;

// Make the BNRAppDelegate the table view's dataSource
self.taskTable.dataSource = self;

// Tell the table view which class to instantiate whenever it
// needs to create a new cell
[self.taskTable registerClass:[UITableViewCell class]
 forCellReuseIdentifier:@"Cell"];
...

The UITableViewDataSource protocol has two required methods. A table view’s data source must be
prepared to tell the table view:

• how many rows are in a given section of the table (tableView:numberOfRowsInSection:)

• what the cell in a given row should be (tableView:cellForRowAtIndexPath:)

In BNRAppDelegate.m, implement these callbacks:

@implementation BNRAppDelegate

...

#pragma mark - Table view management

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 // Because this table view only has one section,
 // the number of rows in it is equal to the number
 // of items in the tasks array
 return [self.tasks count];
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 // To improve performance, this method first checks
 // for an existing cell object that we can reuse
 // If there isn't one, then a new cell is created
 UITableViewCell *c = [self.taskTable dequeueReusableCellWithIdentifier:@"Cell"];

 // Then we (re)configure the cell based on the model object,
 // in this case the tasks array, ...
 NSString *item = [self.tasks objectAtIndex:indexPath.row];
 c.textLabel.text = item;

 // ... and hand the properly configured cell back to the table view
 return c;
}

@end

ptg999

Wiring up the table view

253

These methods interact with the tasks array. You declared this property, but you have not yet created
the array object.

In BNRAppDelegate.m, at the top of application:didFinishLaunchingWithOptions:, create an
empty, mutable array:

#pragma mark - Application delegate callbacks

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 // Create an empty array to get us started
 self.tasks = [NSMutableArray array];

 ...

}

Finally, modify the implementation of addTask: to display the task in the table view.

#pragma mark - Actions

- (void)addTask:(id)sender
{
 // Get the task
 NSString *text = [self.taskField text];

 // Quit here if taskField is empty
 if ([text length] == 0) {
 return;
 }

 // Log task to console
 NSLog(@"User entered: %@", text);

 // Add it to the working array
 [self.tasks addObject:text];

 // Refresh the table so that the new item shows up
 [self.taskTable reloadData];

 // Clear out the text field
 [self.taskField setText:@""];

 // Dismiss the keyboard
 [self.taskField resignFirstResponder];
}

Build and run the application. Enter a few tasks for your list. Each one should appear in the table view.

ptg999

Chapter 31 Your First iOS Application

254

Figure 31.12 iTahDoodle app, completed

Figure 31.13 shows the complete object diagram including the data source relationship that you
established and the strings added to the tasks array.

Figure 31.13 Complete object diagram for iTahDoodle

ptg999

Saving and loading data

255

Saving and loading data
Currently, if the user force-quits iTahDoodle, or if the system terminates the application while the user
is doing something else, then any changes to the task list are lost and the user will have to enter them
all over again when they restart the application. This is not the user experience you want. When users
quit the app, they would like their to-do lists to stick around so that they can refer them again later. In
this section, you will enable iTahDoodle to save a user’s tasks between runs of the application.

Adding a C helper function
To save the user’s tasks between runs, iTahDoodle will store the tasks to disk as a property list – an
XML file. You will need a way to get this file’s location while your application is running. Thus, you
are going to write a C function named BNRDocPath that returns that file path as an NSString.

In Objective-C, we usually get things done with methods. So when we do use a C function in an
Objective-C application, we often refer to it as a helper function.

In BNRAppDelegate.h, declare BNRDocPath().

#import <UIKit/UIKit.h>

// Declare a helper function that you will use to get a path
// to the location on disk where you can save the to-do list
NSString *BNRDocPath(void);

@interface BNRAppDelegate : UIResponder
 <UIApplicationDelegate, UITableViewDataSource>

...

Notice that you declare BNRDocPath() above the class declaration. Even though BNRDocPath() is
declared in the file BNRAppDelegate.h, it is not part of the BNRAppDelegate class. In fact, this function
could have its own header and implementation files in the iTahDoodle project. However, because there
is just one helper function in iTahDoodle, you are putting it in the app delegate’s class files to keep
things simple.

In BNRAppDelegate.m, implement BNRDocPath(). Be sure to implement it after the #import but before
the @implementation line (which is where the implementation of the BNRDelegate class begins).

#import "BNRAppDelegate.h"

// Helper function to fetch the path to our to-do data stored on disk
NSString *BNRDocPath()
{
 NSArray *pathList = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
 NSUserDomainMask,
 YES);
 return [pathList[0] stringByAppendingPathComponent:@"data.td"];
}

@implementation BNRAppDelegate

...

Note that the BNRDocPath() function uses the function NSSearchPathForDirectoriesInDomains()
that we discussed in Chapter 26.

ptg999

Chapter 31 Your First iOS Application

256

Saving task data
When a Cocoa Touch application quits or is sent to the background, it sends its delegate a message
from the UIApplicationDelegate protocol so that the delegate can take care of business and respond
to these events gracefully.

In BNRAppDelegate.m, find the applicationDidEnterBackground: method and replace its contents
with code that uses BNRDocPath() to save the task list when the user leaves the app:

- (void)applicationDidEnterBackground:(UIApplication *)application
{
 // Save our tasks array to disk
 [self.tasks writeToFile:BNRDocPath() atomically:YES];
}

Now any tasks that the user inserted will be written to disk for safekeeping.

Loading task data
To finish, you need to load the user’s saved tasks when the application is launched.

In BNRAppDelegate.m, add the following code at the beginning of
application:didFinishLaunchingWithOptions:.

#pragma mark - Application delegate callbacks

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 // Create an empty array to get us started
 self.tasks = [NSMutableArray array];

 // Load an existing dataset or create a new one
 NSArray *plist = [NSArray arrayWithContentsOfFile:BNRDocPath()];
 if (plist) {
 // We have a dataset; copy it into tasks
 self.tasks = [plist mutableCopy];
 } else {
 // There is no dataset; create an empty array
 self.tasks = [NSMutableArray array];
 }

 // Create and configure the UIWindow instance
 // A CGRect is a struct with an origin (x,y) and a size (width,height)
 CGRect winFrame = [[UIScreen mainScreen] bounds];
 UIWindow *theWindow = [[UIWindow alloc] initWithFrame:winFrame];
 self.window = theWindow;
 ...
}

Build and run the application. Insert some tasks and click the Home button. Then click iTahDoodle’s
icon to restart the app. Your tasks will be there waiting for you.

Note that the data will only be saved and restored when the application goes into the background or
terminates gracefully. If you stop the app from Xcode while it is active, the data may not be saved.

ptg999

For the more curious: what about main()?

257

Congratulations! You have created your first iOS app. There is much, much more out there to do and
learn, and we hope you are looking forward to the challenge.

For the more curious: what about main()?
When you began learning C and Objective-C, you learned that the entry point into your program’s code
is the main() function. It is absolutely true in Cocoa and Cocoa Touch development as well, although
it is extremely rare to edit this function in Cocoa and Cocoa Touch applications. Open main.m, and you
will see why:

return UIApplicationMain(argc, argv, nil, NSStringFromClass([BNRAppDelegate class]));

Well, that was anti-climactic. Only one line of actual code.

The UIApplicationMain function creates the necessary objects for your application to run. First, it
creates a single instance of the UIApplication class. Then, it creates an instance of whatever class is
denoted by the fourth and final argument and sets it to be the application’s delegate, so that it can send
its delegate messages when memory gets low, when the application is quit or backgrounded, or when it
finishes launching.

And that is the trail from main() to application:didFinishLaunchingWithOptions: and your
custom code.

For the more curious: running iTahDoodle on a device
Right now, your app is running on the simulator. To run it on a device (or to publish apps to the App
Store), you will need to join Apple’s iOS Developer Program, which costs $99 per year. Once you are a
member, you can register yourself and your devices with the developer portal. This information will be
used to create a provisioning profile for your apps that will enable you to run them on your devices.

The provisioning process is complicated and a pain. To help you get through it, Apple has written
an App Distribution Guide that describes the necessary steps in detail. Search for it on Apple’s iOS
developer website.

In fact, unless you can’t live without seeing iTahDoodle on your iPhone, we suggest that you save this
adventure until you are working through an iOS development book, like iOS Programming: The Big
Nerd Ranch Guide.

ptg999

This page intentionally left blank

ptg999

259

32
Your First Cocoa Application

In this chapter, you are going to create TahDoodle, a desktop application for Mac. Like iTahDoodle,
TahDoodle is a simple to-do list application that stores its data as a property list. Like the last chapter,
this application is very simple; it will give you a quick taste of how Cocoa development works.

TahDoodle will be a document-based application. This allows users to have multiple windows (each
representing a different file) open at the same time.

Figure 32.1 Complete TahDoodle application

ptg999

Chapter 32 Your First Cocoa Application

260

Here is an object diagram of the complete TahDoodle application.

Figure 32.2 Object diagram for TahDoodle

You will present the task list in an instance of NSTableView. An instance of NSButton will allow users
to add a row to the table view so that a new task can be added. Any task can be edited directly in the
NSTableView.

An instance of a class named BNRDocument is the controller for TahDoodle. It will connect the model
object (a mutable array of strings) with two view objects. The view objects are the NSButton and the
NSTableView.

The NSButton has a target-action pair. When it is clicked, it will send the addTask: message to the
BNRDocument. The BNRDocument will also be the data source for the NSTableView.

In the last chapter, you created your view objects and made these connections programmatically. In this
chapter, you are going to use Interface�Builder, Xcode’s drag-and-drop tool for building user interfaces.

Getting started with TahDoodle
In Xcode, choose File → New → Project... Under the OS�X section (not iOS), click Application. From
the template choices that appear, select Cocoa�Application.

ptg999

Getting started with TahDoodle

261

Figure 32.3 Choose Cocoa Application template

In the next window, name the project TahDoodle (Figure 32.4). Check the box to Create�a�Document-
Based�Application. For the Document�Extension, enter tdl. This will be the filename extension used
when TahDoodle documents (to-do lists) are saved.

Figure 32.4 Configuring TahDoodle

Click Next and finish creating your project.

ptg999

Chapter 32 Your First Cocoa Application

262

The template created the BNRDocument class for you. This class is the controller for TahDoodle. For
each to-do list that the user has open, there will be an instance of BNRDocument, which will act as the
controller for that window.

Open BNRDocument.h. Add two properties and one instance method:

#import <Cocoa/Cocoa.h>

@interface BNRDocument : NSDocument

@property (nonatomic) NSMutableArray *tasks;

@property (nonatomic) IBOutlet NSTableView *taskTable;

- (IBAction)addTask:(id)sender;

@end

First, note that you have not declared a property for the NSButton. All the work to create and wire up
this view object will be done in Interface�Builder. You do not need a property for it because you will not
be interacting with the button programmatically.

Second, you used two new keywords: IBOutlet and IBAction. IBOutlet tells Xcode that the
taskTable pointer will be assigned in Interface�Builder and not in the class’s code files. IBAction tells
Xcode that addTask: is an action method and that the associated target-action pair will be configured in
Interface�Builder and not in the class’s code files.

Setting up views in Interface Builder
In the project navigator, find and select BNRDocument.xib. When you select a file in the project
navigator that ends in .xib, Interface�Builder opens in the editor area. Instead of code, you will see a
layout grid displaying view objects defined in that XIB (XML Interface Builder document) file.

Right now, there are two view objects defined in BNRDocument.xib: a window and a text field. These
are instances of NSWindow and NSTextField.

ptg999

Setting up the button

263

Figure 32.5 Current BNRDocument.xib contents

If you were to run this application now, a window would appear with the text Your�document�contents
here centered in the window.

The window object is an instance of NSWindow. The template defined this object for you in the
BNRDocument.xib. You simply use it as a canvas upon which you build your interface. You will not
interact with it in code in TahDoodle.

In BNRDocument.xib, click the Your�document�contents�here text to select the text field. Then press the
Delete key on your keyboard to remove this object from the layout.

In the upper righthand corner of the Xcode window, click the button to reveal the utilities area.

The bottom half of the utilities area is the library. The library is divided into tabs. Select the tab to
reveal the object library. The object library presents the different object types that you can drag and
drop on the layout grid to build your user interface.

Setting up the button
At the bottom of the library is a search field. Search for “button.” The first item, Push�Button,
represents an instance of the NSButton class.

ptg999

Chapter 32 Your First Cocoa Application

264

Here is the fun part. To create an instance of NSButton and add it to your layout, simply drag from the
Push�Button item in the object library to anywhere on the window object in the layout grid.

Figure 32.6 Dragging from library to layout grid

Now there is an instance of NSButton in TahDoodle’s user interface. Not only have you created a button
object, but by dragging it onto the window object, you have also added it as a subview of the window.

Being a subview of the window is important; it is what gets a view object on screen when the
application is launched. In iTahDoodle, you added the button to the window in BNRAppDelegate.m:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 ...

 [self.window addSubview:self.insertButton];

 ...
}

Let’s get that button in the right place. Drag the button to the lower lefthand corner of the window
object. When you get close to the corner, blue dashed lines will appear. Position the button just inside
the lines (Figure 32.7).

ptg999

Setting up the table view

265

Figure 32.7 Changing the button’s position

The dashed lines are from Apple’s Human Interface Guidelines, or HIGs. The HIGs are a set of rules
that developers should follow when designing user interfaces for the Mac. There are also HIGs for the
iPhone and iPad. You can browse all of the HIGs in the developer documentation.

Now you need to change the button’s title to Add�Task. In iTahDoodle, you set the button’s title in
BNRAppDelegate.m:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 ...

 [self.insertButton setTitle:@"Insert"
 forState:UIControlStateNormal];
 ...
}

Setting the button’s title in Interface�Builder is even simpler: double-click the button object, type Add
Task, and press Return. The object will resize itself to fit the slightly longer title.

Setting up the table view
Return to the object library and search for “table view.” Select the Table�View item and drag it to the
upper lefthand corner of the window. Keep it just inside the dashed blue guidelines.

If you see a warning about a “misplaced view,” you can ignore it; you will fix the placement of your
views in the next section.

ptg999

Chapter 32 Your First Cocoa Application

266

This table view object is actually a collection of nested objects: an NSScrollView, which contains an
NSTableView, which, by default, contains two NSTableColumn instances. To get to a particular object
within this collection, hold down the Control and Shift keys while clicking on the table view. You will
see a list of objects and can select the object you are really interested in. Select the NSTableView.

Figure 32.8 Selecting NSTableView

Now you are going to set the table view’s number of columns using another tool – the inspector.

The inspector is in the utilities area above the the object library. It is your one-stop shop for finding out
about and configuring the object that is selected in the layout grid.

Like the object library, the inspector is organized in a set of tabs, and each tab is a different inspector.

Click the tab to get to the attributes inspector. The attributes inspector is where you can see and
modify the object’s attributes.

In the attributes inspector, find the Columns attribute of the NSTableView. Modify the NSTableView to
have only one column.

ptg999

Setting up the table view

267

Figure 32.9 Setting the number of columns

Now you need to adjust the size of the table view. This is easy to do back in the layout grid. Control-
Shift-click the table view and select the NSScrollView, which contains the NSTableView. Drag the
scroll view’s bottom right corner so that it fills most of the window. Leave space for the button and stay
inside the blue guidelines.

The objects that you have created and configured just now are described in XML in BNRDocument.xib.
They will be automatically allocated and initialized at runtime when a new TahDoodle window opens
and a new instance of BNRDocument is created.

(If you want to see the XML, right-click BNRDocument.xib in the project navigator and select Open�As
→ Source�Code.)

Build and run TahDoodle. You may need to click on the application icon in your Dock to see the
window. Select File → New in TahDoodle’s menu bar or use the keyboard shortcut Command-N to
open a second window. Each window is a separate instance of BNRDocument and a separate set of view
objects.

ptg999

Chapter 32 Your First Cocoa Application

268

Adding autolayout constraints
To control how your user interface will appear when the window resizes, you can create several
autolayout constraints. An autolayout constraint specifies an individual relationship between the views
in your application.

In a desktop application, autolayout constraints are typically used to control how your user interface
appears when the window is resized. In an iOS app, autolayout constraints are typically used to control
how your user interface appears on devices with different screen sizes or font sizes.

Currently, TahDoodle’s user interface does not adjust at all when the user resizes the window. The
table view and button maintain their position and size no matter the user does with the window. (Try it
yourself.)

It would be much better if the table view and button would maintain their positions and if the table
view would resize to stretch and shrink along with the window.

Let’s start with adding constraints to the table view. Recall that the table view is a nested collection of
objects. The outermost object is an instance of NSScrollView. You are going to apply four autolayout
constraints to specify the layout relationship between the scroll view and the window.

Autolayout constraints are added individually, and Control-Shift-clicking to select the scroll view in
the layout grid is tiresome. Thankfully, you can also select a view object from the document outline.

In BNRDocument.xib, find the small black left-pointing arrow in a rounded rectangle in the bottom left
corner of the editor area (Figure 32.10). Click this arrow to show the document outline. (You can click
again to hide the document outline when you need more room to work in the layout grid.)

Figure 32.10 Showing and hiding the document outline

ptg999

Adding autolayout constraints

269

The document outline includes a hierarchical list of your view objects. Under Window, find and select
the Bordered�Scroll�View�–�Table�View object. This is the instance of NSScrollView that contains the
rest of the objects that make up the table view. From Xcode’s menu bar, select Editor → Pin → Leading
Space�to�Superview.

Leading�Space�to�Superview is an autolayout constraint. The scroll view’s superview is the window
object. Adding this constraint ensures that your view remains a fixed distance from the leading edge of
the window regardless of the window’s size.

