

Hacker’s Delight
Second Edition

Henry S. Warren, Jr.

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

CapeTown • Sydney • Tokyo • Singapore • Mexico City

To Joseph W. Gauld, my high school algebra teacher, for sparking in me a delight in the
simple things in mathematics

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book, and
the publisher was aware of a trademark claim, the designations have been printed with
initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Warren, Henry S.
 Hacker’s delight / Henry S. Warren, Jr. -- 2nd ed.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-321-84268-5 (hardcover : alk. paper)
 1. Computer programming. I. Title.
 QA76.6.W375 2013
 005.1—dc23
2012026011

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or likewise. To obtain
permission to use material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New
Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-84268-8
ISBN-10: 0-321-84268-5
Text printed in the United States on recycled paper at Courier in Westford,
Massachusetts.
First printing, September 2012

mailto://corpsales@pearsontechgroup.com/
mailto://international@pearsoned.com/
http://informit.com/aw

Contents

Foreword
Preface

CHAPTER 1. INTRODUCTION

1–1 Notation
1–2 Instruction Set and Execution Time Model

CHAPTER 2. BASICS

2–1 Manipulating Rightmost Bits
2–2 Addition Combined with Logical Operations
2–3 Inequalities among Logical and Arithmetic Expressions
2–4 Absolute Value Function
2–5 Average of Two Integers
2–6 Sign Extension
2–7 Shift Right Signed from Unsigned
2–8 Sign Function
2–9 Three-Valued Compare Function
2–10 Transfer of Sign Function
2–11 Decoding a “Zero Means 2**n” Field
2–12 Comparison Predicates
2–13 Overflow Detection
2–14 Condition Code Result of Add, Subtract, and Multiply
2–15 Rotate Shifts
2–16 Double-Length Add/Subtract
2–17 Double-Length Shifts
2–18 Multibyte Add, Subtract, Absolute Value
2–19 Doz, Max, Min
2–20 Exchanging Registers
2–21 Alternating among Two or More Values
2–22 A Boolean Decomposition Formula
2–23 Implementing Instructions for all 16 Binary Boolean Operations

CHAPTER 3. POWER-OF-2 BOUNDARIES

3–1 Rounding Up/Down to a Multiple of a Known Power of 2
3–2 Rounding Up/Down to the Next Power of 2
3–3 Detecting a Power-of-2 Boundary Crossing

CHAPTER 4. ARITHMETIC BOUNDS

4–1 Checking Bounds of Integers
4–2 Propagating Bounds through Add’s and Subtract’s
4–3 Propagating Bounds through Logical Operations

file:///E|/A%20Post/b/bbbbb/OEBPS/html/forword.html#foreword
file:///E|/A%20Post/b/bbbbb/OEBPS/html/pref01.html#pref01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#ch01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#ch01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#ch01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#ch01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#ch01lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#ch01lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev6
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev7
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev8
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev8
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev8
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev9
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev9
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev9
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev11
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev11
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev11
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev13
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev15
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev16
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev17
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev18
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev18
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev19
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev20
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev21
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev22
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev23
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#ch03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#ch03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#ch03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#ch03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#ch03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#ch03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#ch03lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#ch03lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#ch03lev3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#ch04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#ch04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#ch04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#ch04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#ch04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#ch04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#ch04lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#ch04lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#ch04lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#ch04lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#ch04lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#ch04lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#ch04lev3

CHAPTER 5. COUNTING BITS

5–1 Counting 1-Bits
5–2 Parity
5–3 Counting Leading 0’s
5–4 Counting Trailing 0’s

CHAPTER 6. SEARCHING WORDS

6–1 Find First 0-Byte
6–2 Find First String of 1-Bits of a Given Length
6–3 Find Longest String of 1-Bits
6–4 Find Shortest String of 1-Bits

CHAPTER 7. REARRANGING BITS AND BYTES

7–1 Reversing Bits and Bytes
7–2 Shuffling Bits
7–3 Transposing a Bit Matrix
7–4 Compress, or Generalized Extract
7–5 Expand, or Generalized Insert
7–6 Hardware Algorithms for Compress and Expand
7–7 General Permutations, Sheep and Goats Operation
7–8 Rearrangements and Index Transformations
7–9 An LRU Algorithm

CHAPTER 8. MULTIPLICATION

8–1 Multiword Multiplication
8–2 High-Order Half of 64-Bit Product
8–3 High-Order Product Signed from/to Unsigned
8–4 Multiplication by Constants

CHAPTER 9. INTEGER DIVISION

9–1 Preliminaries
9–2 Multiword Division
9–3 Unsigned Short Division from Signed Division
9–4 Unsigned Long Division
9–5 Doubleword Division from Long Division

CHAPTER 10. INTEGER DIVISION BY CONSTANTS

10–1 Signed Division by a Known Power of 2
10–2 Signed Remainder from Division by a Known Power of 2
10–3 Signed Division and Remainder by Non-Powers of 2
10–4 Signed Division by Divisors ≥ 2
10–5 Signed Division by Divisors ≤ –2
10–6 Incorporation into a Compiler
10–7 Miscellaneous Topics
10–8 Unsigned Division

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#ch05
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#ch05
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#ch05
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#ch05
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#ch05lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#ch05lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#ch05lev3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#ch05lev4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06lev3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06lev4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07lev3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07lev4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07lev4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07lev4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07lev4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07lev5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07lev5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07lev5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07lev5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07lev6
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07lev7
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07lev8
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07lev9
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#ch08
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#ch08
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#ch08
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#ch08
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#ch08lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#ch08lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#ch08lev3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#ch08lev4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09lev3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09lev4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09lev5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev6
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev7
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev8

10–9 Unsigned Division by Divisors ≥ 1
10–10 Incorporation into a Compiler (Unsigned)
10–11 Miscellaneous Topics (Unsigned)
10–12 Applicability to Modulus and Floor Division
10–13 Similar Methods
10–14 Sample Magic Numbers
10–15 Simple Code in Python
10–16 Exact Division by Constants
10–17 Test for Zero Remainder after Division by a Constant
10–18 Methods Not Using Multiply High
10–19 Remainder by Summing Digits
10–20 Remainder by Multiplication and Shifting Right
10–21 Converting to Exact Division
10–22 A Timing Test
10–23 A Circuit for Dividing by 3

CHAPTER 11. SOME ELEMENTARY FUNCTIONS

11–1 Integer Square Root
11–2 Integer Cube Root
11–3 Integer Exponentiation
11–4 Integer Logarithm

CHAPTER 12. UNUSUAL BASES FOR NUMBER SYSTEMS

12–1 Base –2
12–2 Base –1 + i
12–3 Other Bases
12–4 What Is the Most Efficient Base?

CHAPTER 13. GRAY CODE

13–1 Gray Code
13–2 Incrementing a Gray-Coded Integer
13–3 Negabinary Gray Code
13–4 Brief History and Applications

CHAPTER 14. CYCLIC REDUNDANCY CHECK

14–1 Introduction
14–2 Theory
14–3 Practice

CHAPTER 15. ERROR-CORRECTING CODES

15–1 Introduction
15–2 The Hamming Code
15–3 Software for SEC-DED on 32 Information Bits
15–4 Error Correction Considered More Generally

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev9
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev11
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev13
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev15
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev16
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev17
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev18
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev19
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev20
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev21
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev22
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev23
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11lev3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11lev4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12lev3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12lev4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#ch13
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#ch13
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#ch13
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#ch13
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#ch13
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#ch13
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#ch13lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#ch13lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#ch13lev3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#ch13lev4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#ch14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#ch14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#ch14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#ch14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#ch14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#ch14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#ch14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#ch14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#ch14lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#ch14lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#ch14lev3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15lev3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15lev4

CHAPTER 16. HILBERT’S CURVE

16–1 A Recursive Algorithm for Generating the Hilbert Curve
16–2 Coordinates from Distance along the Hilbert Curve
16–3 Distance from Coordinates on the Hilbert Curve
16–4 Incrementing the Coordinates on the Hilbert Curve
16–5 Non-Recursive Generating Algorithms
16–6 Other Space-Filling Curves
16–7 Applications

CHAPTER 17. FLOATING-POINT

17–1 IEEE Format
17–2 Floating-Point To/From Integer Conversions
17–3 Comparing Floating-Point Numbers Using Integer Operations
17–4 An Approximate Reciprocal Square Root Routine
17–5 The Distribution of Leading Digits
17–6 Table of Miscellaneous Values

CHAPTER 18. FORMULAS FOR PRIMES

18–1 Introduction
18–2 Willans’s Formulas
18–3 Wormell’s Formula
18–4 Formulas for Other Difficult Functions

ANSWERS TO EXERCISES

APPENDIX A. ARITHMETIC TABLES FOR A 4-BIT MACHINE

APPENDIX B. NEWTON’S METHOD

APPENDIX C. A GALLERY OF GRAPHS OF DISCRETE FUNCTIONS

C–1 Plots of Logical Operations on Integers
C–2 Plots of Addition, Subtraction, and Multiplication
C–3 Plots of Functions Involving Division
C–4 Plots of the Compress, SAG, and Rotate Left Functions
C–5 2D Plots of Some Unary Functions

Bibliography

Index

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#ch16
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#ch16
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#ch16
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#ch16
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#ch16
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#ch16
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#ch16lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#ch16lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#ch16lev3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#ch16lev4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#ch16lev5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#ch16lev6
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#ch16lev7
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#ch17
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#ch17
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#ch17
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#ch17
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#ch17
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#ch17
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#ch17lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#ch17lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#ch17lev3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#ch17lev4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#ch17lev5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#ch17lev6
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18lev3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18lev4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#answer
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#answer
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#answer
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#answer
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app01.html#app01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app01.html#app01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app01.html#app01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app01.html#app01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app01.html#app01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app01.html#app01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app01.html#app01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app01.html#app01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app01.html#app01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app01.html#app01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app02.html#app02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app02.html#app02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app02.html#app02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app02.html#app02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app02.html#app02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app02.html#app02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#app03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#app03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#app03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#app03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#app03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#app03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#app03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#app03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#app03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#app03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#app03lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#app03lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#app03lev3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#app03lev4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#app03lev5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/bib.html#biblio
file:///E|/A%20Post/b/bbbbb/OEBPS/html/index.html#index

Foreword

Foreword from the First Edition

When I first got a summer job at MIT’s Project MAC almost 30 years ago, I was
delighted to be able to work with the DEC PDP-10 computer, which was more fun to
program in assembly language than any other computer, bar none, because of its rich
yet tractable set of instructions for performing bit tests, bit masking, field manipulation,
and operations on integers. Though the PDP-10 has not been manufactured for quite
some years, there remains a thriving cult of enthusiasts who keep old PDP-10 hardware
running and who run old PDP-10 software—entire operating systems and their
applications—by using personal computers to simulate the PDP-10 instruction set. They
even write new software; there is now at least one Web site with pages that are served
up by a simulated PDP-10. (Come on, stop laughing—it’s no sillier than keeping antique
cars running.)

I also enjoyed, in that summer of 1972, reading a brand-new MIT research memo
called HAKMEM, a bizarre and eclectic potpourri of technical trivia.1 The subject matter
ranged from electrical circuits to number theory, but what intrigued me most was its
small catalog of ingenious little programming tricks. Each such gem would typically
describe some plausible yet unusual operation on integers or bit strings (such as
counting the 1-bits in a word) that could easily be programmed using either a longish
fixed sequence of machine instructions or a loop, and then show how the same thing
might be done much more cleverly, using just four or three or two carefully chosen
instructions whose interactions are not at all obvious until explained or fathomed. For
me, devouring these little programming nuggets was like eating peanuts, or rather
bonbons—I just couldn’t stop—and there was a certain richness to them, a certain
intellectual depth, elegance, even poetry.

“Surely,” I thought, “there must be more of these,” and indeed over the years I
collected, and in some cases discovered, a few more. “There ought to be a book of
them.”

I was genuinely thrilled when I saw Hank Warren’s manuscript. He has
systematically collected these little programming tricks, organized them thematically,
and explained them clearly. While some of them may be described in terms of machine
instructions, this is not a book only for assembly language programmers. The subject
matter is basic structural relationships among integers and bit strings in a computer and
efficient techniques for performing useful operations on them. These techniques are
just as useful in the C or Java programming languages as they are in assembly
language.

Many books on algorithms and data structures teach complicated techniques for
sorting and searching, for maintaining hash tables and binary trees, for dealing with
records and pointers. They overlook what can be done with very tiny pieces of data—
bits and arrays of bits. It is amazing what can be done with just binary addition and
subtraction and maybe some bitwise operations; the fact that the carry chain allows a
single bit to affect all the bits to its left makes addition a peculiarly powerful data
manipulation operation in ways that are not widely appreciated.

Yes, there ought to be a book about these techniques. Now it is in your hands, and
it’s terrific. If you write optimizing compilers or high-performance code, you must read
this book. You otherwise might not use this bag of tricks every single day—but if you
find yourself stuck in some situation where you apparently need to loop over the bits in

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#forfn1

a word, or to perform some operation on integers and it just seems harder to code
than it ought, or you really need the inner loop of some integer or bit-fiddly
computation to run twice as fast, then this is the place to look. Or maybe you’ll just
find yourself reading it straight through out of sheer pleasure.

Guy L. Steele, Jr.
Burlington, Massachusetts

April 2002

Preface

Caveat Emptor: The cost of software
maintenance increases with the square of

the programmer’s creativity.

First Law of Programmer Creativity,
Robert D. Bliss, 1992

This is a collection of small programming tricks that I have come across over many
years. Most of them will work only on computers that represent integers in two’s-
complement form. Although a 32-bit machine is assumed when the register length is
relevant, most of the tricks are easily adapted to machines with other register sizes.

This book does not deal with large tricks such as sophisticated sorting and compiler
optimization techniques. Rather, it deals with small tricks that usually involve individual
computer words or instructions, such as counting the number of 1-bits in a word. Such
tricks often use a mixture of arithmetic and logical instructions.

It is assumed throughout that integer overflow interrupts have been masked off, so
they cannot occur. C, Fortran, and even Java programs run in this environment, but
Pascal and Ada users beware!