(In most cases, “leading” will mean “lefthand.” However, if your user’s system is set to a language that
runs right to left, then the leading edge is the righthand edge.)

You can see the new constraint listed under the Constraints heading in the document outline. Click this
constraint to see it displayed in the layout grid. It will appear as a red strut between the scroll view and
the window.

Select the scroll view again in the document outline and add a second autolayout constraint: Editor →
Pin → Trailing�Space�to�Superview.

Select the scroll view yet again. Notice that the two struts identifying your autolayout constraints
are red. The red color tells you that the scroll view does not yet have enough constraints to ensure its
position when the application is running. Let’s confirm that.

Build and run TahDoodle. Drag the window’s right edge to widen it. The scroll view (and the views
it contains) will stretch to maintain the relationships between the window and its leading and trailing
edges.

Figure 32.11 Table view resizes itself according to horizontal constraints

However, if you change the height of the window by dragging at the top or bottom, the table view’s
size will not change. You need constraints for the scroll view’s top and bottom.

Select the scroll view and add two more constraints: from the Editor menu, pin Top�Space�to�Superview
and Bottom�Space�to�Superview.

ptg999

Chapter 32 Your First Cocoa Application

270

Now there are enough constraints to guarantee the scroll view’s size and position no matter what the
window does. Select the scroll view one more time, and you will see that the struts are now blue.

Figure 32.12 Scroll view’s satisfactory constraints

Build and run the application. The scroll view will resize itself as the window does. However, if
you make the window taller, the scroll view will cover up the button. Your button needs autolayout
constraints of its own to stake out its position.

In the document outline, select the Push�Button and add two layout constraints: pin the leading space to
the superview and pin the bottom space to the superview.

Build and run the application. The scroll view will resize with the window, and the button will maintain
its position in the lower lefthand corner.

Making connections
Creating and configuring views is not all that you can do in Interface�Builder. You can also connect the
view objects in your XIB file to your application’s code. In particular, you can set target-action pairs
and assign pointers.

File’s Owner
In BNRDocument.xib, find the Placeholders heading in the document outline. A placeholder stands in
for a particular object that cannot be specified until runtime.

One of these placeholders is File's�Owner. File's�Owner stands in for the object that will load the XIB
file as its user interface. In your case, it represents the instance of BNRDocument.

ptg999

Setting the button’s target-action pair

271

Setting the button’s target-action pair
Recall from the object diagram at the beginning of the chapter (Figure 32.2) that the NSButton has a
target-action pair: its target is the instance of BNRDocument, and its action is addTask:.

For iTahDoodle, you configured the target-action pair for the button in BNRAppDelegate.m:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 ...

 [self.insertButton addTarget:self
 action:@selector(addTask:)
 forControlEvents:UIControlEventTouchUpInside];
 ...
}

For TahDoodle, you are going to make this connection in Interface�Builder.

In the layout grid, select the Add�Task button. While pressing and holding the Control key, drag from
the button to File's�Owner in the document outline.

Figure 32.13 Making a connection

Release the mouse button, and a list of methods will appear. Select addTask:.

ptg999

Chapter 32 Your First Cocoa Application

272

Figure 32.14 Selecting an action

When you Control-dragged from the button to File's�Owner, you set BNRDocument as the target of the
button. When you selected addTask: from the list, you set this method as the action of the button.

Note that addTask: was only available to choose from the list of methods because you included the
IBAction keyword in its declaration in BNRDocument.h:

- (IBAction)addTask:(id)sender;

IBAction is a flag for Interface�Builder that says “Hey! When I try to connect a target-action pair in IB,
make sure to include this method in the list of possible actions.”

Here is the actual definition of IBAction:

#define IBAction void

Remember what you learned about #define in Chapter 25? This statement tells you that IBAction is
replaced with void before the compiler sees it. All IBAction keywords can replaced with void because
actions invoked by user interface controls are not expected to have a return value.

To run and test this connection, you must implement addTask:. In the project navigator, select
BNRDocument.m. You are now out of Interface�Builder and back in your familiar code editor.

In BNRDocument.m, first add a pragma mark to group the existing methods in BNRDocument:

#import "BNRDocument.h"

@implementation BNRDocument

#pragma mark - NSDocument Overrides

...

@end

ptg999

Connecting the table view

273

Then implement addTask: as a stub that logs a message to the console:

#import "BNRDocument.h"

@implementation BNRDocument

#pragma mark - NSDocument Overrides

...

pragma mark - Actions

- (void)addTask:(id)sender
{
 NSLog(@"Add Task button clicked!");
}

@end

Build and run the application. Click the Add�Task button and confirm that your target-action pair is
working as expected.

Connecting the table view
Earlier in the chapter, you declared the taskTable pointer in BNRDocument.h:

@property (nonatomic) IBOutlet NSTableView *taskTable;

You want to assign the NSTableView object in BNRDocument.xib to this pointer.

Reopen BNRDocument.xib. Control-drag from File's�Owner (standing in for the BNRDocument) to the
table view in the layout grid. When you release the mouse button, choose taskTable from the list of
connections.

ptg999

Chapter 32 Your First Cocoa Application

274

Figure 32.15 Making more connections

Now the taskTable pointer that you declared in BNRDocument.h points to the specific instance of
NSTableView defined in BNRDocument.xib.

“Outlet” is just another word for “object pointer.” Recall that you included IBOutlet when declaring
the taskTable pointer:

@property (nonatomic) IBOutlet NSTableView *taskTable;

Unlike IBAction, IBOutlet is defined so that it will disappear completely before the compiler sees it:

#define IBOutlet

Thus, at compile time, all IBOutlet keywords get removed, leaving behind the outlets (pointers)
themselves.

NSTableView has a few pointers of its own, including dataSource. You want the instance of
BNRDocument to be assigned to the table view’s dataSource pointer.

In the layout grid, Control-Shift-click on the table view to select the NSTableView. Then Control-drag
from the table view to File's�Owner. When you release the mouse button, choose dataSource from the
list of connections.

ptg999

Implementing NSTableViewDataSource

275

Figure 32.16 Connecting the table view’s data source

This accomplishes the same thing that you did in iTahDoodle with the following code:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 ...

 self.taskTable.dataSource = self;

 ...
}

Implementing NSTableViewDataSource
Now that you have TahDoodle’s user interface created, configured, and connected, the next step is to
get the data source-table view relationship working. You cannot do this in Interface�Builder, so it is time
to go back to writing code.

Reopen BNRDocument.h and declare that BNRDocument conforms to the NSTableViewDataSource
protocol:

#import <Cocoa/Cocoa.h>

@interface BNRDocument : NSDocument
 <NSTableViewDataSource>

...

@end

ptg999

Chapter 32 Your First Cocoa Application

276

In BNRDocument.m, implement the two required NSTableViewDataSource methods:

#pragma mark Data Source Methods

- (NSInteger)numberOfRowsInTableView:(NSTableView *)tv
{
 // This table view displays the tasks array,
 // so the number of entries in the table view will be the same
 // as the number of objects in the array
 return [self.tasks count];
}

- (id)tableView:(NSTableView *)tableView
 objectValueForTableColumn:(NSTableColumn *)tableColumn
 row:(NSInteger)row
{
 // Return the item from tasks that corresponds to the cell
 // that the table view wants to display
 return [self.tasks objectAtIndex:row];
}

- (void)tableView:(NSTableView *)tableView
 setObjectValue:(id)object
 forTableColumn:(NSTableColumn *)tableColumn
 row:(NSInteger)row
{
 // When the user changes a task on the table view,
 // update the tasks array
 [self.tasks replaceObjectAtIndex:row withObject:object;

 // And then flag the document as having unsaved changes.
 [self updateChangeCount:NSChangeDone];
}

Finally, in BNRDocument.m, update the implementation of addTask: to actually add tasks.

#import "BNRDocument.h"

@implementation BNRDocument

...

#pragma mark - Actions

- (IBAction)addTask:(id)sender
{
 NSLog(@"Add Task button clicked!");
 // If there is no array yet, create one
 if (!self.tasks) {
 self.tasks = [NSMutableArray array];
 }

 [self.tasks addObject:@"New Item"];

 // -reloadData tells the table view to refresh and ask its dataSource
 // (which happens to be this BNRDocument object in this case)
 // for new data to display
 [self.taskTable reloadData];

ptg999

Saving and loading data

277

 // -updateChangeCount: tells the application whether or not the document
 // has unsaved changes, NSChangeDone flags the document as unsaved
 [self updateChangeCount:NSChangeDone];
}

Build and run TahDoodle. Click the button to add a row to the table view. Double-click the row to edit
its contents.

Saving and loading data
To add the ability to save and reopen a task list, you need to override two methods inherited from
BNRDocument’s superclass, NSDocument:

- (NSData *)dataOfType:(NSString *)typeName
 error:(NSError **)outError
{
 // This method is called when our document is being saved
 // You are expected to hand the caller an NSData object wrapping our data
 // so that it can be written to disk
 // If there is no array, write out an empty array
 if (!self.tasks) {
 self.tasks = [NSMutableArray array];
 }

 // Pack the tasks array into an NSData object
 NSData *data = [NSPropertyListSerialization
 dataWithPropertyList:self.tasks
 format:NSPropertyListXMLFormat_v1_0
 options:0
 error:outError];

 // Return the newly-packed NSData object
 return data;
}

- (BOOL)readFromData:(NSData *)data
 ofType:(NSString *)typeName
 error:(NSError **)outError
{
 // This method is called when a document is being loaded
 // You are handed an NSData object and expected to pull our data out of it
 // Extract the tasks
 self.tasks = [NSPropertyListSerialization
 propertyListWithData:data
 options:NSPropertyListMutableContainers
 format:NULL
 error:outError];

 // return success or failure depending on success of the above call
 return (self.tasks != nil);
}

Notice that you are implementing a method that takes in an NSError**. In this case, you are merely
handing back the NSError generated by propertyListWithData:options:format:error:, but you
could also create and hand back a new NSError as well, depending on the nature of the failure.

ptg999

Chapter 32 Your First Cocoa Application

278

Build and run the application again. Add some tasks to the list. Save and close the list (using the
familiar menu commands or keyboard shortcuts), and then reopen it. Congratulations! TahDoodle is
complete.

So when should you use Interface�Builder to create your user interface and when should you set up
views programmatically? Under simple circumstances, either will work. iTahDoodle’s interface could
have been built using Interface�Builder; TahDoodle’s views could have been created programmatically.

In general, however, the more complex your user interface, the more sense it makes to use Interface
Builder.

Now that you have seen more of Xcode, take a look at the tear-out card at the back of this book. This
card contains keyboard shortcuts for navigating around Xcode. As you continue with Xcode, use this
card to find shortcuts that will save you time and clicks.

Challenge
Add a Delete�Selected�Item button that deletes the currently-selected task.

ptg999

Part V
Advanced Objective-C

You now know enough Objective-C to get started with iOS or Cocoa programming. But don’t rush off
just yet. These next chapters provide a gentle discussion of techniques and concepts that will be useful
in your first year as an Objective-C programmer.

ptg999

This page intentionally left blank

ptg999

281

33
init

In the NSObject class, there is a method named init. Using init looks like this:

NSMutableArray *things = [[NSMutableArray alloc] init];

You send the init message to the new instance so that it can initialize its instance variables to usable
values; alloc creates the space for an object, and init makes the object ready to work. Notice that
init is an instance method that returns the address of the initialized object. It is the initializer for
NSObject. This chapter is about how to write initializers.

Writing init methods
Create a new project: a Foundation�Command�Line�Tool called Appliances. In this program, you are
going to create two classes: BNRAppliance and BNROwnedAppliance (a subclass of BNRAppliance). An
instance of BNRAppliance will have a productName and a voltage. An instance of BNROwnedAppliance
will also have a set containing the names of its owners.

Figure 33.1 BNRAppliance and its subclass, BNROwnedAppliance

Create a new file: an NSObject subclass named BNRAppliance. In BNRAppliance.h, create property
declarations for productName and voltage:

ptg999

Chapter 33 init

282

#import <Foundation/Foundation.h>

@interface BNRAppliance : NSObject

@property (nonatomic, copy) NSString *productName;
@property (nonatomic) int voltage;

@end

You would create an instance of BNRAppliance like this:

BNRAppliance *a = [[BNRAppliance alloc] init];

Note that because BNRAppliance does not implement an init method, it will execute the init method
defined in NSObject. When this happens, all the instance variables specific to BNRAppliance are zeroed
out. Thus, the productName of a new instance of BNRAppliance will be nil, and voltage will be zero.

A basic init method
In some cases, an initial value of zero for your instance variables may work fine. In others, however,
you will need instances of your class to come into the world with their instance variables initialized to
non-zero values.

Let’s say that every instance of BNRAppliance should start its life with a voltage of 120. In
BNRAppliance.m, override NSObject’s init method by adding a new implementation of init.

- (instancetype)init
{
 // Call the NSObject's init method
 self = [super init];

 // Did it return something non-nil?
 if (self) {

 // Give voltage a starting value
 _voltage = 120;
 }

 // Return a pointer to the new object
 return self;
}

Now when you create a new instance of BNRAppliance, it will have a voltage of 120 by default. (Note
that this does not change anything about the accessor methods. After the instance is initialized, it can
be changed just as before using setVoltage:.)

instancetype
This init method returns an instancetype. The instancetype keyword tells the compiler to expect
an instance of the class to which a method belongs. Any initializers you write or override should
always return instancetype.

Why not return BNRAppliance * from BNRAppliance’s initializer? Doing so could cause problems
if BNRAppliance were subclassed. Imagine there was an BNRAppliance subclass named BNROven.
BNROven would inherit an initializer declared as:

ptg999

Using and checking the superclass initializer

283

- (BNRAppliance *)init;

However, if an init message were sent to an instance of BNROven, an instance of BNROven would be
returned. While an BNROven is technically a BNRAppliance, the discrepancy could cause problems later
that would be hard to figure out. Using instancetype ensures that initializers can be safely inherited.

Sometimes you will see initializers returning id. Before Xcode�4.3 (when instancetype was
introduced), developers returned id from initializers. Recall that id means “any object,” so id also
provides flexibility for subclassing when writing your own initializers. However, instancetype is the
better option. It provides flexibility but still lets the compiler check the type of what is returned against
the rest of your code.

Using and checking the superclass initializer
Your init method begins with two checks:

• In the first line of init, you set self to point to the object returned from the superclass’s init
method.

• You check that the superclass’s initializer returns a valid object and not nil.

What do these checks do? A few classes have deviant init methods. There are two possible forms of
deviance:

• The init method figures out a clever optimization that it can do, deallocates the original object,
allocates a different object, and returns the new object.

To address this possibility, Apple requires that you set self to point to the object returned from
the superclass’s initializer.

• The init method fails, deallocates the object, and returns nil.

To deal with this possibility, Apple recommends that you check that the superclass’s initializer
returns a valid object and not nil. After all, there is no point in performing custom set-up on an
object that does not exist.

Truthfully, these sorts of checks are only necessary in a couple of very specific cases. Thus, in practice,
many Objective-C programmers often skip the second check. In this book, however, we will always do
both because it is the Apple-approved way to implement init methods.

init methods that take arguments
Sometimes an object cannot be initialized properly without some information from the method that
is calling it. For example, imagine that an appliance cannot function without a name. (nil does not
count.) In this case, you need to be able to pass the initializer a name to use.

You cannot do this with init because, for now and always, init has no arguments. So you have to
create a new initializer instead. Then, when another method creates an instance of BNRAppliance, it
would look like this:

BNRAppliance *a = [[BNRAppliance alloc] initWithProductName:@"Toaster"];

ptg999

Chapter 33 init

284

The new initializer for BNRAppliance is initWithProductName:, and it accepts an NSString as an
argument. Declare this new method in BNRAppliance.h:

#import <Foundation/Foundation.h>

@interface BNRAppliance : NSObject

@property (nonatomic, copy) NSString *productName;
@property (nonatomic) int voltage;
- (instancetype)initWithProductName:(NSString *)pn;

@end

In BNRAppliance.m, find the implementation of init. Change the name of the method to
initWithProductName: and set productName using the passed-in value.

- (instancetype)initWithProductName:(NSString *)pn
{
 // Call NSObject's init method
 self = [super init];

 // Did it return something non-nil?
 if (self) {

 // Set the product name
 _productName = [pn copy];

 // Give voltage a starting value
 _voltage = 120;
 }
 return self;
}

Before you continue, build the project to make sure the syntax is right.

Now you can create an instance of BNRAppliance with a given name. However, if you give
BNRAppliance.h and BNRAppliance.m to another programmer, this programmer may not know to call
initWithProductName:. What if the programmer creates an instance of BNRAppliance in the most
common way?

BNRAppliance *a = [[BNRAppliance alloc] init];

This is not an unreasonable action. As a subclass of NSObject, an instance of BNRAppliance is
expected to do anything an instance of NSObject can do. And instances of NSObject respond to init
messages. However, it causes a problem here because the above line of code creates an instance of
BNRAppliance that has nil for a product name and zero for voltage. And we decided earlier that every
instance of BNRAppliance needs a voltage of 120 and an actual name to function correctly. How can
you prevent this from happening?

The solution is simple. In BNRAppliance.m, add an init method to call initWithProductName: with a
default value for the name.

- (instancetype)init
{
 return [self initWithProductName:@"Unknown"];
}

ptg999

Using accessors

285

Notice that this new overridden init does not do much work – it just calls the initWithProductName:
method, which does the heavy lifting.

To test out your two initializers, you will need a description method. Implement description in
BNRAppliance.m:

- (NSString *)description
{
 return [NSString stringWithFormat:@"<%@: %d volts>",
 self.productName, self.voltage];
}

Now, in main.m, exercise the class a bit:

#import <Foundation/Foundation.h>
#import "BNRAppliance.h"

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 BNRAppliance *a = [[BNRAppliance alloc] init];
 NSLog(@"a is %@", a);
 [a setProductName:@"Washing Machine"];
 [a setVoltage:240];
 NSLog(@"a is %@", a);

 }
 return 0;
}

Build and run the program.

Using accessors
You have a perfectly good initializer for BNRAppliance, but let’s take a moment to look at a variation
that you will see in other people’s code. We typically do a plain assignments in an initializer, but many
programmers will use the accessor methods. Change initWithProductName: to do this:

- (instancetype)initWithProductName:(NSString *)pn
{
 // Call NSObject's init method
 self = [super init];

 // Did it return something non-nil?
 if (self) {

 // Set the product name
 [self setProductName:pn];

 // Give voltage a starting value
 [self setVoltage:120];
 }
 return self;
}

ptg999

Chapter 33 init

286

In most cases, there is little reason to do one over the other, but it makes for a great argument. The
argument goes like this: The assign guy says, “You cannot use an accessor method in an init method!
The accessor assumes that the object is ready for work, and it is not ready for work until after the
init method is complete.” Then the accessor method guy says, “Oh, come on. In the real world that
is almost never an issue. My accessor method might be taking care of other stuff for me. I use my
accessor anytime I set that variable.”

Either approach will work in the vast majority of cases. Build and run the program.

At Big Nerd Ranch, we tend to set the instance variables directly and we typically do the assignment
and check for the superclass’s initializer in one line. Do this in your initWithProductName: method:

- (instancetype)initWithProductName:(NSString *)pn
{
 if (self = [super init]) {

 _productName = [pn copy];
 _voltage = 120;
 }
 return self;
}

Multiple initializers
Create a new file: a subclass of BNRAppliance named BNROwnedAppliance. In BNROwnedAppliance.h,
add a mutable set of owner names and three methods.

#import "BNRAppliance.h"

@interface BNROwnedAppliance : BNRAppliance
@property (readonly) NSSet *ownerNames;
- (instancetype)initWithProductName:(NSString *)pn
 firstOwnerName:(NSString *)n;
- (void)addOwnerName:(NSString *)n;
- (void)removeOwnerName:(NSString *)n;

@end

Notice that one of the methods that you have declared is an initializer that takes two arguments.

Implement the methods in BNROwnedAppliance.m:

ptg999

Multiple initializers

287

#import "BNROwnedAppliance.h"

@interface BNROwnedAppliance ()
{
 NSMutableSet *_ownerNames;
}
@end

@implementation BNROwnedAppliance

- (instancetype)initWithProductName:(NSString *)pn
 firstOwnerName:(NSString *)n
{
 // Call the superclass's initializer
 if (self = [super initWithProductName:pn])

 // Create a set to hold owners names
 _ownerNames = [[NSMutableSet alloc] init];

 // Is the first owner name non-nil?
 if (n) {
 [_ownerNames addObject:n];
 }
 }
 // Return a pointer to the new object
 return self;
}

- (void)addOwnerName:(NSString *)n
{
 [_ownerNames addObject:n];
}

- (void)removeOwnerName:(NSString *)n
{
 [_ownerNames removeObject:n];
}

- (NSSet *)ownerNames
{
 return [_ownerNames copy];
}

@end

Note that this class does not initialize voltage or productName. The initWithProductName: in
BNRAppliance takes care of those. When you create a subclass, you typically only need to initialize the
instance variables that the subclass introduced; let the superclass take care of the instance variables that
it introduced.

Now, however, you face the same situation as you did with BNRAppliance and its superclass’s
initializer, init. At the moment, one of your co-workers might create a terrible bug with this line of
code:

OwnedAppliance *a = [[OwnedAppliance alloc] initWithProductName:@"Toaster"];

ptg999

Chapter 33 init

288

This code will cause the initWithProductName: method in BNRAppliance to run. This method knows
nothing about the ownerNames set, which means ownerNames will not get properly initialized for this
BNROwnedAppliance instance.

The fix here is the same as before. In BNROwnedAppliance.m, add an implementation of the
superclass’s initializer initWithProductName: that calls initWithProductName:firstOwnerName: and
passes a default value for firstOwnerName.

- (instancetype)initWithProductName:(NSString *)pn
{
 return [self initWithProductName:pn firstOwnerName:nil];
}

Quiz time: Do you also need to implement init in BNROwnedAppliance? No. At this point, the
following code will work fine:

OwnedAppliance *a = [[OwnedAppliance alloc] init];

Why? There is no implementation of init in BNROwnedAppliance, so this line will trigger the init
method implemented in BNRAppliance, which calls [self initWithProductName:@"Unknown"].
self is an instance of BNROwnedAppliance, so it calls initWithProductName: in BNROwnedAppliance,
which calls [self initWithProductName:pn firstOwnerName:nil].

What you wind up with is a chain of initializers that call other initializers.

Figure 33.2 Initializer chain

Notice that Figure 33.2 shows one shaded initializer for each class. This initializer is the designated
initializer for that class. init is the designated initializer for NSObject, initWithProductName: is
the designated initializer for BNRAppliance, and initWithProductName:firstOwnerName: is the
designated initializer for BNROwnedAppliance.

The designated initializer acts as a funnel-point. A class has only one designated initializer method.
If the class has other initializers, then the implementation of those initializers must call (directly or
indirectly) the designated initializer.

When you create a class whose designated initializer has a different name than its superclass’s
designated initializer (as you did in BNRAppliance and BNROwnedAppliance), you have a responsibility
to document that in the header file. Add the appropriate comment in BNRAppliance.h:

ptg999

Deadly init methods

289

#import <Foundation/Foundation.h>

@interface BNRAppliance : NSObject

@property (nonatomic, copy) NSString *productName;
@property (nonatomic) int voltage;

// The designated initializer
- (instancetype)initWithProductName:(NSString *)pn;

@end

and in BNROwnedAppliance.h:

#import "BNRAppliance.h"

@interface BNROwnedAppliance : BNRAppliance

@property (readonly) NSSet *ownerNames;

// The designated initializer
- (instancetype)initWithProductName:(NSString *)pn
 firstOwnerName:(NSString *)n;
- (void)addOwnerName:(NSString *)n;
- (void)removeOwnerName:(NSString *)n;

@end

Thus, we arrive at the rules that all stylish Objective-C programmers follow when writing initializers:

• If a class has several initializers, only one should do the real work. That method is known as the
designated initializer. All other initializers should call, either directly or indirectly, the designated
initializer.

• The designated initializer will call the superclass’s designated initializer before initializing its
instance variables.

• If the designated initializer of your class has a different name than the designated initializer of
its superclass, you must override the superclass’s designated initializer so that it calls the new
designated initializer.

• If you have several initializers, clearly document which is the designated initializer in the header.

Deadly init methods
Every once in a while, however, you cannot safely override the superclass’s designated initializer. Let’s
say that you are creating a subclass of NSObject called BNRWallSafe, and its designated initializer is
initWithSecretCode:. However, having a default value for secretCode is not secure enough for your
application. This means that the pattern we have been using – overriding init to call the new class’s
designated initializer with default values – is not acceptable.

So what do you do? An instance of BNRWallSafe will still respond to an init message. Someone could
easily do this:

BNRWallSafe *ws = [[BNRWallSafe alloc] init];

ptg999

Chapter 33 init

290

The best thing to do is to override the superclass’s designated initializer in a way that lets developers
know that they have made a mistake and tells them how to fix it:

- (instancetype)init
{
 [NSException raise:@"BNRWallSafeInitialization"
 format:@"Use initWithSecretCode:, not init"];
}

Throwing an exception like this will crash the program. In the console output, developers will see their
mistake that led to the crash.

ptg999

291

34
More about Properties

By now, you have used properties in many programs. In this chapter, you will learn a few more things
about properties and what you can make them do.

More on property attributes
First let’s take a closer look at the different attributes you can use to control how the accessors will be
created.

Mutability
A property can be declared readwrite or readonly. The default is readwrite, which means that both
a setter and a getter method are created. If you do not want a setter method to be created, you mark the
property as readonly:

@property (readonly) int voltage;

Lifetime specifiers
A property can also be declared unsafe_unretained, assign, strong, weak, or copy. This option
determines how the setter handles the property’s memory management.

assign is the default for non-object types and the simplest: it just assigns the passed-in value to the
property. Imagine this declaration and definition:

@property (assign) int averageScore;
// "@property int averageScore" would also work here

This would result in a setter method that is pretty much equivalent to:

- (void)setAverageScore:(int)d
{
 _averageScore = d;
}

In BNRAppliance, voltage is an assigned property. You will always use assign for properties that hold
non-objects. Because it is the default for non-object types, you do not have to add it to your property
declaration.

ptg999

Chapter 34 More about Properties

292

strong, as you learned in Chapter 23, will ensure that a strong reference is kept to the passed-in object.
It will also let go of ownership of the old object (which will then deallocate itself if it has no other
owners). For object properties, strong is the default for object pointers, and that is usually what you
want.

weak does not imply ownership of the object pointed to. If this object is deallocated, then the property
will be set to nil. This is a neat feature that keeps you safe from dangling pointers. A dangling pointer
points to an object that no longer exists. Sending a message to a dangling pointer usually crashes your
program.

unsafe_unretained properties, like weak properties, do not imply ownership. However, an
unsafe_unretained property is not automatically set to nil when the object that it points to is
deallocated.

copy forms a strong reference to a copy of the passed-in object. But there is a detail in this that most
people misunderstand …

copy
The copy option makes a copy of an object and then changes the pointer to refer to this copy. Imagine
you had a property declaration and definition like this:

@property (copy) NSString *lastName;

The generated setter method would look pretty much like this:

- (void)setLastName:(NSString *)d
{
 _lastName = [d copy];
}

Use of the copy attribute is most common with object types that have mutable subclasses. For example,
NSString has a subclass called NSMutableString. You can imagine that your setLastName: method
might be passed a mutable string:

// Create a mutable string
NSMutableString *x = [[NSMutableString alloc] initWithString:@"Ono"];

// Pass it to setLastName:
[myObj setLastName:x];

// 'copy' prevents this from changing the lastName
[x appendString:@" Lennon"];

What if the object passed in is not mutable? It seems wasteful to make a copy of an immutable object.
The copy method just calls copyWithZone: and passes nil as the argument. For example, in NSString,
the copyWithZone: method is overridden to look like this:

- (id)copyWithZone:(NSZone *)z
{
 return self;
}

ptg999

Lifetime specifiers

293

That is, it does not make a copy at all. (Note that NSZone and memory zoning in general are all but
deprecated, vestigial features of Cocoa programming, so we will not go further into them here.
copyWithZone: still has some use, however, and has not been entirely phased out.)

For objects that come in mutable and immutable versions, the copy method returns an immutable copy.
For example, NSMutableString has a copy method that returns an instance of NSString. If you want
the copy to be a mutable object, use the mutableCopy method.

There is no property lifetime specifier called mutableCopy. If you wish for your setter to set the
property to be a mutable copy of an object, you must implement the setter yourself so that it calls the
mutableCopy method on the incoming object. For example, in BNROwnedAppliance, you might create a
setOwnerNamesInternal: method:

- (void)setOwnerNamesInternal:(NSSet *)newNames
{
 _ownerNamesInternal = [newNames mutableCopy];
}

More about copying
Most Objective-C classes that did not come from Apple have no copyWithZone: method at all.
Objective-C programmers make fewer copies than you might think.

Curiously, the copy and mutableCopy methods are defined in NSObject like this:

- (id)copy
{
 return [self copyWithZone:NULL];
}

- (id)mutableCopy
{
 return [self mutableCopyWithZone:NULL];
}

Thus, if you have some code like this:

BNRAppliance *b = [[BNRAppliance alloc] init];
BNRAppliance *c = [b copy];

You will get an error like this:

-[BNRAppliance copyWithZone:]: unrecognized
 selector sent to instance 0x100110130

The copyWithZone: and mutableCopyWithZone: methods are declared in the NSCopying and
NSMutableCopying protocols, respectively. Many of the classes in the Foundation framework conform
to one or both of these protocols. You can find out what protocols a class conforms to in its class
reference in the developer documentation.

If you want your classes to be compatible with the copy property lifetime specifier, then you must
ensure that they conform to the NSCopying protocol.

ptg999

Chapter 34 More about Properties

294

Advice on atomic vs. nonatomic
This is an introductory book on programming, and the atomic/nonatomic option relates to a relatively
advanced topic known as multithreading. Here is what you need to know: the nonatomic option will
make your setter method run a tiny bit faster. If you look at the headers for Apple’s UIKit, every
property is marked as nonatomic. You should always make your readwrite properties nonatomic, too.

(I give this advice to everyone. In every group, however, there is someone who knows just enough to be
a pain. That person says, “But when I make my app multithreaded, I’ll need the protection that atomic
setter methods get me.” And I should say, “I don’t think you will write multithreaded code any time
soon. And when you do, I don’t think atomic setter methods are going to help.” But what I really say
is “OK, then you should leave your setters atomic.” Because you can’t tell someone something they
aren’t ready to hear.)

Unfortunately, the default for properties is atomic, so you will need to explicitly mark each of your
properties nonatomic.

Implementing accessor methods
By default, the compiler synthesizes accessor methods for any property you declare. Usually, accessor
method implementations are straightforward and thus well-suited to being handed off to the compiler.

However, there are times where you will need an accessor to do something out of the ordinary. When
this is the case, you can implement the accessor yourself in the implementation file.

There are two reasonable cases to implement an accessor yourself:

• You need to update the app’s user interface when the change occurs.

• You need to update some cached info when the change occurs.

For example, say you declared a property in a header file:

@property (nonatomic, copy) NSString* currentState;

When an object calls the setCurrentState: method, you want this method to do more than simply
change the value of the property. In this case, you can explicitly implement the setter.

- (void)setCurrentState:(NSString *)currentState
{
 _currentState = [currentState copy];

 // Some code that updates UI
 ...
}

The compiler will see your implementation of setCurrentState: and will not create a setter for you. It
will still create the getter method currentState.

If you declare a property and implement both accessors yourself, the compiler will not synthesize an
instance variable.

If you still want an instance variable (and you usually do), you must create it yourself by adding an
@synthesize statement to the class’s implementation.

ptg999

Implementing accessor methods

295

#import "Badger.h"

@interface Badger : NSObject ()
@property (nonatomic) Mushroom *mushroom;
@end

@implementation Badger;

@synthesize mushroom = _mushroom;

- (Mushroom *)mushroom
{
 return _mushroom;
}

- (void)setMushroom:(Mushroom *)mush
{
 _mushroom = mush;
}

...

The @synthesize statement tells the compiler that an instance variable named _mushroom is the
backing variable for the mushroom and setMushroom: methods and that the instance variable should be
created if it does not already exist.

If you left out the @synthesize statement in this case, the compiler would complain that _mushroom is
undefined.

When you declare a readonly property, the compiler automatically synthesizes only a getter method
and an instance variable. Thus, if you implement the getter method for a readonly property yourself,
the effect is the same as implementing both accessors for a readwrite property. The compiler will not
synthesize an instance variable, and you will need to synthesize it yourself.

You may be wondering, why declare a property at all in these cases? Declaring the property is still
good shorthand for the accessor declarations and leads to visual consistency in your code.

ptg999

This page intentionally left blank

ptg999

297

35
Key-Value coding

Key-value coding is the ability to read and set a property using its name. The key-value coding
methods are defined in NSObject, and thus every object has this capability.

Open main.m and find the line:

 [a setProductName:@"Washing Machine"];

Rewrite the same line to use key-value coding:

 [a setValue:@"Washing Machine" forKey:@"productName"];

In this case, the setValue:forKey: method, as defined in NSObject, will go looking for a setter
method named setProductName:. If the object does not have a setProductName: method, it will
access the instance variable directly.

You can also read the value of a variable using key-value coding. Add a line to main.m that prints out
the product name:

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 BNRAppliance *a = [[BNRAppliance alloc] init];
 NSLog(@"a is %@", a);
 [a setValue:@"Washing Machine" forKey:@"productName"];
 [a setVoltage:240];
 NSLog(@"a is %@", a);

 NSLog(@"the product name is %@", [a valueForKey:@"productName"]);

 }
 return 0;
}

In this case, the valueForKey: method, as defined in NSObject, goes looking for an accessor named
productName. If there is no productName method, the instance variable is accessed directly.

This use of the word “key” seems to bother some readers. You can imagine the problem: the engineer
who named these methods needed a word that could mean the name of an instance variable or the name
of a property or the name of a method. “Key” was the most specific word that he could come up with.

If you type the name of the property wrong, you will not get a warning from the compiler, but there
will be a runtime error. Make this mistake in main.m:

ptg999

Chapter 35 Key-Value coding

298

 NSLog(@"the product name is %@", [a valueForKey:@"productNammmme"]);

When you build and run it, you will see an error:

*** Terminating app due to uncaught exception 'NSUnknownKeyException',
reason: '[<BNRAppliance 0x100108dd0> valueForUndefinedKey:]:
this class is not key value coding-compliant for the key productNammmme.'

Fix the error before you go on.

Why is key-value coding interesting? Anytime a standard framework wants to push data into your
objects, it will use setValue:forKey:. Anytime a standard framework wants to read data from your
objects, it will use valueForKey:. For example, Core Data is a framework that makes it easy to save
your objects to a SQLite database and then bring them back to life. It manipulates your custom data-
bearing objects using key-value coding.