The presentation is informal. Proofs are given only when the algorithm is not
obvious, and sometimes not even then. The methods use computer arithmetic, “floor”
functions, mixtures of arithmetic and logical operations, and so on. Proofs in this
domain are often difficult and awkward to express.

To reduce typographical errors and oversights, many of the algorithms have been
executed. This is why they are given in a real programming language, even though, like
every computer language, it has some ugly features. C is used for the high-level
language because it is widely known, it allows the straightforward mixture of integer
and bit-string operations, and C compilers that produce high-quality object code are
available.

Occasionally, machine language is used, employing a three-address format, mainly
for ease of readability. The assembly language used is that of a fictitious machine that
is representative of today’s RISC computers.

Branch-free code is favored, because on many computers, branches slow down
instruction fetching and inhibit executing instructions in parallel. Another problem with
branches is that they can inhibit compiler optimizations such as instruction scheduling,
commoning, and register allocation. That is, the compiler may be more effective at
these optimizations with a program that consists of a few large basic blocks rather than
many small ones.

The code sequences also tend to favor small immediate values, comparisons to zero
(rather than to some other number), and instruction-level parallelism. Although much
of the code would become more concise by using table lookups (from memory), this is
not often mentioned. This is because loads are becoming more expensive relative to
arithmetic instructions, and the table lookup methods are often not very interesting
(although they are often practical). But there are exceptional cases.

Finally, I should mention that the term “hacker” in the title is meant in the original
sense of an aficionado of computers—someone who enjoys making computers do new
things, or do old things in a new and clever way. The hacker is usually quite good at
his craft, but may very well not be a professional computer programmer or designer.

The hacker’s work may be useful or may be just a game. As an example of the latter,
more than one determined hacker has written a program which, when executed, writes
out an exact copy of itself.1 This is the sense in which we use the term “hacker.” If
you’re looking for tips on how to break into someone else’s computer, you won’t find
them here.

Acknowledgments
First, I want to thank Bruce Shriver and Dennis Allison for encouraging me to publish
this book. I am indebted to many colleagues at IBM, several of whom are cited in the
Bibliography. One deserves special mention: Martin E. Hopkins, whom I think of as “Mr.
Compiler” at IBM, has been relentless in his drive to make every cycle count, and I’m
sure some of his spirit has rubbed off on me. Addison-Wesley’s reviewers have
improved the book immensely. Most of their names are unknown to me, but the review
by one whose name I did learn was truly outstanding: Guy L. Steele, Jr., completed a
50-page review that included new subject areas to address, such as bit shuffling and
unshuffling, the sheep and goats operation, and many others. He suggested algorithms
that beat the ones I used. He was extremely thorough. For example, I had erroneously
written that the hexadecimal number AAAAAAAA factors as 2 · 3 · 17 · 257 · 65537;
Guy pointed out that the 3 should be a 5. He suggested improvements to style and did
not shirk from mentioning minutiae. Wherever you see “parallel prefix” in this book, the
material is due to Guy.

H. S. Warren, Jr.
Yorktown, New York

June 2012

See www.HackersDelight.org for additional material related
to this book.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#pref01fn1
http://www.hackersdelight.org/

Chapter 1. Laying the Groundwork

Chapter 1. Introduction

1–1 Notation
This book distinguishes between mathematical expressions of ordinary arithmetic and
those that describe the operation of a computer. In “computer arithmetic,” operands
are bit strings, or bit vectors, of some definite fixed length. Expressions in computer
arithmetic are similar to those of ordinary arithmetic, but the variables denote the
contents of computer registers. The value of a computer arithmetic expression is simply
a string of bits with no particular interpretation. An operator, however, interprets its
operands in some particular way. For example, a comparison operator might interpret
its operands as signed binary integers or as unsigned binary integers; our computer
arithmetic notation uses distinct symbols to make the type of comparison clear.

The main difference between computer arithmetic and ordinary arithmetic is that in
computer arithmetic, the results of addition, subtraction, and multiplication are reduced
modulo 2n, where n is the word size of the machine. Another difference is that
computer arithmetic includes a large number of operations. In addition to the four basic
arithmetic operations, computer arithmetic includes logical and, exclusive or, compare,
shift left, and so on.

Unless specified otherwise, the word size is 32 bits, and signed integers are
represented in two’s-complement form.

Expressions of computer arithmetic are written similarly to those of ordinary
arithmetic, except that the variables that denote the contents of computer registers are
in bold face type. This convention is commonly used in vector algebra. We regard a
computer word as a vector of single bits. Constants also appear in bold-face type when
they denote the contents of a computer register. (This has no analogy with vector
algebra because in vector algebra the only way to write a constant is to display the
vector’s components.) When a constant denotes part of an instruction, such as the
immediate field of a shift instruction, light-face type is used.

If an operator such as “+” has bold face operands, then that operator denotes the
computer’s addition operation (“vector addition”). If the operands are light-faced, then
the operator denotes the ordinary scalar arithmetic operation. We use a light-faced
variable x to denote the arithmetic value of a bold-faced variable x under an
interpretation (signed or unsigned) that should be clear from the context. Thus, if x =
0x80000000 and y = 0x80000000, then, under signed integer interpretation, x = y
= –231, x + y = – 232, and x + y = 0. Here, 0x80000000 is hexadecimal notation
for a bit string consisting of a 1-bit followed by 31 0-bits.

Bits are numbered from the right, with the rightmost (least significant) bit being bit
0. The terms “bits,” “nibbles,” “bytes,” “halfwords,” “words,” and “doublewords” refer to
lengths of 1, 4, 8, 16, 32, and 64 bits, respectively.

Short and simple sections of code are written in computer algebra, using its
assignment operator (left arrow) and occasionally an if statement. In this role,
computer algebra is serving as little more than a machine-independent way of writing
assembly language code.

Programs too long or complex for computer algebra are written in the C
programming language, as defined by the ISO 1999 standard.

A complete description of C would be out of place in this book, but Table 1–1

Chapter 1. Laying the Groundwork

contains a brief summary of most of the elements of C [H&S] that are used herein. This
is provided for the benefit of the reader who is familiar with some procedural
programming language, but not with C. Table 1–1 also shows the operators of our
computer-algebraic arithmetic language. Operators are listed from highest precedence
(tightest binding) to lowest. In the Precedence column, L means left-associative; that
is,

a • b • c = (a • b) • c

and R means right-associative. Our computer-algebraic notation follows C in
precedence and associativity.

TABLE 1–1. EXPRESSIONS OF C AND COMPUTER ALGEBR

Chapter 1. Laying the Groundwork

In addition to the notations described in Table 1–1 , those of Boolean algebra and of
standard mathematics are used, with explanations where necessary.

Chapter 1. Laying the Groundwork

Our computer algebra uses other functions in addition to “abs,” “rem,” and so on.
These are defined where introduced.

In C, the expression x < y < z means to evaluate x < y to a 0/1-valued result, and
then compare that result to z. In computer algebra, the expression x < y < z means (x
< y) & (y < z).

C has three loop control statements: while, do, and for. The while statement is
written:

while (expression) statement

First, expression is evaluated. If true (nonzero), statement is executed and control
returns to evaluate expression again. If expression is false (0), the while-loop
terminates.