To prove that key-value coding will manipulate your variables even if you have no accessors, explicitly
declare an instance variable for the productName and comment out the @property declaration for
productName in BNRAppliance.h:

#import <Foundation/Foundation.h>

@interface BNRAppliance : NSObject
{
 NSString *_productName;
}
// @property (nonatomic, copy) NSString *productName;
@property (nonatomic) int voltage;

// The designated initializer
- (instancetype)initWithProductName:(NSString *)pn;

@end

Also, remove all use of the methods setProductName: and productName from BNRAppliance.m:

@implementation BNRAppliance

- (instancetype)initWithProductName:(NSString *)pn
{
 if (self = [super init]) {
 _productName = [pn copy];
 _voltage = 120;
 }
 return self;
}

- (instancetype)init
{
 return [self initWithProductName:@"Unknown"];
}

- (NSString *)description
{
 return [NSString stringWithFormat:@"<%@: %d volts>", _productName, self.voltage];
}

@end

ptg999

Non-object types

299

Build and run the program. Note that even though you have no accessor methods for productName, the
variable can still be set and read from other methods. This is an obvious violation of the idea of object
encapsulation – methods of an object are public, but the instance variables are delicate and should be
kept private. If key-value coding was not astonishingly useful, no one would tolerate it.

Non-object types
The key-value coding methods are designed to work with objects, but some properties hold a non-
object type, like an int or a float. For example, voltage is an int. How do you set voltage using
key-value coding? You use an NSNumber.

In main.m, change the line for setting the voltage from this:

 [a setVoltage:240];

to this:

 [a setValue:[NSNumber numberWithInt:240] forKey:@"voltage"];

Add an explicit accessor to BNRAppliance.m so that you can see it getting called:

- (void)setVoltage:(int)x
{
 NSLog(@"setting voltage to %d", x);
 _voltage = x;
}

Build and run the program.

Similarly, if you ask for the valueForKey:@"voltage", you will get back an NSNumber containing the
value of voltage.

Key paths
Most applications end up with a relatively complex object graph. For example, you might have a
BNRDepartment object that has a manager property that is a pointer to an BNREmployee object which
has an emergencyContact property which is a pointer to a BNRPerson object which has a phoneNumber
property.

Figure 35.1 Complex object graph

ptg999

Chapter 35 Key-Value coding

300

Imagine that you are asked, “What is the phone number of the emergency contact for the manager of
the sales department?” You could use key-value coding to traverse these relationships one at a time:

BNRDepartment *sales = …;
BNREmployee *sickEmployee = [sales valueForKey:@"manager"];
BNRPerson *personToCall = [sickEmployee valueForKey:@"emergencyContact"];
NSString *numberToDial = [personToCall valueForKey:@"phoneNumber"];

However, there is an easier way. Using a key path, you can make the system traverse the relationships
for you. Put the keys that you want followed in one long string separated by dots. The order is
important; the first relationship you want traversed comes first:

BNRDepartment *sales = …;
NSString *numberToDial =
 [sales valueForKeyPath:@"manager.emergencyContact.phoneNumber"];

You can also set the property at the end of a key path:

BNRDepartment *sales = …;
[sales setValue:@"555-606-0842" forKeyPath:@"manager.emergencyContact.phoneNumber"];

is equivalent to:

BNRDepartment *sales = …;
BNREmployee *sickEmployee = [sales valueForKey:@"manager"];
BNRPerson *personToCall = [sickEmployee valueForKey:@"emergencyContact"];
[personToCall setValue:@"555-606-0842" forKey:@"phoneNumber"];

ptg999

301

36
Key-Value Observing

Key-value observing is a technique that lets you get a notification when a particular property of an
object changes. Although you will not use it everyday, key-value observing (or KVO) is a crucial part
of what makes Cocoa bindings and Core Data possible.

Essentially, you tell an object, “I want to watch your fido property. If it changes, let me know.” When
the setFido: method gets called, you will get sent a message from the object you are observing: “Hey,
my fido property has a new value.”

When you add yourself as an object’s observer, you specify the name of the property you are
observing. You can also specify some options. In particular, you can tell the object to send you the old
and/or new value of the property when you are notified of the change.

(Unfortunately, the language used when discussing key-value observing and when discussing
NSNotificationCenter is very similar. In this chapter, we are not talking about NSNotification or
NSNotificationCenter, even if we use the word “notify” or “notification”.)

Open your Callbacks project. You are going to create a new object that will observe the lastTime
property of your BNRLogger class. Start by creating a new Objective-C class, a subclass of NSObject
named BNRObserver.

In main.m, create an instance of BNRObserver and make it an observer of the logger’s lastTime
property:

 __unused NSTimer *timer =
 [NSTimer scheduledTimerWithTimeInterval:2.0
 target:logger
 selector:@selector(updateLastTime:)
 userInfo:nil
 repeats:YES];

 __unused BNRObserver *observer = [[BNRObserver alloc] init];

 // I want to know the new value and the old value whenever lastTime is changed
 [logger addObserver:observer
 forKeyPath:@"lastTime"
 options:NSKeyValueObservingOptionNew | NSKeyValueObservingOptionOld
 context:nil];

 [[NSRunLoop currentRunLoop] run];

Do not forget to import BNRObserver.h at the top of main.m.

ptg999

Chapter 36 Key-Value Observing

302

Next, implement the method that will get called when lastTime is changed. Open BNRObserver.m and
add this method:

#import "BNRObserver.h"

@implementation BNRObserver

- (void)observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context
{
 NSString *oldValue = [change objectForKey:NSKeyValueChangeOldKey];
 NSString *newValue = [change objectForKey:NSKeyValueChangeNewKey];
 NSLog(@"Observed: %@ of %@ was changed from %@ to %@",
 keyPath, object, oldValue, newValue);
}

@end

Build and run the program. Every two seconds lastTime should get a new value, and your observer
should be informed.

Using the context in KVO
Notice that when you register as an observer, you can pass a pointer to anything as context. When you
are notified of the change, you will receive that same pointer with the notification. The most common
use of this is to answer “Is this really the notification that I asked for?” For example, your superclass
may use KVO. If you override observeValueForKeyPath:ofObject:change:context:, how do you
know which notifications should be forwarded on to the superclass’s implementation? The trick is
to come up with a unique pointer, use it as context when you start observing and check it against
the context each time you are notified. The address of a static variable works well. Thus, if you are
subclassing a class that might have already registered for KVO notifications, it will look something like
this:

ptg999

Triggering the notification explicitly

303

static int contextForKVO;
…

[petOwner addObserver:self
 forKeyPath:@"fido"
 options:0
 context:&contextForKVO];
…

- (void)observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context
{
 // Is this not mine?
 if (context != &contextForKVO) {

 // Pass it on to the superclass
 [super observeValueForKeyPath:keyPath
 ofObject:object
 change:change
 context:context];
 } else {
 // Handle the change
 }
}
…

Triggering the notification explicitly
The system can automatically inform the observer if you use the accessor method to set the property.
What if you, for some reason, choose not to use the accessor? You can explicitly let the system know
that you are changing a property. Change your BNRLogger.m so that it does not use the accessor to set
lastName:

- (void)updateLastTime:(NSTimer *)t
{
 NSDate *now = [NSDate date];
 _lastTime = now;
 NSLog(@"Just set time to %@", self.lastTimeString);
}

Build and run the program. Notice that the Observer never gets told that _lastTime has changed.

To fix this, explicitly tell the system before and after you change the property:

- (void)updateLastTime:(NSTimer *)t
{
 NSDate *now = [NSDate date];
 [self willChangeValueForKey:@"lastTime"];
 _lastTime = now;
 [self didChangeValueForKey:@"lastTime"];
 NSLog(@"Just set time to %@", self.lastTimeString);
}

Build and run the program. The observer should be notified correctly now.

ptg999

Chapter 36 Key-Value Observing

304

Dependent properties
What if you want to observe lastTimeString instead of lastTime? Try it. In main.m, start observing
lastTimeString:

 __unused BNRObserver *observer = [[BNRObserver alloc] init];
 [logger addObserver:observer
 forKeyPath:@"lastTimeString"
 options:NSKeyValueObservingOptionNew | NSKeyValueObservingOptionOld
 context:nil];

If you build and run the program, you will see that the notifications are not being sent properly. The
system does not know that lastTimeString changes whenever lastTime changes.

To fix this, you need to tell the system that lastTime affects lastTimeString. This is done by
implementing a class method. Open BNRLogger.m and add this class method:

+ (NSSet *)keyPathsForValuesAffectingLastTimeString
{
 return [NSSet setWithObject:@"lastTime"];
}

Note the name of this method: it is keyPathsForValuesAffecting plus the name of the key,
capitalized. This is the canonical nomenclature for methods like this one, just as property setters are
named set plus the property’s name, capitalized.

There is no need to declare this method in BNRLogger.h; it will be found at runtime.

ptg999

305

37
Categories

Categories let a programmer add methods to any existing class. For example, Apple gave us the class
NSString. Apple does not share the source code to that class, but you can use a category to add new
methods to it.

Create a new Foundation�Command�Line�Tool called VowelCounter. Then create a new file that is an
Objective-C�category. Name the category BNRVowelCounting and make it a category on NSString.

Now open NSString+BNRVowelCounting.h and declare a method that you want to add to the NSString
class:

#import <Foundation/Foundation.h>

@interface NSString (BNRVowelCounting)
- (int)bnr_vowelCount;

@end

Now implement the method in NSString+BNRVowelCount.m:

#import "NSString+BNRVowelCounting.h"

@implementation NSString (BNRVowelCounting)

- (int)bnr_vowelCount
{
 NSCharacterSet *charSet =
 [NSCharacterSet characterSetWithCharactersInString:@"aeiouyAEIOUY"];

 NSUInteger count = [self length];
 int sum = 0;
 for (int i = 0; i < count; i++) {
 unichar c = [self characterAtIndex:i];
 if ([charSet characterIsMember:c]) {
 sum++;
 }
 }
 return sum;
}
@end

Now use the new method in main.m:

ptg999

Chapter 37 Categories

306

#import <Foundation/Foundation.h>
#import "NSString+BNRVowelCounting.h"

int main (int argc, const char * argv[])
{
 @autoreleasepool {

 NSString *string = @"Hello, World!";
 NSLog(@"%@ has %d vowels", string, [string bnr_vowelCount]);

 }
 return 0;
}

Build and run the program. Nifty, eh? Categories turn out to be very useful.

It is important to note that only this program has the category. If you want the method available in
another program, you must add the files to your project and compile the category in when you build
that program.

Notice also that the method that you wrote begins with bnr_. When you implement a method using
a category, it replaces any method with the same name that already exists on the class. So if, in the
future, Apple implements a method called vowelCount on NSString, you don’t want your method to
stomp on theirs. Thus, it is a good idea to add a prefix like this to the names of any methods you add to
Apple’s classes using a category.

You should use categories to add functionality to existing classes. Do not use them to replace
functionality in existing classes; use subclassing instead.

Challenge
Create a new Foundation�Command�Line�Tool called DateMonger. Add an NSDate category named
BNRDateConvenience.

In the category, add a class method to NSDate that takes three integers (year, month, and day) and
returns a new NSDate instance that is initialized to midnight on the passed-in day.

Test it in main().

Hint: You will want to refer to the NSDateComponents class that you learned about in Chapter 14.

ptg999

Part VI
Advanced C

To be a competent Objective-C programmer, you must also be a competent C programmer. In our rush
to get you familiar with objects, we skipped a few things that you might want to know about C. These
topics are not ideas that you will use everyday, but you will encounter them occasionally, so we want to
introduce you to them here.

ptg999

This page intentionally left blank

ptg999

309

38
Bitwise Operations

In the first part of this book, we described the memory of a computer as a vast meadow of switches
(billions of switches) that could be turned on or off. Each switch represents one bit, and we usually use
1 to mean “on” and 0 to mean “off.”

However, you never address a single bit. Instead, you deal with byte-sized chunks of bits. If you think
of a byte as an unsigned 8-bit integer, each bit represents another power of two:

Figure 38.1 One byte representing the decimal number 60

As a side-effect of evolving to have 10 fingers, people like to work with decimal numbers (base-10).
Computers, as a side-effect of evolving to use switches that could only be on or off, like powers of 2.
Programmers often use a base-16 number system (16 = 24) known as hexadecimal or just “hex.” This is
especially true when dealing with individual bits of an integer.

We use the letters a, b, c, d, e, and f for the extra digits. Thus, counting in hex goes like this: 0, 1, 2,
3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, 10, 11, …

To make it clear when we are writing in hex, we prefix the number with 0x. Here is the same number
and byte expressed using hex:

Figure 38.2 One byte representing the hex number 0x3c

Note that one byte can always be described as a two-digit hex number (like 3c). This makes hex a
reasonable way to look at binary data. A tough-guy programmer thing to say is “I reverse-engineered
the file format by studying the document files in a hex editor.” Want to see a file as a list of hex-
encoded bytes? In Terminal, run hexdump on the file:

$ hexdump myfile.txt
0000000 3c 3f 78 6d 6c 20 76 65 72 73 69 6f 6e 3d 22 31

ptg999

Chapter 38 Bitwise Operations

310

0000010 2e 30 22 3f 3e 0a 3c 62 6f 6f 6b 20 78 6d 6c 6e
0000020 73 3d 22 68 74 74 70 3a 2f 2f 64 6f 63 62 6f 6f
0000030 6b 2e 6f 72 67 2f 6e 73 2f 64 6f 63 62 6f 6f 6b
0000040 22
0000041

The first column is the offset (in hex) from the beginning of the file of the byte listed in the second
column. Each two digit number represents one byte.

Bitwise-OR
If you have two bytes, you can bitwise-OR them together to create a third byte. A bit on the third byte
will be 1 if at least one of the corresponding bits in the first two bytes is 1.

Figure 38.3 Two bytes bitwise-ORed together

This is done with the | operator. To try your hand at manipulating bits, create a new project: a C
Command�Line�Tool (not Foundation) named bitwize.

Edit main.c:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 unsigned char a = 0x3c;
 unsigned char b = 0xa9;
 unsigned char c = a | b;

 printf("Hex: %x | %x = %x\n", a, b, c);
 printf("Decimal: %d | %d = %d\n", a, b, c);

 return 0;
}

When you run this program, you will see the two bytes bitwise-ORed together:

Hex: 3c | a9 = bd
Decimal: 60 | 169 = 189

What is this good for? In Objective-C, we often use an integer to specify a certain setting. An integer is
always a sequence of bits, and each bit is used to represent one aspect of the setting that can be turned
on or off. We create this integer (also known as a bit mask) by picking and choosing from a set of
constants. These constants are integers, too, and each constant specifies a single aspect of the setting
by having only one of its bits turned on. You can bitwise-OR together the constants that represent the
particular aspects you want. The result is the exact setting you are looking for.

ptg999

Bitwise-AND

311

Let’s look at an example. iOS comes with a class called NSDataDetector. Instances of
NSDataDetector go through text and look for common patterns like dates or URLs. The patterns an
instance will look for are determined by the bitwise-OR result of a set of integer constants.

NSDataDetector.h defines these constants: NSTextCheckingTypeDate,
NSTextCheckingTypeAddress, NSTextCheckingTypeLink, NSTextCheckingTypePhoneNumber, and
NSTextCheckingTypeTransitInformation. When you create an instance of NSDataDetector, you tell
it what to search for. For example, if you wanted it to search for phone numbers and dates, you would
do this:

NSError *e;
NSDataDetector *d = [NSDataDetector dataDetectorWithTypes:
 NSTextCheckingTypePhoneNumber|NSTextCheckingTypeDate
 error:&e];

Notice the bitwise-OR operator. Each of the numbers being ORed together has exactly one bit on,
so the resulting bit mask would have two bits on. You will see this pattern a lot in Cocoa and iOS
programming, and now you will know what is going on behind the scenes.

Bitwise-AND
You can also bitwise-AND two bytes together to create a third. In this case, a bit on the third byte is 1
only if the corresponding bits in the first two bytes are both 1.

Figure 38.4 Two bytes bitwise-ANDed together

This is done with the & operator. Add the following lines to main.c:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 unsigned char a = 0x3c;
 unsigned char b = 0xa9;
 unsigned char c = a | b;

 printf("Hex: %x | %x = %x\n", a, b, c);
 printf("Decimal: %d | %d = %d\n", a, b, c);

 unsigned char d = a & b;

 printf("Hex: %x & %x = %x\n", a, b, d);
 printf("Decimal: %d & %d = %d\n", a, b, d);

 return 0;
}

ptg999

Chapter 38 Bitwise Operations

312

When you run it, you will see the two bytes bitwise-ANDed together:

Hex: 3c & a9 = 28
Decimal: 60 & 169 = 40

In Objective-C, we use bitwise-AND to see if a certain bit, or flag, is on. For example, if you were
handed an instance of NSDataDetector, you could check if it was set to look for phone numbers like
this:

if ([currentDetector checkingTypes] & NSTextCheckingTypePhoneNumber) {
 NSLog(@"This one is looking for phone numbers");
}

The checkingTypes method returns an integer that is the bitwise-OR result of all the flags this instance
of NSDataDetector has on. You bitwise-AND this integer with a particular NSTextCheckingType
constant and check the result. If the bit that is on in NSTextCheckingTypePhoneNumber is not on in the
data detector’s setting, then the result of bitwise-ANDing them will be all zeroes. Otherwise, you will
get a non-zero result, and you will know that this data detector does look for phone numbers.

Note that when we use bits this way, we do not care what the integers in these cases equate to
numerically.

Other bitwise operators
For completeness, here are the other bitwise operators. These are less commonly used in Objective-C
but good to know.

Exclusive-OR
You can exclusive-or (XOR) two bytes together to create a third. A bit in the third byte is 1 if exactly
one of the corresponding bits in the input bytes is 1.

Figure 38.5 Two bytes bitwise-XORed together

This is done with the ^ operator. Add to main.c:

 unsigned char e = a ^ b;

 printf("Hex: %x ^ %x = %x\n", a, b, e);
 printf("Decimal: %d ^ %d = %d\n", a, b, e);

 return 0;
}

ptg999

Complement

313

When you run it you will see:

Hex: 3c ^ a9 = 95
Decimal: 60 ^ 169 = 149

This operator sometimes causes beginners some confusion. In most spreadsheet programs, the ^
operator is exponentiation: 2^3 means 23. In C, we use the pow() function for exponentiation:

double r = pow(2.0, 3.0); // Calculate 2 raised to the third power

Complement
If you have a byte, the complement is the byte that is the exact opposite: each 0 becomes a 1 and each 1
becomes a 0.

Figure 38.6 The complement

This is done with the ~ operator. Add a few lines to main.c:

 unsigned char f = ~b;
 printf("Hex: The complement of %x is %x\n", b, f);
 printf("Decimal: The complement of %d is %d\n", b, f);

 return 0;
}

You should see:

Hex: The complement of a9 is 56
Decimal: The complement of 169 is 86

Left-shift
If you left-shift the bits, you take each bit and move it toward the most significant bit. The ones that are
on the left side of the number are forgotten, and the holes created on the right are filled with zeros.

Figure 38.7 Left-shifting by 2

ptg999

Chapter 38 Bitwise Operations

314

Left-shift is done with the << operator. Add a shift of two places to main.c:

 unsigned char g = a << 2;
 printf("Hex: %x shifted left two places is %x\n", a, g);
 printf("Decimal: %d shifted left two places is %d\n", a, g);

 return 0;
}

When this code runs, you will see:

Hex: 3c shifted left two places is f0
Decimal: 60 shifted left two places is 240

Every time you left-shift a number one place, you double its value.

Right-shift
The right-shift operator should not be much of a surprise.

Figure 38.8 Right-shifting by 1

Add code to main.m:

 unsigned char h = a >> 1;
 printf("Hex: %x shifted right one place is %x\n", a, h);
 printf("Decimal: %d shifted right one place is %d\n", a, h);

 return 0;
}

When run:

Hex: 3c shifted right one place is 1e
Decimal: 60 shifted right one place is 30

Every time you right-shift a number one place, you halve its value. (If it is odd, round down.)

Using enum to define bit masks
Often you will want to define a list of constants, each representing an integer with one bit turned on.
Then, these integers can be bitwise-ORed together and tested for using bitwise-AND, as described
above.

The elegant way to do this is to define an enum that uses the left-shift operator to define the values.
Here is how the constants for the UIDataDetector are defined:

ptg999

More bytes

315

enum {
 UIDataDetectorTypePhoneNumber = 1 << 0,
 UIDataDetectorTypeLink = 1 << 1,
 UIDataDetectorTypeAddress = 1 << 2,
 UIDataDetectorTypeCalendarEvent = 1 << 3,
 UIDataDetectorTypeNone = 0,
 UIDataDetectorTypeAll = NSUIntegerMax
};

More bytes
In this chapter, you worked with unsigned char, which is one 8-bit byte. Any unsigned integer
type will work the same way. For example, NSTextCheckingTypePhoneNumber is actually declared
uint64_t, a 64-bit unsigned number.

Challenge
Write a program that creates an unsigned 64-bit integer such that every other bit is turned on. (There
are actually two possible resulting numbers: one is even, the other is odd. Create the odd one.) Display
the number. To check your work, the answer is 6,148,914,691,236,517,205.

ptg999

This page intentionally left blank

ptg999

317

39
C Strings

Given the choice, an Objective-C programmer will always choose to work with NSString objects
rather than C strings. However, sometimes we do not have a choice. The most common reason we end
up using C strings? When we access a C library from within our Objective-C code. For example, there
is a library of C functions that lets your program talk to a PostgreSQL database server. The functions in
that library use C strings, not instances of NSString.

char
In the last section, we talked about how a byte could be treated as a number. We can also treat a byte
as a character. As mentioned earlier, there are many different string encodings. The oldest and most
famous is ASCII. ASCII (American Standard Code for Information Interchange) defines a different
character for each byte. For example, 0x4b is the character ‘K’.

Create a new C�Command�Line�Tool and name it yostring. In this program, you are going to list some of
the characters in the ASCII standard. Edit main.c:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 char x = 0x21; // The character '!'

 while (x <= 0x7e) { // The character '~'
 printf("%x is %c\n", x, x);
 x++;
 }

 return 0;
}

Build and run it. You may be wondering “Hey, a byte can hold any one of 256 numbers. You just
printed out 94 characters. What happened to the rest?” Well, ASCII was written to drive old teletype-
style terminals that printed to paper instead of to a screen, so characters 1 - 31 in ASCII are unprintable
control codes. For example, the number 7 in ASCII makes the terminal bell ring. Number 32 is the
space character. Number 127 is the delete – it causes the previous character to disappear. What about
characters 128 – 255? ASCII only uses 7 bits. There is no ASCII character for the number 128. Nor is
there an ASCII character for the number 0.

You can use ASCII characters as literals in code. Just put them inside single quotes. Change your code
to use these:

ptg999

Chapter 39 C Strings

318

int main (int argc, const char * argv[])
{
 char x = '!'; // The character '!'

 while (x <= '~') { // The character '~'
 printf("%x is %c\n", x, x);
 x++;
 }

 return 0;
}

Build it and run it.

The non-printable characters can be expressed using escape sequences that start with \. You have
already used \n for the newline character. Here are some other common ones:

Table 39.1 Common escape sequences

\n new line

\t tab

\' single-quote

\" double-quote

\0 null byte (0x00)

\\ backslash

char *
A C string is just a bunch of characters right next to each other in memory. The string ends when the
character 0x00 is encountered.

Figure 39.1 The word “Love” as a C string

Functions that take C strings expect the address of the string’s first character. strlen(), for example,
will count the number of characters in a string. Try building a string and using strlen() to count the
letters:

ptg999

char *

319

#include <stdio.h> // For printf
#include <stdlib.h> // For malloc/free
#include <string.h> // For strlen

int main (int argc, const char * argv[])
{
 char x = '!'; // The character '!'

 while (x <= '~') { // The character '~'
 printf("%x is %c\n", x, x);
 x++;
 }

 // Get a pointer to 5 bytes of memory on the heap
 char *start = malloc(5);

 // Put 'L' in the first byte
 *start = 'L';

 // Put 'o' in the second byte
 *(start + 1) = 'o';

 // Put 'v' in the third byte
 *(start + 2) = 'v';

 // Put 'e' in the fourth byte
 *(start + 3) = 'e';

 // Put zero in the fifth byte
 *(start + 4) = '\0';

 // Print out the string and its length
 printf("%s has %zu characters\n", start, strlen(start));

 // Print out the third letter
 printf("The third letter is %c\n", *(start + 2));

 // Free the memory so that it can be reused
 free(start);
 start = NULL;

 return 0;
}

Build and run it.

Notice the places where you added a pointer and a number together. start is declared to be a char *.
A char is one byte. So start + 1 is a pointer one byte further in memory than start. start + 2 is
two bytes further in memory than start.

Figure 39.2 The address of each character

ptg999

Chapter 39 C Strings

320

This adding to a pointer and dereferencing the result is so common that there is a shorthand for it:
start[2] is equivalent to *(start + 2). Change your code to use it:

 char *start = malloc(5);
 start[0] = 'L';
 start[1] = 'o';
 start[2] = 'v';
 start[3] = 'e';
 start[4] = '\0';

 printf("%s has %zu characters\n", start, strlen(start));
 printf("The third letter is %c\n", start[2]);

 free(start);
 start = NULL;

 return 0;
}

Build and run it.

It should be mentioned that this works with any data type. Here, for example, I can make a list of my
favorite 3 floating point numbers and print them out:

int main (int argc, const char * argv[])
{
 // Claim a chunk of memory big enough to hold three floats
 float *favorites = malloc(3 * sizeof(float));

 // Push values into the locations in that buffer
 favorites[0] = 3.14158;
 favorites[1] = 2.71828;
 favorites[2] = 1.41421;

 // Print out each number on the list
 for (int i = 0; i < 3; i++) {
 printf("%.4f is favorite %d\n", favorites[i], i);
 }

 // Free the memory so that it can be reused
 free(favorites);
 favorites = NULL;

 return 0;
}

The only interesting difference here is that favorites is typed as a float *. A float is 4 bytes. Thus
favorites + 1 is 4 bytes further in memory than favorites.

Figure 39.3 An array of three floats

ptg999

String literals

321

String literals
If you were dealing with C strings a lot, malloc-ing the memory and stuffing the characters in one by
one would be a real pain. Instead, you can create a pointer to a string of characters (terminated with the
zero character) by putting the string in quotes. Change your code to use a string literal:

int main (int argc, const char * argv[])
{
 char x = '!'; // The character '!'

 while (x <= '~') { // The character '~'
 printf("%x is %c\n", x, x);
 x++;
 }

 char *start = "Love";
 printf("%s has %zu characters\n", start, strlen(start));
 printf("The third letter is %c\n", start[2]);

 return 0;
}

Build it and run it.

Notice that you do not need to malloc and free memory for a string literal. It is a constant and appears
in memory only once, so the compiler takes care of its memory use. As a side-effect of it being a
constant, bad things happen if you try to change the characters in the string. Add a line that should
crash your program:

 char *start = "Love";
 start[2] = 'z';
 printf("%s has %zu characters\n", start, strlen(start));

When you build and run it, you should get a EXC_BAD_ACCESS signal. You tried to write into
memory that you are not allowed to write in.

To enable the compiler to warn you about writing to constant parts of memory, you can use the const
modifier to specify that a pointer is referring to data that must not be changed. Try it:

 const char *start = "Love";
 start[2] = 'z';
 printf("%s has %zu characters\n", start, strlen(start));

Now when you build, you should get an error from the compiler.

Delete the problematic line (start[2] = 'z';) before continuing.

You can use the escape sequences mentioned above in your string literals. Use a few:

 const char *start = "A backslash after two newlines and a tab:\n\n\t\\";
 printf("%s has %zu characters\n", start, strlen(start));
 printf("The third letter is \'%c\'\n", start[2]);

 return 0;
}

Build and run it.

ptg999

Chapter 39 C Strings

322

Converting to and from NSString
If you are using C strings in an Objective-C program, you will need to know how to make an NSString
from a C string. The NSString class has a method for this:

char *greeting = "Hello!";
NSString *x = [NSString stringWithCString:greeting encoding:NSUTF8StringEncoding];

You can also get a C string from an NSString. This is a little trickier because NSString can handle
some characters that certain encodings cannot. It is a good idea to check that the conversion can occur:

NSString *greeting = "Hello!";
const char *x = NULL;
if ([greeting canBeConvertedToEncoding:NSUTF8StringEncoding]) {
 x = [greeting cStringUsingEncoding:NSUTF8StringEncoding];
}

You do not own the resulting C string; the system will eventually free it for you. You are guaranteed
that it will live at least as long as the current autorelease pool, but if you are going to need the C string
to live for a long time, you should copy it into a buffer you have created with malloc().

Challenge
Write a function called spaceCount() that counts the space characters (ASCII 0x20) in a C string. Test
it like this:

#include <stdio.h>

int main (int argc, const char * argv[])
{

 const char *sentence = "He was not in the cab at the time.";
 printf("\"%s\" has %d spaces\n", sentence, spaceCount(sentence));

 return 0;
}

Remember: when you run into '\0', you have reached the end of the string!

ptg999

323

40
C Arrays

In the last chapter, you worked with C strings. A C string turned out to be a list of characters packed
one next to the other in memory. C arrays are lists of other data types packed one next to the other in
memory. Just as with strings, you deal with the list by holding onto the address of the first one.

Imagine that you wanted to write a program that would calculate the average of 3 grades. Create a new
C�Command�Line�Tool project and name it gradeInTheShade.

Edit main.c:

#include <stdio.h>
#include <stdlib.h> // malloc(), free()

float averageFloats(float *data, int dataCount)
{
 float sum = 0.0;
 for (int i = 0; i < dataCount; i++) {
 sum = sum + data[i];
 }
 return sum / dataCount;
}

int main (int argc, const char * argv[])
{

 // Create an array of floats
 float *gradeBook = malloc(3 * sizeof(float));
 gradeBook[0] = 60.2;
 gradeBook[1] = 94.5;
 gradeBook[2] = 81.1;

 // Calculate the average
 float average = averageFloats(gradeBook, 3);

 // Free the array
 free(gradeBook);
 gradeBook = NULL;

 printf("Average = %.2f\n", average);

 return 0;
}

Build and run it.

ptg999

Chapter 40 C Arrays

324

Figure 40.1 Pointers on the stack to a buffer of floats

malloc() allocates a buffer on the heap, so you need to make sure that you free it when you are done.
Wouldn’t it be great if you could declare that buffer as part of the frame (on the stack) so that it would
be deallocated automatically when the function is done executing? You can. Change main.c:

import <stdio.h>

float averageFloats(float *data, int dataCount)
{
 float sum = 0.0;
 for (int i = 0; i < dataCount; i++) {
 sum = sum + data[i];
 }
 return sum / dataCount;
}

int main (int argc, const char * argv[])
{

 // Declares the array as part of the frame
 float gradeBook[3];

 gradeBook[0] = 60.2;
 gradeBook[1] = 94.5;
 gradeBook[2] = 81.1;

 // Calculate the average
 float average = averageFloats(gradeBook, 3);

 // No need to free the array!
 // Cleanup happens automatically when the function returns

 printf("Average = %.2f\n", average);

 return 0;
}

Build and run it.

The string literal made it easy to pack an array with characters. There are also array literals. Use one to
initialize gradeBook:

ptg999

Challenge

325

int main (int argc, const char *argv[])
{
 float gradeBook[] = {60.2, 94.5, 81.1};

 float average = averageFloats(gradeBook, 3);

 printf("Average = %.2f", average);

 return 0;
}

Build and run the program.

Notice that you did not need to specify the length of gradeBook as 3; the compiler figures that out from
the array literal. You can use this type in many places where you might use *. For example, change the
declaration of averageFloats() to do this:

float averageFloats(float data[], int dataCount)
{
 float sum = 0.0;
 for (int i = 0; i < dataCount; i++) {
 sum = sum + data[i];
 }
 return sum / dataCount;
}

Build and run the program.

Challenge
Before reading this book, you had probably used hexadecimal notation: Nearly every software license
key or coupon code given out is written in hexadecimal. You have probably seen this “Type this into
the coupon code field: 4af812e660ba8c123ee.” It is a common way to get a user to type in a seemingly
random set of bytes.

However, hexadecimal notation is fraught with peril when these values must work with speech
recognition. “B”, “C”, “D” and “E” sound a lot alike to humans and machines. Big Nerd Ranch had a
client with this problem, who asked me to come up with a license key system that would allow them to
easily recite license keys over the phone.

Our solution was a system based on a set of internationally recognized words. What words are these?
Mostly, international brands, like “Honda,” “Google,” and “Nike.” The idea for using brand names
came from a passage in Don DeLillo’s White Noise. The narrator is listening to a child recite car brands
in her sleep. He says “She was only repeating some TV voice. Toyota Corolla, Toyota Celica, Toyota
Cressida. Supranational names, computer-generated, more or less universally pronounceable. Part of
every child’s brain noise, the substatic regions too deep to probe. Whatever its source, the utterance
struck me with the impact of a moment of splendid transcendence.”

This solution allowed our client to create and understand strings made of numbers and brand names.
These strings could be transferred into a byte of data. Your challenge is to create a similar system.
Warning: This is the final challenge of this book, and it is quite challenging.

The leftmost 3 bits of each byte will be encoded as a digit between 2 and 9 inclusive. You are avoiding
0 and 1 because in writing these are easily confused with the letters O and l. The remaining five bits

ptg999

Chapter 40 C Arrays

326

will be represented by a brand name. 25 is 32. So you will need 32 international brand names. Here is a
list you can use:

0. Camry
1. Nikon
2. Apple
3. Ford
4. Audi
5. Google
6. Nike
7. Amazon
8. Honda
9. Mazda
10. Buick
11. Fiat
12. Jeep
13. Lexus
14. Volvo
15. Fuji
16. Sony
17. Delta
18. Focus
19. Puma
20. Samsung
21. Tivo
22. Halo
23. Sting
24. Shrek
25. Avatar
26. Shell
27. Visa
28. Vogue
29. Twitter
30. Lego
31. Pepsi

So, for example, four bytes of random data might be rendered in hexadecimal as 53ec306f. In our
system, the same data would become the string “4 Puma 9 Jeep 3 Sony 5 Fuji”. When parsing the
string, we would ignore whitespace and capitalization.

The challenge, then, is to create a new command-line tool that includes two methods:

• Take a buffer of bytes and return a string that represents those bytes

• Take a string and return the buffer of bytes it represents

You will add these methods to NSData as a category. Here is the declaration of the category:

ptg999

Challenge

327

@interface NSData (Speakable)
- (NSString *)encodeAsSpeakableString;
+ (NSData *)dataWithSpeakableString:(NSString *)s
 error:(NSError **)e;
@end

The first method is considerably easier to write than the second.