The do statement is similar, except the test is at the bottom of the loop. It is
written:

do statement while (expression)

First, statement is executed, and then expression is evaluated. If true, the process is
repeated, and if false, the loop terminates.

The for statement is written:

for (e1; e2; e3) statement

First, e1, usually an assignment statement, is executed. Then e2, usually a comparison,
is evaluated. If false, the for-loop terminates. If true, statement is executed. Finally,
e3, usually an assignment statement, is executed, and control returns to evaluate e2
again. Thus, the familiar “do i = 1 to n” is written:

for (i = 1; i <= n; i++)

(This is one of the few contexts in which we use the postincrement operator.)
The ISO C standard does not specify whether right shifts (“>>” operator) of signed

quantities are 0-propagating or sign-propagating. In the C code herein, it is assumed
that if the left operand is signed, then a sign-propagating shift results (and if it is
unsigned, then a 0-propagating shift results, following ISO). Most modern C compilers
work this way.

It is assumed here that left shifts are “logical.” (Some machines, mostly older ones,
provide an “arithmetic” left shift, in which the sign bit is retained.)

Another potential problem with shifts is that the ISO C standard specifies that if the
shift amount is negative or is greater than or equal to the width of the left operand, the
result is undefined. But, nearly all 32-bit machines treat shift amounts modulo 32 or 64.
The code herein relies on one of these behaviors; an explanation is given when the
distinction is important.

1–2 Instruction Set and Execution Time Model
To permit a rough comparison of algorithms, we imagine them being coded for a
machine with an instruction set similar to that of today’s general purpose RISC
computers, such as the IBM RS/6000, the Oracle SPARC, and the ARM architecture. The
machine is three-address and has a fairly large number of general purpose registers—

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images.html#p004pro01

Chapter 1. Laying the Groundwork

that is, 16 or more. Unless otherwise specified, the registers are 32 bits long. General
register 0 contains a permanent 0, and the others can be used uniformly for any
purpose.

In the interest of simplicity there are no “special purpose” registers, such as a
condition register or a register to hold status bits, such as “overflow.” The machine has
no floating-point instructions. Floating-point is only a minor topic in this book, being
mostly confined to Chapter 17.

We recognize two varieties of RISC: a “basic RISC,” having the instructions shown in
Table 1–2 , and a “full RISC,” having all the instructions of the basic RISC, plus those
shown in Table 1–3 .

TABLE 1–2. BASIC RISC INSTRUCTION SET

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#ch17

Chapter 1. Laying the Groundwork

TABLE 1–3. ADDITIONAL INSTRUCTIONS FOR THE “FULL RISC”

Chapter 1. Laying the Groundwork

In Tables 1–2 , 1–3 , and 1–4 , RA and RB appearing as source operands really
means the contents of those registers.

Chapter 1. Laying the Groundwork

A real machine would have branch and link (for subroutine calls), branch to the
address contained in a register (for subroutine returns and “switches”), and possibly
some instructions for dealing with special purpose registers. It would, of course, have a
number of privileged instructions and instructions for calling on supervisor services. It
might also have floating-point instructions.

Some other computational instructions that a RISC computer might have are
identified in Table 1–3 . These are discussed in later chapters.

It is convenient to provide the machine’s assembler with a few “extended
mnemonics.” These are like macros whose expansion is usually a single instruction.
Some possibilities are shown in Table 1–4 .

TABLE 1–4. EXTENDED MNEMONICS

The load immediate instruction expands into one or two instructions, as required by
the immediate value I. For example, if 0 ≤ I < 216, an or immediate (ori) from R0 can
be used. If – 215 ≤ I < 0, an add immediate (addi) from R0 can be used. If the
rightmost 16 bits of I are 0, add immediate shifted (addis) can be used. Otherwise,
two instructions are required, such as addis followed by ori. (Alternatively, in the last
case, a load from memory could be used, but for execution time and space estimates
we assume that two elementary arithmetic instructions are used.)

Of course, which instructions belong in the basic RISC and which belong in the full
RISC is very much a matter of judgment. Quite possibly, divide unsigned and the
remainder instructions should be moved to the full RISC category. Conversely, possibly
load byte signed should be in the basic RISC category. It is in the full RISC set because
it is probably of rather low frequency of use, and because in some technologies it is
difficult to propagate a sign bit through so many positions and still make cycle time.

The distinction between basic and full RISC involves many other such questionable
judgments, but we won’t dwell on them.

The instructions are limited to two source registers and one target, which simplifies
the computer (e.g., the register file requires no more than two read ports and one
write port). It also simplifies an optimizing compiler, because the compiler does not
need to deal with instructions that have multiple targets. The price paid for this is that a
program that wants both the quotient and remainder of two numbers (not uncommon)
must execute two instructions (divide and remainder). The usual machine division
algorithm produces the remainder as a by-product, so many machines make them both
available as a result of one execution of divide. Similar remarks apply to obtaining the
doubleword product of two words.

The conditional move instructions (e.g., moveq) ostensibly have only two source
operands, but in a sense they have three. Because the result of the instruction depends

Chapter 1. Laying the Groundwork

on the values in RT, RA, and RB, a machine that executes instructions out of order
must treat RT in these instructions as both a use and a set. That is, an instruction that
sets RT, followed by a conditional move that sets RT, must be executed in that order,
and the result of the first instruction cannot be discarded. Thus, the designer of such a
machine may elect to omit the conditional move instructions to avoid having to consider
an instruction with (logically) three source operands. On the other hand, the conditional
move instructions do save branches.

Instruction formats are not relevant to the purposes of this book, but the full RISC
instruction set described above, with floating-point and a few supervisory instructions
added, can be implemented with 32-bit instructions on a machine with 32 general
purpose registers (5-bit register fields). By reducing the immediate fields of compare,
load, store, and trap instructions to 14 bits, the same holds for a machine with 64
general purpose registers (6-bit register fields).

Execution Time

We assume that all instructions execute in one cycle, except for the multiply, divide,
and remainder instructions, for which we do not assume any particular execution time.
Branches take one cycle whether they branch or fall through.

The load immediate instruction is counted as one or two cycles, depending on
whether one or two elementary arithmetic instructions are required to generate the
constant in a register.

Although load and store instructions are not often used in this book, we assume
they take one cycle and ignore any load delay (time lapse between when a load
instruction completes in the arithmetic unit and when the requested data is available for
a subsequent instruction).

However, knowing the number of cycles used by all the arithmetic and logical
instructions is often insufficient for estimating the execution time of a program.
Execution can be slowed substantially by load delays and by delays in fetching
instructions. These delays, although very important and increasing in importance, are
not discussed in this book. Another factor, one that improves execution time, is what is
called “instruction-level parallelism,” which is found in many contemporary RISC chips,
particularly those for “high-end” machines.

These machines have multiple execution units and sufficient instruction-dispatching
capability to execute instructions in parallel when they are independent (that is, when
neither uses a result of the other, and they don’t both set the same register or status
bit). Because this capability is now quite common, the presence of independent
operations is often pointed out in this book. Thus, we might say that such and such a
formula can be coded in such a way that it requires eight instructions and executes in
five cycles on a machine with unlimited instruction-level parallelism. This means that if
the instructions are arranged in the proper order (“scheduled”), a machine with a
sufficient number of adders, shifters, logical units, and registers can, in principle,
execute the code in five cycles.