Here is a main.m that will test those methods:

#import <Foundation/Foundation.h>
#import "NSData+Speakable.h"

int main(int argc, const char * argv[])
{

 @autoreleasepool {

 // Generate 8 bytes of random data
 srandom((unsigned int)time(NULL));
 int64_t randomBytes = (random() << 32) | random();

 // Pack it in an NSData
 NSData *inData = [NSData dataWithBytes:&randomBytes
 length:sizeof(int64_t)];
 NSLog(@"In Data = %@", inData);

 // Convert to a speakable string
 NSString *speakable = [inData encodeAsSpeakableString];
 NSLog(@"Got string \"%@\"", speakable);

 // Converting it back to an NSData
 NSError *err;
 NSData *outData = [NSData dataWithSpeakableString:speakable
 error:&err];
 if (!outData) {
 NSLog(@"Unexpected error: %@", [err localizedDescription]);
 return -1;
 }
 NSLog(@"Out data: %@", outData);

 // outData better be the same as inData
 if (![outData isEqual:inData]) {
 NSLog(@"Data coming out not the same as what went in.");
 return -1;
 }

 // Test a misspelling ("Teevo" not "Tivo")
 speakable = @"2 Jeep 3 Halo 7 Teevo 2 Pepsi 2 Volvo";
 outData = [NSData dataWithSpeakableString:speakable
 error:&err];
 if (!outData) {
 NSLog(@"Expected error: %@", [err localizedDescription]);
 } else {
 NSLog(@"Missed bad string");
 return -1;
 }
 }
 return 0;
}

ptg999

Chapter 40 C Arrays

328

This program should produce output like this:

In Data = <53ec306f 955c6668>
Got string "4 Puma 9 Jeep 3 Sony 5 Fuji 6 Tivo 4 Vogue 5 Nike 5 Honda"
Out data: <53ec306f 955c6668>
Expected error: Unable to parse
Program ended with exit code: 0

At some point, you will find yourself asking, “Where is the next digit?” You can use NSCharacterSet
to find it.

NSString *string =

// Get the digit character set
NSCharacterSet *digits = [NSCharacterSet decimalDigitCharacterSet];
NSRange searchRange;
searchRange.location = 0;
searchRange.length = [string length];

// Find the location of the first digit in the string
NSRange digitRange = [str rangeOfCharacterFromSet:digits
 options:NSLiteralSearch
 range:searchRange];

// Are there no digits?
if (digitRange.length == 0) {
 NSLog(@"Searched whole string and found no digits");
} else {
 NSLog(@"Character %d is a digit", digitRange.location);
}

You will need to look at the documentation for NSString and NSMutableString to find some of the
ways that you can manipulate substrings using NSRange.

In dataWithSpeakableString:error:, you will need to deal with badly formatted strings by creating
an NSError and returning nil. This will look something like this:

// Did the parse fail?
if (!success) {

 // Did the caller give me a place to put the error?
 if (e) {
 NSDictionary *userInfo = @{NSLocalizedDescriptionKey : @"Unable to parse"};
 *e = [NSError errorWithDomain:@"SpeakableBytes"
 code:1
 userInfo:userInfo];
 return nil;
 }
}

You will use several bitwise operations.

Good luck!

ptg999

329

41
Running from the Command

Line

In this book, you have built and run many command-line tools in Xcode. Running in Xcode works
great for testing programs and for learning programming. However, if you create a command-line tool
to use in real life, then you will want to run it from the command line.

In a Mac, you typically use Terminal to run programs from the command line. The Terminal app is just
a pretty interface to what is called a shell. There are a few different shells with catchy names like csh,
sh, zsh, and ksh, but nearly all Mac users use bash.

To run a program from the command line, you enter the path of the program’s executable file in
Terminal and press Return.

In Xcode, return to your gradeInTheShade project from Chapter 40. In the project navigator, reveal the
contents of the Products folder and find a file named gradeInTheShade. This is your executable file.
Right-click this file and choose Show�In�Finder.

Figure 41.1 Showing executable in Finder

Copy the gradeInTheShade file from Finder to your desktop.

ptg999

Chapter 41 Running from the Command Line

330

Next, open Terminal and type the following command:

$ ~/Desktop/gradeInTheShade

Press Return, the program will run, and the output will appear in the Terminal window. Your command-
line tool has now lived up to its name.

Command-line arguments
A command-line tool can have one or more command-line arguments. A command-line argument
provides information to the tool about what you want it to do.

None of the tools that you have created so far have had command-line arguments, but useful command-
line tools typically do. In this chapter, you are going to create another command-line tool called
Affirmation. It will not be particularly useful, but it will have command-line arguments.

Here is what running Affirmation will look like when you are finished:

$ Affirmation awesome 4
You are awesome!
You are awesome!
You are awesome!
You are awesome!

This tool has two command-line arguments: an inspiring adjective and the number of times to display
the affirmation. Command-line arguments are typed in just after the file path, separated by whitespace.
These arguments will be read into the Affirmation program as strings, and then the program will use that
information to get its work done.

In Xcode, create a new C�Command�Line�Tool project called Affirmation. Open main.c and check out
this familiar code:

int main (int argc, const char * argv[])
{
...

The main function has two arguments. The second argument, argv, is an array of C strings. This is
where command-line arguments are stored. Each command-line argument becomes a C string and is
packed into argv before main() is called. The first argument, argc, is the number of strings in argv.

In main.c, edit main() to print out the contents of argv:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 for (int i = 0; i < argc; i++) {
 printf("arg %d = %s\n", i, argv[i]);
 }

 return 0;
}

ptg999

Command-line arguments

331

Use Command-B to build (but not run) this program. From the project navigator, select the executable
file and show it in Finder. Copy the file to your desktop. Then, in Terminal, enter the following
command:

$ ~/Desktop/Affirmation terrific 3

Here is your output:

arg 0 = /Users/mward/Desktop/Affirmation
arg 1 = terrific
arg 2 = 3

Surprise! The first item in argv is not the first command-line argument; it is the path to the executable
file. This item is always in argv even in programs that do not accept command-line arguments.

Figure 41.2 argv and argc in Affirmation

In Xcode, modify main() to print out affirmations instead. Use atoi() to convert the argv item string
to an int that you can use.

#include <stdio.h>
#include <stdlib.h>

int main (int argc, const char * argv[])
{

 int count = atoi(argv[2]);

 for (int j = 0; j < count; j++) {
 printf("You are %s!\n", argv[1]);
 }

 return 0;
}

To run the modified code, you could follow the same process you did before: build, show in Finder,
copy to Desktop, run from Terminal. Fortunately, however, there is a way to feed command-line
arguments to Xcode so that you can build and run without leaving the comfort of home.

From Xcode’s menu bar, select Product → Scheme → Edit�Scheme.... On the sheet that appears, select
Run�Affirmation on the lefthand side. Then select Arguments from the choices at the top of the sheet.
Find the list entitled Arguments�Passed�On�Launch and use the + button to add two specific arguments:

ptg999

Chapter 41 Running from the Command Line

332

Figure 41.3 Adding arguments

Click OK to dismiss the sheet. The build and run the program. The console will show the output based
on the two command-line arguments that you included in the scheme.

Note that there is nothing currently in the code that checks the number of the command-line arguments
entered. Usually, it is important to check to ensure that the program will have the information it needs
to run.

In Xcode, edit main.c to check for the correct number of command-line arguments. Do not forget
about argv[0] (the executable file path) when testing the value of argc.

#include <stdio.h>

int main (int argc, const char * argv[])
{

 if (argc != 3) {
 fprintf(stderr, "Usage: Affirmation <adjective> <number>\n");
 return 1;
 }

 int count = atoi(argv[2]);

 for (int j = 0; j < count; j++) {
 printf("You are %s!\n", argv[1]);
 }

 return 0;
}

Edit the scheme again to test your error case (Product → Scheme → Edit�Scheme...). Remove one of
the arguments and build and run again.

ptg999

More convenient running from the command-line

333

Command-line arguments do not have to be single words. You can use quotation marks to pass a
multiple-word argument. For instance, you could edit the scheme again and make the first argument
"the best":

Figure 41.4 Adding a multi-word argument

More convenient running from the command-line
What if you wanted to run Affirmation from the command line on a regular basis? Your best option is to
move the executable to one of the standard directories for executables. This will allow you to run from
the command line using only the name of the executable:

$ Affirmation "the best" 4

The standard directories for executables are determined by the PATH environment variable.

In Terminal, find your PATH environment variable:

$ echo $PATH
/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/X11/bin

The /usr/local/bin directory a good home for Affirmation; by convention, it is the directory for user-
installed tools on Unix and Unix-based systems, like OS X.

Even though the /usr/local/bin directory is in your PATH environment variable, it may not exist
on your Mac. If this is the case, then you will need to create the /usr/local/bin directory. Type the
following command to make the directory if it does not already exist:

$ mkdir -p /usr/local/bin

Next, type the following command to open the /usr/local/bin directory in Finder:

ptg999

Chapter 41 Running from the Command Line

334

$ open /usr/local/bin

In Finder, copy Affirmation into /usr/local/bin.

Now that Affirmation is in /usr/local/bin, you no longer have to provide the complete path to the
executable in Terminal; you can use just its name:

$ Affirmation "good enough" 3

The system will scan the directories in the PATH environment variable, and find and run Affirmation.

ptg999

335

42
Switch Statements

It is not uncommon to check a variable for a set of values. Using if-else statements, it would look
like this:

int yeastType = ...;

if (yeastType == 1) {
 makeBread();
} else if (yeastType == 2) {
 makeBeer();
} else if (yeastType == 3) {
 makeWine();
} else {
 makeFuel();
}

To make this sort of thing easier, C has the switch statement. The code above could be changed to this:

int yeastType = ...;

switch (yeastType) {
 case 1:
 makeBread();
 break;
 case 2:
 makeBeer();
 break;
 case 3:
 makeWine();
 break;
 default:
 makeFuel();
 break;
}

Notice the break statements. Without the break, after executing the appropriate case clause the system
would execute all the subsequent case clauses. For example, if you had this:

ptg999

Chapter 42 Switch Statements

336

int yeastType = 2;

switch (yeastType) {
 case 1:
 makeBread();
 case 2:
 makeBeer();
 case 3:
 makeWine();
 default:
 makeFuel();
}

then the program would run makeBeer(), makeWine(), and makeFuel(). A switch statement works this
way so that you can have more than one value trigger the same code:

int yeastType = ...;

switch (yeastType) {
 case 1:
 case 4:
 makeBread();
 break;
 case 2:
 case 5:
 makeBeer();
 break;
 case 3:
 makeWine();
 break;
 default:
 makeFuel();
 break;
}

As you can imagine, forgetting to put the break at the end of the case clause is a common programmer
error, and it is only discovered when your program starts acting strangely.

In C, switch statements are for a very specific situation: the value of each case must be a constant
integer. As such, you do not see a lot of switch statements in most Objective-C programs. Which is
why we snuck it in here just before the book ends.

ptg999

337

Appendix
The Objective-C Runtime

“Any sufficiently advanced technology is indistinguishable from magic.” —Arthur C. Clarke

“Magic is dumb.” —Every engineer, ever

People who become programmers are often the sort of people who are dissatisfied with magic and with
the statement, “It just works.” We want to know how and why it works.

This chapter will reveal some of the underlying mechanisms that make Objective-C programs “just
work.” These mechanisms are part of the Objective-C Runtime.

The term “runtime” has multiple meanings. So far, we have used it to describe the time period during
which your application is running on a user’s computer. Runtime is contrasted with “compile-time,”
which is the period before running when you build your program using Xcode.

Objective-C developers also refer to “the Runtime” (often with a capital ‘R’). This is the part of OS X
and iOS that executes Objective-C code. The Objective-C Runtime is responsible for dynamically
keeping track of which classes exist, what methods they have defined, and seeing that messages are
passed properly between objects.

Introspection
One feature of the Runtime is introspection: the ability for an object to answer questions
about itself while the program is running. For example, there is an NSObject method named
respondsToSelector:.

- (BOOL)respondsToSelector:(SEL)aSelector;

Its one argument is a selector (the name of a method). The return value will be YES if the object
implements the named method and NO if it does not. Using respondsToSelector: is an example of
introspection.

Dynamic method lookup and execution
A running Objective-C application consists largely of objects sending messages to each other. When an
object sends a message, it kicks off a search for the method to execute. The search normally starts with
the class referenced by the receiver’s isa pointer and then proceeds up the inheritance hierarchy until it
finds a method of that name.

The dynamic search and the execution of the found method make up the basis of every Objective-C
message send and are another feature of the Runtime.

ptg999

Appendix A. The Objective-C Runtime

338

Performing this lookup and executing the method is the job of the C function objc_msgSend(). This
function’s arguments are the receiver of the message, the selector of the method to be executed, and
any arguments for the method.

For example, consider this short program that logs the uppercase version of a string:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {
 NSString *nameString = @"Mikey Ward";
 NSString *capsName = [nameString uppercaseString];
 NSLog(@"%@ -> %@",nameString,capsName);
 }
 return 0;
}

When the compiler sees your uppercaseString message, it replaces the message with a call to
objc_msgSend():

#import <Foundation/Foundation.h>
#import <objc/message.h>

int main (int argc, const char * argv[])
{
 @autoreleasepool {
 NSString *nameString = @"Mikey Ward";
 NSString *capsName = objc_msgSend(nameString, @selector(uppercaseString));
 NSLog(@"%@ -> %@",nameString,capsName);
 }
 return 0;
}

The objc_msgSend() function is one of a family of functions that lie at the heart of every message sent
in an Objective-C program. These functions are declared in objc/message.h. For more information on
these and other runtime functions, head to the developer documentation and browse the Objective-C
Runtime Reference.

Management of classes and inheritance hierarchies
The Runtime is responsible for keeping track of which classes you’re using, as well as those being used
by the libraries and frameworks included in your application. There are a number of functions that exist
in order to manipulate the classes loaded by the Runtime.

Create a new Foundation�Command�Line�Tool named ClassAct.

In main.m, update the main function with the following code. Make sure you import objc/runtime.h
at the top.

ptg999

Management of classes and inheritance hierarchies

339

#import <Foundation/Foundation.h>
#import <objc/runtime.h>

int main(int argc, const char * argv[])
{

 @autoreleasepool {
 // Declare a variable to hold the number of registered classes
 unsigned int classCount = 0;

 // Get a pointer to a list of all registered classes
 // currently loaded by your application.
 // The number of registered classes is returned by reference
 Class *classList = objc_copyClassList(&classCount);

 // For each class in the list...
 for (int i = 0; i < classCount; i++) {

 // Treat the classList as a C array to get a Class from it
 Class currentClass = classList[i];

 // Get the class's name as a string
 NSString *className = NSStringFromClass(currentClass);

 // Log the class's name
 NSLog(@"%@",className);
 }

 // We're done with the class list buffer, so free it
 free(classList);
 }
 return 0;
}

The objc_copyClassList function returns a C array of pointers to Class objects. Recall from
Chapter 12 that memory obtained by calling malloc() must be freed when you are done with it.
By convention, memory obtained by calling a function with “copy” or “create” in its name, such as
objc_copyClassList should be treated the same way. This is called the create rule. Similarly, memory
obtained by calling any other function, such as one with “get” in its name, is not owned by you and
you do not need to free it. This one is the get rule. Notice that these rules are similar to those used for
manual memory management (discussed at the end of Chapter 23).

Build and run your program.

Browse through the list of classes that have been logged by your program. It is very impressive how
many different classes have been written that provide the basis for the programs that we write. You
should also see lots of class names that begin with underscores. These are internal-only classes that
exist deep in the bowels of Apple’s frameworks, making our programs work.

Next, you are going to add functions to your program to show the class hierarchies of each of the listed
classes as well as list all of the methods implemented by each class.

In main.m, add a helper function to create an NSArray of Classes that represents the inheritance
hierarchy of a passed-in Class:

ptg999

Appendix A. The Objective-C Runtime

340

#import <Foundation/Foundation.h>
#import <objc/runtime.h>

NSArray *BNRHierarchyForClass(Class cls) {

 // Declare an array to hold the list of
 // this class and all its superclasses, building a hierarchy
 NSMutableArray *classHierarchy = [NSMutableArray array];

 // Keep climbing the class hierarchy until we get to a class with no superclass
 for (Class c = cls; c != Nil; c = class_getSuperclass(c)) {
 NSString *className = NSStringFromClass(c);
 [classHierarchy insertObject:className atIndex:0];
 }

 return classHierarchy;
}

int main(int argc, const char * argv[])
{
 ...

This function will take a Class object and get its superclass. Then it will get that class’s superclass,
and proceed up the hierarchy until it reaches a class with no superclass, which is usually NSObject.

Now write a function to get a list of all of the methods that are implemented on a given class.

 ...
 return classHierarchy;
}

NSArray *BNRMethodsForClass(Class cls) {

 unsigned int methodCount = 0;

 Method *methodList = class_copyMethodList(cls, &methodCount);

 NSMutableArray *methodArray = [NSMutableArray array];

 for (int m = 0; m < methodCount; m++) {
 // Get the current Method
 Method currentMethod = methodList[m];
 // Get the selector for the current method
 SEL methodSelector = method_getName(currentMethod);
 // Add its string representation to the array
 [methodArray addObject:NSStringFromSelector(methodSelector)];
 }

 return methodArray;
}

int main(int argc, const char * argv[])
{
 ...

This code looks similar to the code that you wrote to get the class list. There is a new type here
that you have not seen before: Method. In this context, Method is the name of a type of struct whose
members include a method’s selector (variable of type SEL) as well as a function pointer – a pointer to

ptg999

Management of classes and inheritance hierarchies

341

the actual hunk of code to execute in the program’s data segment of memory. This function pointer is a
variable of type IMP.