We do not make too much of this, because machines differ greatly in their
instruction-level parallelism capabilities. For example, an IBM RS/6000 processor from
ca. 1992 has a three-input adder and can execute two consecutive add-type
instructions in parallel even when one feeds the other (e.g., an add feeding a compare,
or the base register of a load). As a contrary example, consider a simple computer,
possibly for low-cost embedded applications, that has only one read port on its register
file. Normally, this machine would take an extra cycle to do a second read of the
register file for an instruction that has two register input operands. However, suppose it

Chapter 1. Laying the Groundwork

has a bypass so that if an instruction feeds an operand of the immediately following
instruction, then that operand is available without reading the register file. On such a
machine, it is actually advantageous if each instruction feeds the next—that is, if the
code has no parallelism.

Exercises

1. Express the loop

for (e1; e2; e3) statement

in terms of a while loop.

Can it be expressed as a do loop?

2. Code a loop in C in which the unsigned integer control variable i takes on all
values from 0 to and including the maximum unsigned number, 0xFFFFFFFF (on
a 32-bit machine).

3. For the more experienced reader: The instructions of the basic and full RISCs
defined in this book can be executed with at most two register reads and one
write. What are some common or plausible RISC instructions that either need
more source operands or need to do more than one register write?

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch01ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch01ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch01ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch01ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch01ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch01ans3

Chapter 2. Basics

Chapter 2. Basics

2–1 Manipulating Rightmost Bits
Some of the formulas in this section find application in later chapters.

Use the following formula to turn off the rightmost 1-bit in a word, producing 0 if
none (e.g., 01011000 01010000):

x & (x – 1)

This can be used to determine if an unsigned integer is a power of 2 or is 0: apply the
formula followed by a 0-test on the result.

Use the following formula to turn on the rightmost 0-bit in a word, producing all 1’s
if none (e.g., 10100111 10101111):

x | (x + 1)

Use the following formula to turn off the trailing 1’s in a word, producing x if none
(e.g., 10100111 10100000):

x & (x + 1)

This can be used to determine if an unsigned integer is of the form 2n– 1, 0, or all 1’s:
apply the formula followed by a 0-test on the result.

Use the following formula to turn on the trailing 0’s in a word, producing x if none
(e.g., 10101000 10101111):

x | (x– 1)

Use the following formula to create a word with a single 1-bit at the position of the
rightmost 0-bit in x, producing 0 if none (e.g., 10100111 00001000):

¬x & (x + 1)

Use the following formula to create a word with a single 0-bit at the position of the
rightmost 1-bit in x, producing all 1’s if none (e.g., 10101000 11110111):

¬x | (x – 1)

Use one of the following formulas to create a word with 1’s at the positions of the
trailing 0’s in x, and 0’s elsewhere, producing 0 if none (e.g., 01011000 00000111):

The first formula has some instruction-level parallelism.
Use the following formula to create a word with 0’s at the positions of the trailing

Chapter 2. Basics

1’s in x, and 0’s elsewhere, producing all 1’s if none (e.g., 10100111 11111000):

¬x | (x + 1)

Use the following formula to isolate the rightmost 1-bit, producing 0 if none (e.g.,
01011000 00001000):

x & (−x)

Use the following formula to create a word with 1’s at the positions of the rightmost
1-bit and the trailing 0’s in x, producing all 1’s if no 1-bit, and the integer 1 if no
trailing 0’s (e.g., 01011000 00001111):

x (x − 1)

Use the following formula to create a word with 1’s at the positions of the rightmost
0-bit and the trailing 1’s in x, producing all 1’s if no 0-bit, and the integer 1 if no
trailing 1’s (e.g., 01010111 00001111):

x (x + 1)

Use either of the following formulas to turn off the rightmost contiguous string of
1’s (e.g., 01011100 ==> 01000000) [Wood]:

(((x | (x − 1)) + 1) & x), or
((x & −x) + x)&x

These can be used to determine if a nonnegative integer is of the form 2j − 2k for
some j ≥ k≥ 0: apply the formula followed by a 0-test on the result.

De Morgan’s Laws Extended

The logical identities known as De Morgan’s laws can be thought of as distributing, or
“multiplying in,” the not sign. This idea can be extended to apply to the expressions of
this section, and a few more, as shown here. (The first two are De Morgan’s laws.)

Chapter 2. Basics

As an example of the application of these formulas, ¬(x | –(x + 1)) = ¬x &¬–(x +
1) = ¬x & ((x + 1) – 1) = ¬x & x = 0.

Right-to-Left Computability Test

There is a simple test to determine whether or not a given function can be
implemented with a sequence of add ’s, subtract’s, and’s, or’s, and not’s [War]. We
can, of course, expand the list with other instructions that can be composed from the
basic list, such as shift left by a fixed amount (which is equivalent to a sequence of
add ’s), or multiply. However, we exclude instructions that cannot be composed from
the list. The test is contained in the following theorem.

THEOREM. A function mapping words to words can be implemented with
word-parallel add, subtract, and, or, and not instructions if and only if
each bit of the result depends only on bits at and to the right of each
input operand.

That is, imagine trying to compute the rightmost bit of the result by looking only at
the rightmost bit of each input operand. Then, try to compute the next bit to the left by
looking only at the rightmost two bits of each input operand, and continue in this way.
If you are successful in this, then the function can be computed with a sequence of
add ’s, and’s, and so on. If the function cannot be computed in this right-to-left
manner, then it cannot be implemented with a sequence of such instructions.

The interesting part of this is the latter statement, and it is simply the contra-
positive of the observation that the functions add, subtract, and, or, and not can all
be computed in the right-to-left manner, so any combination of them must have this
property.

To see the “if” part of the theorem, we need a construction that is a little awkward
to explain. We illustrate it with a specific example. Suppose that a function of two
variables x and y has the right-to-left computability property, and suppose that bit 2 of
the result r is given by

We number bits from right to left, 0 to 31. Because bit 2 of the result is a function of
bits at and to the right of bit 2 of the input operands, bit 2 of the result is “right-to-left
computable.”

Arrange the computer words x, x shifted left two, and y shifted left one, as shown
below. Also, add a mask that isolates bit 2.

Now, form the word-parallel and of lines 2 and 3, or the result with row 1 (following
Equation (1)), and and the result with the mask (row 4 above). The result is a word of
all 0’s except for the desired result bit in position 2. Perform similar computations for
the other bits of the result, or the 32 resulting words together, and the result is the

Chapter 2. Basics

desired function.
This construction does not yield an efficient program; rather, it merely shows that it

can be done with instructions in the basic list.
Using the theorem, we immediately see that there is no sequence of such

instructions that turns off the leftmost 1-bit in a word, because to see if a certain 1-bit
should be turned off, we must look to the left to see if it is the leftmost one. Similarly,
there can be no such sequence for performing a right shift, or a rotate shift, or a left
shift by a variable amount, or for counting the number of trailing 0’s in a word (to
count trailing 0’s, the rightmost bit of the result will be 1 if there are an odd number of
trailing 0’s, and we must look to the left of the rightmost position to determine that).

A Novel Application

An application of the sort of bit twiddling discussed above is the problem of finding the
next higher number after a given number that has the same number of 1-bits. You
might very well wonder why anyone would want to compute that. It has application
where bit strings are used to represent subsets. The possible members of a set are
listed in a linear array, and a subset is represented by a word or sequence of words in
which bit i is on if member i is in the subset. Set unions are computed by the logical or
of the bit strings, intersections by and’s, and so on.

You might want to iterate through all the subsets of a given size. This is easily done
if you have a function that maps a given subset to the next higher number (interpreting
the subset string as an integer) with the same number of 1-bits.

A concise algorithm for this operation was devised by R. W. Gosper [HAK, item
175].1 Given a word x that represents a subset, the idea is to find the rightmost
contiguous group of 1’s in x and the following 0’s, and “increment” that quantity to the
next value that has the same number of 1’s. For example, the string xxx0 1111 0000,
where xxx represents arbitrary bits, becomes xxx1 0000 0111. The algorithm first
identifies the “smallest” 1-bit in x, with s = x &–x, giving 0000 0001 0000. This is
added to x, giving r = xxx1 0000 0000. The 1-bit here is one bit of the result. For the
other bits, we need to produce a right-adjusted string of n – 1 1’s, where n is the size
of the rightmost group of 1’s in x. This can be done by first forming the exclusive or
of r and x, which gives 0001 1111 0000 in our example.

This has two too many 1’s and needs to be right-adjusted. This can be
accomplished by dividing it by s, which right-adjusts it (s is a power of 2), and shifting
it right two more positions to discard the two unwanted bits. The final result is the or
of this and r.

In computer algebra notation, the result is y in

A complete C procedure is given in Figure 2–1 . It executes in seven basic RISC
instructions, one of which is division. (Do not use this procedure with x = 0; that
causes division by 0.)

If division is slow but you have a fast way to compute the number of trailing
zeros function ntz(x), the number of leading zeros function nlz(x), or population
count (pop(x) is the number of 1-bits in x), then the last line of Equation (2) can be

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch02fn1

Chapter 2. Basics

replaced with one of the following formulas. (The first two methods can fail on a
machine that has modulo 32 shifts.)

unsigned snoob(unsigned x) {
 unsigned smallest, ripple, ones;
 // x = xxx0 1111 0000
 smallest = x & -x; // 0000 0001 0000
 ripple = x + smallest; // xxx1 0000 0000
 ones = x ^ ripple; // 0001 1111 0000
 ones = (ones >> 2)/smallest; // 0000 0000 0111
 return ripple | ones; // xxx1 0000 0111
}

FIGURE 2–1. Next higher number with same number of 1-bits.

2–2 Addition Combined with Logical Operations
We assume the reader is familiar with the elementary identities of ordinary algebra and
Boolean algebra. Below is a selection of similar identities involving addition and
subtraction combined with logical operations.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images1.html#p02fig01

Chapter 2. Basics

Equation (d) can be applied to itself repeatedly, giving –¬–¬x = x + 2, and so on.
Similarly, from (e) we have ¬–¬– x = x – 2. So we can add or subtract any constant
using only the two forms of complementation.

Equation (f) is the dual of (j), where (j) is the well-known relation that shows how
to build a subtracter from an adder.

Equations (g) and (h) are from HAKMEM memo [HAK, item 23]. Equation (g) forms
a sum by first computing the sum with carries ignored (x y), and then adding in the
carries. Equation (h) is simply modifying the addition operands so that the combination
0 + 1 never occurs at any bit position; it is replaced with 1 + 0.

Chapter 2. Basics

It can be shown that in the ordinary addition of binary numbers with each bit
independently equally likely to be 0 or 1, a carry occurs at each position with probability
about 0.5. However, for an adder built by preconditioning the inputs using (g), the
probability is about 0.25. This observation is probably not of value in building an adder,
because for that purpose the important characteristic is the maximum number of logic
circuits the carry must pass through, and using (g) reduces the number of stages the
carry propagates through by only one.

Equations (k) and (l) are duals of (g) and (h), for subtraction. That is, (k) has the
interpretation of first forming the difference ignoring the borrows (x y), and then
subtracting the borrows. Similarly, Equation (l) is simply modifying the subtraction
operands so that the combination 1 – 1 never occurs at any bit position; it is replaced
with 0 – 0.

Equation (n) shows how to implement exclusive or in only three instructions on a
basic RISC. Using only and-or-not logic requires four instructions ((x | y) & ¬(x &
y)). Similarly, (u) and (v) show how to implement and and or in three other
elementary instructions, whereas using DeMorgan’s laws requires four.

2–3 Inequalities among Logical and Arithmetic Expressions
Inequalities among binary logical expressions whose values are interpreted as unsigned
integers are nearly trivial to derive. Here are two examples:

These can be derived from a list of all binary logical operations, shown in Table 2–1 .

TABLE 2–1. THE 16 BINARY LOGICAL OPERATIONS

Let f(x, y) and g(x, y) represent two columns in Table 2–1 . If for each row in
which f(x,y) is 1, g(x,y) also is 1, then for all (x,y), f(x, y) g(x, y). Clearly, this
extends to word-parallel logical operations. One can easily read off such relations (most
of which are trivial) as (x & y) x (x | ¬ y), and so on. Furthermore, if two
columns have a row in which one entry is 0 and the other is 1, and another row in
which the entries are 1 and 0, respectively, then no inequality relation exists between
the corresponding logical expressions. So the question of whether or not f(x, y) g(x,
y) is completely and easily solved for all binary logical functions f and g.

Use caution when manipulating these relations. For example, for ordinary arithmetic,

Chapter 2. Basics

if x + y ≤ a and z ≤ x, then z + y ≤ a, but this inference is not valid if “+” is replaced
with or.

Inequalities involving mixed logical and arithmetic expressions are more interesting.
Below is a small selection.

The proofs of these are quite simple, except possibly for the relation |x − y| (x y).
By |x − y| we mean the absolute value of x − y, which can be computed within the
domain of unsigned numbers as max(x, y) − min(x, y). This relation can be proven by
induction on the length of x and y (the proof is a little easier if you extend them on the
left rather than on the right).

2–4 Absolute Value Function
If your machine does not have an instruction for computing the absolute value, this
computation can usually be done in three or four branch-free instructions. First,
compute , and then one of the following:

By “2x” we mean, of course, x + x or x << 1.

If you have fast multiplication by a variable whose value is ±1, the following will do:

2–5 Average of Two Integers
The following formula can be used to compute the average of two unsigned integers,

(x + y)/2 without causing overflow [Dietz]:

The formula below computes (x + y)/2 for unsigned integers:

Chapter 2. Basics

To compute the same quantities (“floor and ceiling averages”) for signed integers,
use the same formulas, but with the unsigned shift replaced with a signed shift.