Now edit main() to make use of you helper functions:

int main(int argc, const char * argv[])
{

 @autoreleasepool {

 // Create an an array of dictionaries, where each dictionary
 // will end up holding the class name, hierarchy, and method list
 // for a given class
 NSMutableArray *runtimeClassesInfo = [NSMutableArray array];

 // Declare a variable to hold the number of registered classes
 unsigned int classCount = 0;

 // Get a pointer to a list of all registered classes
 // currently loaded by your application
 // The number of registered classes is returned by reference
 Class *classList = objc_copyClassList(&classCount);

 // For each class in the list...
 for (int i = 0; i < classCount; i++) {

 // Treat the classList as a C array to get a Class from it
 Class currentClass = classList[i];

 // Get the class's name as a string
 NSString *className = NSStringFromClass(currentClass);

 // Log the class's name
 NSLog(@"%@",className);

 NSArray *hierarchy = BNRHierarchyForClass(currentClass);

 NSArray *methods = BNRMethodsForClass(currentClass);

 NSDictionary *classInfoDict = @{ @"classname" : className,
 @"hierarchy" : hierarchy,
 @"methods" : methods };

 [runtimeClassesInfo addObject:classInfoDict];
 }

 // You are done with the class list buffer, so free it
 free(classList);

 // Sort the classes info array alphabetically by name, and log it.
 NSSortDescriptor *alphaAsc = [NSSortDescriptor sortDescriptorWithKey:@"name"
 ascending:YES];
 NSArray *sortedArray = [runtimeClassesInfo
 sortedArrayUsingDescriptors:@[alphaAsc]];
 NSLog(@"There are %ld classes registered with this program's Runtime.",
 sortedArray.count);
 NSLog(@"%@",sortedArray);

 }

ptg999

Appendix A. The Objective-C Runtime

342

 return 0;
}

Build and run your program.

Now you should have a whole lot of output where you can see the class name, inheritance hierarchy,
and method list for every class registered with the Runtime by your program.

How KVO works
One example of an Apple API that relies on runtime functions like those above is Key-Value
Observing. When you learned about KVO in Chapter Chapter 36, you learned that an observer is
automatically notified of a change in a property if the affected object’s accessors are used.

At runtime, when an object is sent the addObserver:forKeyPath:options:context: message, this
method:

• determines the class of the observed object and defines a new subclass of that class using the
objc_allocateClassPair function

• changes the object’s isa pointer to point to the new subclass (effectively changing the type of the
object)

• overrides the observed object’s accessors to send KVO messages

Figure A.1 KVO dynamic subclass

For example, consider a class’s setter for a location property:

 - (void)setLocation:(NSPoint)location
 {
 _location = location;
 }

In the new subclass, this accessor would be overridden like this:

ptg999

How KVO works

343

 - (void)setLocation:(NSPoint)location
 {
 [self willChangeValueForKey:@"location"];
 [super setLocation:location];
 [self didChangeValueForKey:@"location"];
 }

The subclass’s implementation of the accessor calls the original class’s implementation and wraps it in
explicit KVO notification messages. These new classes and methods are all defined at runtime by using
the Objective-C Runtime functions. No magic here.

To see the subclassing in action, add a new class to your ClassAct program called BNRTowel. Give it a
single property:

@interface BNRTowel : NSObject
// Always know where your towel is!
@property (nonatomic, assign) NSPoint location;
@end

Build and run your program. Search the debugger output for “Towel,” and you will find that just by
having defined the class in your program you have a new entry in your output – even though you
haven’t instantiated one or implemented any methods yourself:

 {
 classname = BNRTowel;
 hierarchy = (
 NSObject,
 BNRTowel
);
 methods = (
 location,
 "setLocation:"
);
 }

Now, add a nil KVO observer to an instance of BNRTowel:

int main(int argc, const char * argv[])
{

 @autoreleasepool {

 // You don't have an object to do the observing, but send
 // the addObserver: message anyway, to kick off the runtime updates
 BNRTowel *myTowel = [BNRTowel new];
 [myTowel addObserver:nil
 forKeyPath:@"location"
 options:NSKeyValueObservingOptionNew
 context:NULL];

 ...

ptg999

Appendix A. The Objective-C Runtime

344

Build and run your program. Search the output again for “Towel.” This time, in addition to the
BNRTowel class, you should see its shiny new subclass in the list:

 {
 classname = "NSKVONotifying_BNRTowel";
 hierarchy = (
 NSObject,
 BNRTowel,
 "NSKVONotifying_BNRTowel"
);
 methods = (
 "setLocation:",
 class,
 dealloc,
 "_isKVOA"
);
 }

Final notes
If you would like to learn even more about the Objective-C Runtime, head to the documentation and
look up the Objective-C Runtime Programming Guide and the Objective-C Runtime Reference.

Now that you have learned some of the magic, you probably want to try out some of these functions in
your code.

Don’t do this.

Knowing that these functions exist helps draw back the curtain to understand what is going on under
the hood of your programs. However, the runtime functions are primarily for use by Apple’s developers
to support Apple’s APIs, and can be very unwieldy when used by us mortals.

Challenge: instance variables
Modify your program to also log all of the instance variables that each class has.

ptg999

345

Next Steps

Well, that is everything you will ever need to know to write brilliant applications for iOS and OS X.

That is what we wish we could tell you. We know you have worked hard to get to this point.

The truth is that you have completed the first leg of a fun and rewarding journey. It is, however, a very
long journey. It is now time for you to spend some time studying the standard frameworks that Apple
makes available to Objective-C developers like you.

Let us repeat that last phrase so you can relish it: “Objective-C developers like you.” Congratulations.

If you are learning to develop applications for iOS, I recommend that you work through iOS
Programming: The Big Nerd Ranch Guide, but there are several other books on iOS, and you are ready
for any of them.

If you are learning to develop applications for OS X, we recommend that you work through Cocoa
Programming for Mac OS X, but, here again, there are several other books on Cocoa, and you are ready
for any of them.

There are groups of developers who meet every month to discuss the craft. In most major cities, there
are iOS Developers Meetups and CocoaHeads chapters. The talks are often surprisingly good. There
are also discussion groups online. Take some time to find and use these resources.

Shameless plugs
You can find both of us on Twitter. Aaron is @AaronHillegass, and Mikey is @wookiee. You can also
follow Big Nerd Ranch: @bignerdranch.

Keep an eye out for future guides from Big Nerd Ranch. We also offer week-long courses for
developers. And if you just need some code written, we do contract programming. For more
information, visit our website at www.bignerdranch.com.

It is you, dear reader, who makes our lives of writing, coding, and teaching possible. So thank you for
buying our book.

http://www.bignerdranch.com

ptg999

This page intentionally left blank

ptg999

347

Index
Symbols
! (logical NOT) operator, 26
!= (not equal) operator, 26
\" escape sequence, 318
#define, 189-192, 195
#import, 191
#include, 191
% (tokens), 43, 44
% operator, 50
%= operator, 51
%@, 147
%d, 44
%e, 52
%f, 52
%ld, 49
%lo, 49
%lu, 49
%o, 48
%p, 66
%s, 44
%u, 49
%x, 48
%zu, 68
& operator, retrieving addresses, 65
&& (logical AND) operator, 26
()

cast operators, 50
in function names, 15
for function parameters, 30
order of operations and, 24

* (asterisk)
arithmetic operator, 49
pointer operator, 67

*= operator, 51
+ (plus sign), 49
++ (increment operator), 51
+= operator, 51
- (minus sign), 49
-- (decrement operator), 51
-= operator, 51
-> (dereference) operator, 81
.h files (see header files)
.m (implementation files), 129
.pch (pre-compiled header), 191

.xib (XML Interface Builder) files, 262
/ (division operator), 49
/* ... */ (comments), 13
// (comments), 13
/= operator, 51
; (semicolon), 13

do-while loop and, 60
< (less than) operator, 26
< > (angle brackets)

conforming to protocols, 230
importing files, 191

<< operator, 314
<= operator, 26
= operator, 26
== operator, 26
> (greater than) operator, 26
>= operator, 26
>> operator, 314
? (ternary operator), 28
@

format string token, 147
@interface

class extensions, 161
header files, 130
visibility of, 162

@property, 137
@selector(), 216
@synthesize, 294
\ (backslash), 318

escape character, 44
\n, 44
\\ escape sequence, 318
^ (caret)

exclusive-or operator, 312
identifying blocks, 217

{ }
in conditional expressions, 27
in functions, 13
scope of, 34

|| (logical OR) operator, 26
~ (tilde), 313

A
abs(), 51
absolute value, 51
accessor methods

about, 133

ptg999

Index

348

dot notation for, 139
implementing, 133, 294, 295
properties and, 137

actions (methods), 205
addObject:, 126
addresses, 65-69
alloc, 99, 281
AND (&&) logical operator, 26
AND (bitwise), 311
angle brackets (< >)

conforming to protocols, 230
importing files, 191

anonymous blocks, 224
anonymous functions, 217
app delegates, 241, 244
application:didFinishLaunchingWithOptions:,
245-252, 257
applications

building, 134
Cocoa, 259-278
Cocoa Touch, 239-257
deploying, 257
designing, 242
desktop, 259-278
document-based, 259, 261, 262
event-driven, 206, 239
GUI-based, 239
iOS, 239-257
MVC and, 242
vs. programs, 7, 206
running from command line, 329
running in Xcode, 14
running on a device, 257

ARC (Automatic Reference Counting), 106-108,
153-159
arguments

command-line, 330-333
in functions, 30
of init, 283

arithmetic operations, 49-51
array, 126
arrays, 119-125

accessing, 127
accessing by index, 120
in C, 323-325
creating, 119, 126
filtering, 185, 186
immutable, 120, 183

iterating over, 123, 124, 126
mutable, 125, 126
nesting, 181
out-of-range errors and, 122
primitive types and, 186
sorting, 184

arrayWithContentsOfFile:, 235
arrayWithObjects:, 126
ASCII characters, 197, 317
assembly code, 3
assign (property attribute), 291
asterisk (*)

arithmetic operator, 49
pointer operator, 67

AT&T, 4
atoi(), 63
atomic (property attribute), 294
attributes inspector, 266
auto-completion, 13
autolayout, 268-270
Automatic Reference Counting (ARC), 106-108,
153-159
automatic variables, 79

B
backslash (\), 318

escape character, 44
base-16 (hexadecimal)

integers, 48
number system, 309

base-8 (octal) integers, 48
bits, 65, 309
bitwise AND, 311
bitwise operations, 309-315
bitwise OR, 310
__block keyword, 226
blocking (functions), 32
blocking (functions, methods), 31, 209
blocks, 217-226

anonymous, 224
block variables and, 218
capturing variables, 224
external variables and, 224-226
return values of, 223
self and, 225, 226
typedef and, 222
__block keyword, 226

ptg999

349

BOOL (type), 27
boolean variables, 27
braces

in conditional expressions, 27
in functions, 13
in instance variable declarations, 130
scope of, 34

break statement, 58
breakpoints, 38-40
buffers, 79
bugs, 37
building (Xcode projects), 14, 134
building projects, 155
bytes, 65, 309

C
C programming language, 4

arrays, 323-325
described, 3
strings, 317-322

callbacks
blocks, 217-226
deciding between, 223
delegation, 209-212
helper objects, 209-212
memory management and, 214, 215
notifications, 212, 214
target-action, 206-208
types of, 205, 214

captured variables, 224
caret (^)

exclusive-or operator, 312
identifying blocks, 217

cast operator, 50
categories, 305, 306
Central Processing Unit (CPU), 65
char (type), 22, 47, 317
char * (type), 43
class extensions, 161-164
class methods, 90, 110
class prefixes, 241
class references, 110-116
classes

(see also objects, individual class names)
defined, 85
documentation for, 110-116
in frameworks, 87

inheritance and, 141-147, 163
naming, 93, 134
subclassing, 141-147, 306
writing, 129-134

closures, 217
Cocoa development, 259-278

autolayout uses, 268
document-based applications, 259, 261, 262
frameworks for, 237

Cocoa Touch, 237
code

comments in, 13, 53
defined, 12, 13

code completion, 13
collection classes, 177-187

(see also arrays, dictionaries, sets)
command line, running from, 329-334
command-line arguments, 330-333
command-line tools

in C, 8
defined, 7
Foundation, 86

comments (in code), 12, 13, 53
compile-time, 337
compilers, 3, 16
complements, 313
conditional expressions, 25-28
console, 14
constants, 189-195
containsObject:, 179
continue statement, 59
controller objects (MVC), 243
controls, 250
convenience methods, 174
copy (method), 292, 293
copy (property attribute), 292, 293
copyWithZone:, 292
count (NSArray), 122
Cox, Brad, 85
CPU (Central Processing Unit), 65
create rule, 339
curly braces

in conditional expressions, 27
in functions, 13
in instance variable declarations, 130
scope of, 34, 35

currentCalendar, 96

ptg999

Index

350

D
daemons, 7
dangling pointers, 292
data sources, 205, 229, 251
data types (see types)
dataOfType:error:, 277
date (NSDate), 89
dateByAddingTimeInterval:, 95
dealloc, 154
debug navigator, 38
debugger, 37-40
declarations

instance variable, 130
method, 130
property, 137
variable, 21

decrement operator (--), 51
#define, 189-192, 195
delegation, 205, 209-212
DeLillo, Don, 325
dereference (->) operator, 81
dereferencing pointers, 67
description (NSObject), 147
designated initializers, 288
developer guides, 116
dictionaries, 180-183
directories, writing files to, 198, 202
division (integers), 49
do-while loop, 60
document outline, 268
document-based applications, 259, 261, 262
documentation

accessing online, 111
class references, 110-116
developer guides, 116
protocol references, 230
Quick Help, 121, 122
sample code, 116
using, 110-117

dot notation, 139
double (type), 22
double-quote escape sequence (\"), 318
Dreaming in Code (Rosenberg), 5

E
editor area (Xcode), 11
else, 25, 27

else if, 27
encodings (string), 197
enum, 193

bit masks, defining, 314
enumerateObjectsUsingBlock:, 219-221
enumeration, fast, 124, 126
equal objects, 179
error objects, 199
error-handling, 198-200
errors, 13, 14

(see also warnings)
“No known method for selector...”, 91
“No visible @interface...”, 91, 162
NSError and, 198-200, 277
out-of-range, 122
“...unrecognized selector sent to instance...”,
147
“Use of undeclared identifier...”, 35

escape character (\), 44
escape sequences, 44, 318
event-driven applications, 206, 239
events, 239
exclusive-or (XOR), 312
EXC_BAD_ACCESS signal, 321
EXIT_FAILURE, 40
EXIT_SUCCESS, 40
exponents, 52
expressions, 23, 24

conditional, 25-28
external variables (in blocks), 224-226

F
fast enumeration, 124, 126
File's Owner, 270
files

(see also property lists)
class, 129
importing, 144, 191
NSData and, 200-202
NSError and, 198-200
project, 134
reading from, 200, 235
writing to, 197-199, 233

filteredArrayUsingPredicate:, 185
filteredSetUsingPredicate:, 186
filtering, 185, 186
filterUsingPredicate:, 185

ptg999

351

first responder, 250
flags (bitwise operators), 312
float (type), 22

casting and, 50
floating-point numbers, 52, 53
for loop, 57, 123, 124, 126
format strings, 43, 44, 48, 52, 88
Foundation framework, 87, 93, 237
frames, 33-40
frameworks, 83

defined, 87
Foundation, 87, 93, 237
UIKit, 241

free(), 79, 339
function pointers, 225, 340
functions

(see also methods)
arguments and, 30
atoi(), 63
basics of, 29-32
benefits of using, 31
blocking, 31, 32
calling, 30, 31
defined, 12
frames for, 33-40
helper, 255
local variables in, 33, 34
main(), 12, 16
in math.h, 52
modf(), 71
names of, 15
Objective-C, 338, 344
parameters of, 30, 31, 33
printf(), 43
in programs, 31
readline(), 61
recipe metaphor for, 15, 16, 31-33
recursive, 35-40
return values of, 40, 41
runtime, 338, 344
scope, 34, 35
uses of, 29
writing, 29-31

G
get rule, 339
getter methods, 133

global variables, 41, 42, 192-195
GUI (graphical user interface)

creating in Interface Builder, 262-275, 278
creating programmatically, 245-252, 278

GUI-based applications, 239

H
.h files (see header files)
header files

vs. class extensions, 161-164
defined, 129
importing, 132
pre-compiled, 191

heap, 79-81, 105
helper functions, 255
helper objects, 205, 209-212
hexadecimal (base-16)

integers, 48
number system, 309

high-level languages, 3
Human Interface Guidelines (HIGs), 265

I
IBAction, 272
IBOutlet, 274
id (type), 100
identical objects, 179
if construct, 25-28
immutable objects, 183
implementation files (.m), 129
#import, 191
importing files, 144, 191
#include, 191
increment operator (++), 51
index (arrays), 120
indices (arrays), 120
inheritance, 141-147, 163
init, 99, 281-290
initializers, 281-290
insertObject:atIndex:, 126
inspectors, 266
instance methods, 90, 110