For signed integers, one might also want the average with the division by 2 rounded
toward 0. Computing this “truncated average” (without causing overflow) is a little more
difficult. It can be done by computing the floor average and then correcting it. The
correction is to add 1 if, arithmetically, x + y is negative and odd. But x + y is
negative if and only if the result of (3), with the unsigned shift replaced with a signed
shift, is negative. This leads to the following method (seven instructions on the basic
RISC, after commoning the subexpression x y):

Some common special cases can be done more efficiently. If x and y are signed
integers and known to be nonnegative, then the average can be computed as simply

. The sum can overflow, but the overflow bit is retained in the register
that holds the sum, so that the unsigned shift moves the overflow bit to the proper
position and supplies a zero sign bit.

If x and y are unsigned integers and , or if x and y are signed integers and

x ≤ y (signed comparison), then the average is given by x + . These
are floor averages, for example, the average of −1 and 0 is −1.

2–6 Sign Extension
By “sign extension,” we mean to consider a certain bit position in a word to be the sign
bit, and we wish to propagate that to the left, ignoring any other bits present. The
standard way to do this is with shift left logical followed by shift right signed.
However, if these instructions are slow or nonexistent on your machine, it can be done
with one of the following, where we illustrate by propagating bit position 7 to the left:

The “+” above can also be “–” or “ .” The second formula is particularly useful if you
know that the unwanted high-order bits are all 0’s, because then the and can be
omitted.

2–7 Shift Right Signed from Unsigned
If your machine does not have the shift right signed instruction, it can be computed
using the formulas shown below. The first formula is from [GM], and the second is
based on the same idea. These formulas hold for 0 ≤ n ≤ 31 and, if the machine has
mod-64 shifts, the last holds for 0 ≤ n ≤ 63. The last formula holds for any n if by
“holds” we mean “treats the shift amount to the same modulus as does the logical
shift.”

When n is a variable, each formula requires five or six instructions on a basic RISC.

Chapter 2. Basics

In the first two formulas, an alternative for the expression is
1<<31 − n.

If n is a constant, the first two formulas require only three instructions on many

machines. If n = 31, the function can be done in two instructions with − .

2–8 Sign Function
The sign, or signum, function is defined by

It can be calculated with four instructions on most machines [Hop]:

If you don’t have shift right signed, then use the substitute noted at the end of
Section 2–7 , giving the following nicely symmetric formula (five instructions):

Comparison predicate instructions permit a three-instruction solution, with either

Finally, we note that the formula almost works; it
fails only for x = –231.

2–9 Three-Valued Compare Function
The three-valued compare function, a slight generalization of the sign function, is
defined by

Chapter 2. Basics

There are both signed and unsigned versions, and unless otherwise specified, this
section applies to both.

Comparison predicate instructions permit a three-instruction solution, an obvious
generalization of Equations in (4):

A solution for unsigned integers on PowerPC is shown below [CWG]. On this
machine, “carry” is “not borrow.”

subf R5,Ry,Rx # R5 <-- Rx - Ry.
subfc R6,Rx,Ry # R6 <-- Ry - Rx, set carry.
subfe R7,Ry,Rx # R7 <-- Rx - Ry + carry, set carry.
subfe R8,R7,R5 # R8 <-- R5 - R7 + carry, (set carry).

If limited to the instructions of the basic RISC, there does not seem to be any
particularly good way to compute this function. The comparison predicates x < y, x ≤
y, and so on, require about five instructions (see Section 2–12), leading to a solution in
about 12 instructions (using a small amount of commonality in computing x < y and x
> y). On the basic RISC it’s probably preferable to use compares and branches (six
instructions executed worst case if compares can be commoned).

2–10 Transfer of Sign Function
The transfer of sign function, called ISIGN in Fortran, is defined by

This function can be calculated (modulo 232) with four instructions on most machines:

2–11 Decoding a “Zero Means 2**n” Field
Sometimes a 0 or negative value does not make much sense for a quantity, so it is
encoded in an n-bit field with a 0 value being understood to mean 2n, and a nonzero
value having its normal binary interpretation. An example is the length field of
PowerPC’s load string word immediate (lswi) instruction, which occupies five bits.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images1.html#p021equ05

Chapter 2. Basics

It is not useful to have an instruction that loads zero bytes when the length is an
immediate quantity, but it is definitely useful to be able to load 32 bytes. The length
field could be encoded with values from 0 to 31 denoting lengths from 1 to 32, but the
“zero means 32” convention results in simpler logic when the processor must also
support a corresponding instruction with a variable (in-register) length that employs
straight binary encoding (e.g., PowerPC’s lswx instruction).

It is trivial to encode an integer in the range 1 to 2n into the “zero means 2n”
encoding—simply mask the integer with 2n − 1. To do the decoding without a test-
and-branch is not quite as simple, but here are some possibilities, illustrated for a 3-bit
field. They all require three instructions, not counting possible loads of constants.

2–12 Comparison Predicates
A “comparison predicate” is a function that compares two quantities, producing a single
bit result of 1 if the comparison is true, and 0 if the comparison is false. Below we
show branch-free expressions to evaluate the result into the sign position. To produce
the 1/0 value used by some languages (e.g., C), follow the code with a shift right of
31. To produce the −1/0 result used by some other languages (e.g., Basic), follow the
code with a shift right signed of 31.

These formulas are, of course, not of interest on machines such as MIPS and our
model RISC, which have comparison instructions that compute many of these
predicates directly, placing a 0/1-valued result in a general purpose register.

Chapter 2. Basics

A machine instruction that computes the negative of the absolute value is handy
here. We show this function as “nabs.” Unlike absolute value, it is well defined in that it
never overflows. Machines that do not have nabs, but have the more usual abs, can
use −abs(x) for nabs(x). If x is the maximum negative number, this overflows twice,
but the result is correct. (We assume that the absolute value and the negation of the
maximum negative number is itself.) Because some machines have neither abs nor
nabs, we give an alternative that does not use them.

The “nlz” function is the number of leading 0’s in its argument. The “doz” function
(difference or zero) is described on page 41. For x > y, x ≥ y, and so on,
interchange x and y in the formulas for x < y, x ≤ y, and so on. The add of 0x8000
0000 can be replaced with any instruction that inverts the high-order bit (in x, y, or x
− y).

Another class of formulas can be derived from the observation that the predicate x
< y is given by the sign of x/2 − y/2, and the subtraction in that expression cannot
overflow. The result can be fixed up by subtracting 1 in the cases in which the shifts
discard essential information, as follows:

Chapter 2. Basics

These execute in seven instructions on most machines (six if it has and not), which is
no better than what we have above (five to seven instructions, depending upon the
fullness of the set of logic instructions).

The formulas above involving nlz are due to [Shep], and his formula for the x = y
predicate is particularly useful, because a minor variation of it gets the predicate
evaluated to a 1/0-valued result with only three instructions:

Signed comparisons to 0 are frequent enough to deserve special mention. There are
some formulas for these, mostly derived directly from the above. Again, the result is in
the sign position.

Chapter 2. Basics

Signed comparisons can be obtained from their unsigned counterparts by biasing
the signed operands upward by 231 and interpreting the results as unsigned integers.
The reverse transformation also works.2 Thus, we have

Similar relations hold for ≤, , and so on. In these relations, one can use addition,
subtraction, or exclusive or with 231. They are all equivalent, as they simply invert the
sign bit. An instruction like the basic RISC’s add immediate shifted is useful to avoid
loading the constant 231.