(see also methods)
instance variables

declaring, 130
inheritance and, 141, 164
naming, 130

ptg999

Index

352

object, 151-159
as private, 133
properties and, 138

instancetype, 282
instantiate (objects), 199
int (type), 22, 27, 47

casting and, 50
integers, 47-51
@interface

class extensions, 161
header files, 130
visibility of, 162

Interface Builder, 260, 262-275, 278
interfaces, 229

(see also user interfaces)
introspection, 337
iOS development, 239-257

app delegates in, 241, 244
autolayout uses, 268
Cocoa Touch and, 237
deploying to a device, 257
frameworks for, 237, 241
memory management in, 159
Objective-C and, 4
simulator, 248

isa pointer, 146
isEqual:, 179
isEqualToString:, 110
iteration (arrays), 123, 124, 126

K
key paths, 299
key-value coding (KVC), 297-300
key-value observing (KVO), 301-304, 342-344
key-value pairs (objects), 180, 183, 297
keyboard shortcuts, 278
KVC (key-value coding), 297-300
KVO (key-value observing), 301-304, 342-344

L
labs(), 51
lambdas, 217
left-shifting bits, 313
length (NSString), 110
libraries, 134

linking binary with, 61
math, 52

standard, 32
local variables, 33, 34, 79
logical operators, 26
long (type), 22, 47
long long (type), 47
loops, 55-60

for, 57, 123
while, 56

Love, Tom, 85

M
.m files, 87, 129
Mac development (see Cocoa development)
machine code, 3
macros, 191
main(), 12, 16, 29, 38, 257
malloc(), 79, 321, 324, 339
manual reference counting, 173
math library

(see also arithmetic operations, numbers)
math.h, 52, 190
memory

addresses, 65-69
ARC and, 106-108
heap, 79-81, 105
management, 105-108
objects in, 103-108
stack, 33-40, 105

memory leaks, 159, 165-172
memory management

Automatic Reference Counting (ARC),
153-159
in C, 79
callbacks and, 214, 215
deallocating objects and, 153
local variables and, 79
manual reference counting, 173
property attributes and, 291-293
strong reference cycles, 167
weak references and, 170-172

messages
anatomy of, 88
arguments of, 95-98
defined, 88
methods and, 88
nesting, 98, 99
sending, 88-92, 95-100

ptg999

353

methods
(see also functions)
accessor, 133
arguments of, 95-98
class, 90, 110
convenience, 174
declaring, 130
defined, 85
documentation for, 111
implementing, 131
instance, 90, 110
messages and, 88
naming, 93
overriding, 144
protocol, 229-231

minus sign (-), 49
misplaced view warning, 265
model objects (MVC), 243
Model-View-Controller (MVC), 242, 243
modf(), 71
modulus (%) operator, 50
mutableCopy, 293
MVC (Model-View-Controller), 242, 243
M_PI constant, 189

N
navigators, 11
nesting messages, 98, 99
networking, 200, 202, 209, 211
newline character (\n), 44, 318
NeXTSTEP, 93
nil, 99, 103, 107, 127, 187
nonatomic (property attribute), 294
NOT (!) logical operator, 26
notifications, 205, 212, 214
NS prefix, 93
NSArray, 119-125

count, 122
filteredArrayUsingPredicate:, 185
immutable objects and, 183
literal instances of, 119
objectAtIndex:, 127
property lists and, 233

NSButton, 263
NSCalendar, 96
NSData

property lists, 233

reading from files, 202
writing to files, 200-202

NSDataWritingAtomic option (NSData), 201
NSDate, 86, 87, 184

property lists and, 233
NSDesktopDirectory, 202
NSDictionary, 180

property lists and, 233
NSDocument, 277
NSError, 198-200, 277
NSInteger (type), 50
NSLocale, 192
NSLog(), 88
NSMutableArray

addObject:, 126
array, 126
arrayWithObjects:, 126
described, 125, 126
filterUsingPredicate:, 185
insertObject:atIndex:, 126
removeObject:atIndex:, 126
sortUsingDescriptors:, 184

NSMutableDictionary, 180
NSMutableSet, 177-179

filterUsingPredicate:, 186
NSNotificationCenter, 212, 214
NSNull, 187
NSNumber, 184, 186, 299

property lists and, 233
NSObject

alloc, 99
dealloc, 154
description, 147
init, 99, 281
key-value coding and, 297
as superclass, 146

NSPredicate, 185, 186
NSRange, 115
NSRunLoop, 206
NSScrollView, 266
NSSearchPathForDirectoriesInDomains(), 255
NSSet, 177-179

containsObject:, 179
filteredSetUsingPredicate:, 186

NSString, 109-115
(see also strings)
from C string, 322
literal instances of, 109

ptg999

Index

354

property, 233
reading files with, 200
writing to files, 197

NSTableView, 260, 266
NSTableViewDataSource, 275
NSTimer, 206
NSUInteger (type), 50
NSURLConnection, 200, 202, 209, 211
NSValue, 186
NS_ENUM(), 194
NULL, 68, 74
numbers

(see also floating-point numbers, integers)
hexadecimal, 48, 309
octal, 48
signed vs. unsigned, 47

O
objc_msgSend(), 338
object encapsulation, 299
object library, 263, 264
object ownership, 153-159

with callbacks, 214
with collections, 186

object-type attributes, 151
objectAtIndex:, 127
objectForKey:, 182
Objective-C, 4, 85, 93

naming conventions, 92, 93
Runtime, 337-344

objects
ARC and, 106-108
creating, 87-89
deallocating, 153
defined, 85
immutable, 183
inheritance and, 141-147, 163
as instance variables, 151-159
in memory, 103-108
pointers to, 103-108
relationships between, 151
vs. structs, 85

octal (base-8) integers, 48
operations, order of, 24, 49
operators (comparison/logical), 26
OR (bitwise), 310
OR (||) logical operator, 26

OS X, 4
(see also Cocoa development)

overriding methods, 144

P
p-lists, 233-236
parameters, 30, 31, 33
parent-child relationships (objects), 154

memory leaks and, 166
parentheses (())

cast operator, 50
in function names, 15
for function parameters, 30
order of operations and, 24

pass-by-reference, 71-74, 198, 199
PATH environment variable, 333
placeholders, 270
plus sign (+), 49
pointers, 65-69

dangling, 292
defined, 22
function, 217
NSMutableArray and, 125
to objects, 103-108
storing addresses in, 66

PostgreSQL database, 317
#pragma mark, 244, 245
pre-compiled header files, 191
precedence (of arithmetic operations), 24, 49
predicates, 185, 186
preprocessor, 190
preprocessor directives, 190-192
primitive types (C), 186
printf(), 43, 52
profiling programs, 168
programming languages, 3, 4
programs

vs. applications, 7, 206
building, 14, 134
compiling, 16
profiling, 168
running (from command line), 330, 333
running (in Xcode), 331
running from command line, 329
running in Xcode, 14, 23

project navigator, 11
projects

ptg999

355

building, 134, 155
creating, 8
files in, 134
templates for, 240

properties
(see also accessor methods, instance variables,
KVC, KVO)
@synthesize, 294
accessor methods and, 137
attributes, 291-294
declaring, 137
defined, 137
dot notation and, 139
implementing accessors with, 294, 295
inheritance and, 164
instance variables and, 138

@property, 137
property attributes

assign, 291
atomic, 294
copy, 139, 292, 293
default values, 139
defined, 138
nonatomic, 294
readonly, 291
readwrite, 291
strong, 292
unsafe_unretained, 292
weak, 292

property lists, 233-236
protocols, 210, 229-231

Q
Quick Help, 121, 122

R
RAM (Random-Access Memory), 65
rangeOfString:, 114, 115
readFromData:ofType:error:, 277
reading from files, 235
readline(), 61
readonly (property attribute), 291
readwrite (property attribute), 291
receivers, 88
recipe metaphor (functions), 15, 16, 31-33
recursion, 35-40
reference counts, 106

references
(see also ARC, object ownership, pass-by-
reference, strong reference cycles)
NSError and, 199
“pointers”, 67

removeObject:atIndex:, 126
resignFirstResponder, 250
respondsToSelector:, 231, 337
retain counts, 173, 174
return, 40, 41

in blocks, 223
right-shifting bits, 314
root view controller warning, 250
run loop, 206, 239
runtime, 337
Runtime, Objective-C, 337-344

S
sample code (in documentation), 116
scope, 34, 35
@selector(), 216
selectors, 88, 215, 216
self

in blocks, 225, 226
defined, 134

semicolon (;), 13
do-while loops and, 60

setObject:forKey:, 182
sets, 177-179

filtering, 186
setter methods, 133
setValue:forKey:, 297, 298
shell, 329
short (type), 22
shortcuts, keyboard, 278
signed numbers, 47
simulator (iOS), 248
sizeof(), 67
sleep(), 32, 168
sort descriptors, 184
sorting arrays, 184
sortUsingDescriptors:, 184
special directories, 202
stack, 33-40

vs. heap, 105
standard libraries, 32
static variables, 41, 207

ptg999

Index

356

stdio.h, 32
string encodings, 197
strings, 109-115

in C, 317-322
converting C strings, 322
creating, 109
defined, 43
finding substrings, 112-115
literals, 109, 321
printf() and, 43

stringWithFormat:, 109
strlen(), 318
strong (property attribute), 292
strong reference cycles, 167-170

in blocks, 225
callbacks and, 214

structs, 75-78
in collection objects, 186
defined, 22
vs. objects, 85

structures (see structs)
subclasses, 141, 163, 306
substrings, 112
subviews, 246
super directive, 145
superclasses, 141, 163
switch statements, 335, 336
syntax (code), 13
syntax (of code), 13
syntax errors, 13
@synthesize, 294

T
\t escape sequence, 318
table views, 251-254, 266
target-action, 205-208
templates (Xcode), 240
Terminal, 329
ternary operator (?), 28
tilde (~), 313
timeIntervalSince1970, 89
timers, 206
to-many relationships, 151
to-one relationships, 151, 165
tokens

%@, 147
%d, 44

%e, 52
%f, 52
%ld, 49
%lo, 49
%lu, 49
%lx, 49
%o, 48
%s, 44
%u, 49
%x, 48
floating-point number, 52
in format string, 43, 44
integer, 48, 49
NSLog() and, 88
pointer, 66
printf() and, 43, 44

typedef
with blocks, 222
explained, 76

types
defining, 76
introduced, 21-24

U
UIButton, 249
UIKit framework, 241
UIKit.h header file, 241
UITableView, 229
UITableViewDataSource, 229-231, 251-253
unistd.h, 32
Unix, 4, 89
unsafe_unretained (property attribute), 292
unsigned keyword, 47
unsigned numbers, 47
__unused modifier, 208
uppercaseString, 110
URLs, connecting to, 200, 202, 209, 211
user interfaces

creating in Interface Builder, 262-275, 278
creating programmatically, 245-252, 278

UTF strings, 197
utilities area, 263, 266

V
valueForKey:, 297
variables

(see also instance variables, types)

ptg999

357

assigning, 23
automatic, 79
block, 218
boolean, 27
captured, 224
declaring, 21, 23
external (in blocks), 224-226
global, 41, 42, 192-195
instance, 151-159
introduced, 21-24
local, 33, 34
naming, 93
PATH environment, 333
static, 41, 207
unused, 208

variables view, 39
view objects (MVC), 243
views

creating in Interface Builder, 262-275, 278
creating programmatically, 245-252, 278

void, 30, 40

W
warnings

(see also errors)
“Method definition for ... not found”, 242
misplaced view, 265
root view controller, 250
unused variable, 208

weak (property attribute), 292
weak references, 170-172
while loops, 56
White Noise (DeLillo), 325
writeToFile:atomically:, 233
writeToFile:atomically:encoding:error:,
199
writing to files, 197-199, 233

X
Xcode

about, 7
application templates, 240
attributes inspector, 266
auto-completion, 13
building programs in, 14, 155
code completion, 13
color-coding in, 14

command-line arguments and, 331
console, 14
creating classes in, 129
debug navigator, 38
debugger, 38-40
documentation in, 110-117
editor area, 11
inspectors, 266
installing, 7
Interface Builder, 260, 262-275
iOS simulator, 248
keyboard shortcuts, 278
navigator area, 11
object library, 263
preferences, 13
project navigator, 11
Quick Help, 121, 122
running programs in, 14, 23, 331
templates, 8
utilities area, 263, 266
variables view, 39

.xib (XML Interface Builder) files, 262, 267
XOR (exclusive-or), 312

Z
zero (false)

NULL and, 68
zero pointer

nil, 99

ptg999

This page intentionally left blank

ptg999

ptg999

www.bignerdranch.com

	Table of Contents
	I. Getting Started
	1. You and This Book
	C and Objective-C
	How this book works
	How the life of a programmer works

	2. Your First Program
	Installing Apple’s developer tools
	Getting started with Xcode
	Where do I start writing code?
	How do I run my program?
	So, what is a program?
	Don’t stop

	II. How Programming Works
	3. Variables and Types
	Types
	A program with variables
	Challenge

	4. if/else
	Boolean variables
	When curly braces are optional
	else if
	For the more curious: conditional operators
	Challenge

	5. Functions
	When should I use a function?
	How do I write and use a function?
	How functions work together
	Local variables, frames, and the stack
	Scope
	Recursion
	Looking at frames in the debugger
	return
	Global and static variables
	Challenge

	6. Format Strings
	Using tokens
	Escape sequences
	Challenge

	7. Numbers
	Integers
	Floating-point numbers
	Challenge
	A note about comments

	8. Loops
	The while loop
	The for loop
	break
	continue
	The do-while loop
	Challenge: counting down
	Challenge: user input

	9. Addresses and Pointers
	Getting addresses
	Storing addresses in pointers
	Getting the data at an address
	How many bytes?
	NULL
	Stylish pointer declarations
	Challenge: how much memory?
	Challenge: how much range?

	10. Pass-By-Reference
	Writing pass-by-reference functions
	Avoid dereferencing NULL
	Challenge

	11. Structs
	Challenge

	12. The Heap

	III. Objective-C and Foundation
	13. Objects
	Objects
	Methods and messages
	Challenge

	14. More Messages
	A message with an argument
	Multiple arguments
	Nesting message sends
	alloc and init
	Sending messages to nil
	id
	Challenge

	15. Objects and Memory
	On pointers and their values
	Memory management

	16. NSString
	Creating instances of NSString
	NSString methods
	Class references
	Other parts of the documentation
	Challenge: finding more NSString methods
	Challenge: using readline()

	17. NSArray
	Creating arrays
	Accessing arrays
	Iterating over arrays
	NSMutableArray
	Old-style array methods
	Challenge: a grocery list
	Challenge: interesting names

	18. Your First Class
	Accessor methods
	self
	Multiple files
	Class prefixes
	Challenge

	19. Properties
	Declaring properties
	Property attributes
	Dot notation

	20. Inheritance
	Overriding methods
	super
	Inheritance hierarchy
	description and %@
	Challenge

	21. Object Instance Variables and Properties
	Object ownership and ARC
	Challenge: holding portfolio
	Challenge: removing assets

	22. Class Extensions
	Hiding mutability
	Headers and inheritance
	Headers and generated instance variables
	Challenge

	23. Preventing Memory Leaks
	Strong reference cycles
	Weak references
	Zeroing of weak references
	For the More Curious: manual reference counting and ARC history

	24. Collection Classes
	NSSet/NSMutableSet
	NSDictionary/NSMutableDictionary
	Immutable objects
	Sorting arrays
	Filtering
	Collections and ownership
	C primitive types
	Collections and nil
	Challenge: reading up
	Challenge: top holdings
	Challenge: sorted holdings

	25. Constants
	Preprocessor directives
	Global variables
	enum
	#define vs. global variables

	26. Writing Files with NSString and NSData
	Writing an NSString to a file
	NSError
	Reading files with NSString
	Writing an NSData object to a file
	Reading an NSData from a file
	Finding special directories

	27. Callbacks
	The run loop
	Target-action
	Helper objects
	Notifications
	Which to use?
	Callbacks and object ownership
	For the more curious: how selectors work

	28. Blocks
	Using blocks
	Blocks vs. other callbacks
	More on blocks
	Challenge: an anonymous block
	Challenge: using a block with NSNotificationCenter

	29. Protocols
	Calling optional methods

	30. Property Lists
	Challenge

	IV. Event-Driven Applications
	31. Your First iOS Application
	GUI-based applications
	Getting started with iTahDoodle
	BNRAppDelegate
	Model-View-Controller
	The application delegate
	Setting up views
	Running on the iOS simulator
	Wiring up the button
	Wiring up the table view
	Saving and loading data
	For the more curious: what about main()?
	For the more curious: running iTahDoodle on a device

	32. Your First Cocoa Application
	Getting started with TahDoodle
	Setting up views in Interface Builder
	Making connections
	Implementing NSTableViewDataSource
	Saving and loading data
	Challenge

	V. Advanced Objective-C
	33. init
	Writing init methods
	A basic init method
	init methods that take arguments
	Using accessors
	Multiple initializers
	Deadly init methods

	34. More about Properties
	More on property attributes
	Implementing accessor methods

	35. Key-Value coding
	Non-object types
	Key paths

	36. Key-Value Observing
	Using the context in KVO
	Triggering the notification explicitly
	Dependent properties

	37. Categories
	Challenge

	VI. Advanced C
	38. Bitwise Operations
	Bitwise-OR
	Bitwise-AND
	Other bitwise operators
	Using enum to define bit masks
	More bytes
	Challenge

	39. C Strings
	char
	char *
	String literals
	Converting to and from NSString
	Challenge

	40. C Arrays
	Challenge

	41. Running from the Command Line
	Command-line arguments
	More convenient running from the command-line

	42. Switch Statements

	Appendix: The Objective-C Runtime
	Introspection
	Dynamic method lookup and execution
	Management of classes and inheritance hierarchies
	How KVO works
	Final notes
	Challenge: instance variables

	Next Steps
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