Another way to get signed comparisons from unsigned is based on the fact that if x

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch02fn2

Chapter 2. Basics

and y have the same sign, then , whereas if they have opposite

signs, then [Lamp]. Again, the reverse transformation also works, so
we have

where x31 and y31 are the sign bits of x and y, respectively. Similar relations hold for

≤, , and so on.
Using either of these devices enables computing all the usual comparison predicates

other than = and ≠ in terms of any one of them, with at most three additional

instructions on most machines. For example, let us take as primitive, because it
is one of the simplest to implement (it is the carry bit from y − x). Then the other
predicates can be obtained as follows:

Comparison Predicates from the Carry Bit

If the machine can easily deliver the carry bit into a general purpose register, this may
permit concise code for some of the comparison predicates. Below are several of these
relations. The notation carry(expression) means the carry bit generated by the
outermost operation in expression. We assume the carry bit for the subtraction x – y
is what comes out of the adder for x + + 1, which is the complement of “borrow.”

Chapter 2. Basics

For x > y, use the complement of the expression for x ≤ y, and similarly for other
relations involving “greater than.”

The GNU Superoptimizer has been applied to the problem of computing predicate
expressions on the IBM RS/6000 computer and its close relative PowerPC [GK]. The
RS/6000 has instructions for abs(x), nabs(x), doz(x, y), and a number of forms of add
and subtract that use the carry bit. It was found that the RS/6000 can compute all the
integer predicate expressions with three or fewer elementary (one-cycle) instructions, a
result that surprised even the architects of the machine. “All” includes the six two-
operand signed comparisons and the four two-operand unsigned comparisons, all of
these with the second operand being 0, and all in forms that produce a 1/0 result or a
–1/0 result. PowerPC, which lacks abs(x), nabs(x), and doz(x, y), can compute all the
predicate expressions in four or fewer elementary instructions.

How the Computer Sets the Comparison Predicates

Most computers have a way of evaluating the integer comparison predicates to a 1-bit
result. The result bit may be placed in a “condition register” or, for some machines
(such as our RISC model), in a general purpose register. In either case, the facility is
often implemented by subtracting the comparison operands and then performing a
small amount of logic on the result bits to determine the 1-bit comparison result.

Below is the logic for these operations. It is assumed that the machine computes x
− y as x + + 1, and the following quantities are available in the result:

Co, the carry out of the high-order position

Ci, the carry into the high-order position

N, the sign bit of the result
Z, which equals 1 if the result, exclusive of Co, is all-0, and is otherwise 0

Then we have the following in Boolean algebra notation (juxtaposition denotes and, +
denotes or):

Chapter 2. Basics

2–13 Overflow Detection
“Overflow” means that the result of an arithmetic operation is too large or too small to
be correctly represented in the target register. This section discusses methods that a
programmer might use to detect when overflow has occurred, without using the
machine’s “status bits” that are often supplied expressly for this purpose. This is
important, because some machines do not have such status bits (e.g., MIPS), and even
if the machine is so equipped, it is often difficult or impossible to access the bits from a
high-level language.

Signed Add/Subtract

When overflow occurs on integer addition and subtraction, contemporary machines
invariably discard the high-order bit of the result and store the low-order bits that the
adder naturally produces. Signed integer overflow of addition occurs if and only if the
operands have the same sign and the sum has a sign opposite to that of the operands.
Surprisingly, this same rule applies even if there is a carry into the adder—that is, if the
calculation is x + y + 1. This is important for the application of adding multiword
signed integers, in which the last addition is a signed addition of two fullwords and a
carry-in that may be 0 or +1.

To prove the rule for addition, let x and y denote the values of the one-word
signed integers being added, let c (carry-in) be 0 or 1, and assume for simplicity a 4-
bit machine. Then if the signs of x and y are different,

or similar bounds apply if x is nonnegative and y is negative. In either case, by adding
these inequalities and optionally adding in 1 for c,

Chapter 2. Basics

–8 ≤ x + y + c ≤ 7.

This is representable as a 4-bit signed integer, and thus overflow does not occur when
the operands have opposite signs.

Now suppose x and y have the same sign. There are two cases:

Thus,

Overflow occurs if the sum is not representable as a 4-bit signed integer—that is, if

In case (a), this is equivalent to the high-order bit of the 4-bit sum being 0, which is
opposite to the sign of x and y. In case (b), this is equivalent to the high-order bit of
the 4-bit sum being 1, which again is opposite to the sign of x and y.

For subtraction of multiword integers, the computation of interest is x − y − c,
where again c is 0 or 1, with a value of 1 representing a borrow-in. From an analysis
similar to the above, it can be seen that overflow in the final value of x − y − c occurs
if and only if x and y have opposite signs and the sign of x − y − c is opposite to that
of x (or, equivalently, the same as that of y).

This leads to the following expressions for the overflow predicate, with the result
being in the sign position. Following these with a shift right or shift right signed of
31 produces a 1/0- or a −1/0-valued result.

By choosing the second alternative in the first column, and the first alternative in the
second column (avoiding the equivalence operation), our basic RISC can evaluate
these tests with three instructions in addition to those required to compute x + y + c
or x − y − c. A fourth instruction (branch if negative) can be added to branch to
code where the overflow condition is handled.

If executing with overflow interrupts enabled, the programmer may wish to test to
see if a certain addition or subtraction will cause overflow, in a way that does not cause
it. One branch-free way to do this is as follows:

Chapter 2. Basics

The assignment to z in the left column sets z = 0x80000000 if x and y have the
same sign, and sets z = 0 if they differ. Then, the addition in the second expression is
done with x z and y having different signs, so it can’t overflow. If x and y are
nonnegative, the sign bit in the second expression will be 1 if and only if (x − 231) +
y + c ≥ 0—that is, iff x + y + c ≥ 231, which is the condition for overflow in
evaluating x + y + c. If x and y are negative, the sign bit in the second expression will
be 1 iff (x + 231) + y + c < 0—that is, iff x + y + c < −231, which again is the
condition for overflow. The and with z ensures the correct result (0 in the sign
position) if x and y have opposite signs. Similar remarks apply to the case of
subtraction (right column). The code executes in nine instructions on the basic RISC.

It might seem that if the carry from addition is readily available, this might help in
computing the signed overflow predicate. This does not seem to be the case; however,
one method along these lines is as follows.

If x is a signed integer, then x + 231 is correctly represented as an unsigned
number and is obtained by inverting the high-order bit of x. Signed overflow in the
positive direction occurs if x + y ≥ 231—that is, if (x + 231) + (y + 231) ≥ 3 · 231.
This latter condition is characterized by carry occurring in the unsigned add (which
means that the sum is greater than or equal to 232) and the high-order bit of the sum
being 1. Similarly, overflow in the negative direction occurs if the carry is 0 and the
high-order bit of the sum is also 0.

This gives the following algorithm for detecting overflow for signed addition:

Compute (x 231) + (y 231), giving sum s and carry c.
Overflow occurred iff c equals the high-order bit of s.

The sum is the correct sum for the signed addition, because inverting the high-order
bits of both operands does not change their sum.

For subtraction, the algorithm is the same except that in the first step a subtraction
replaces the addition. We assume that the carry is that which is generated by
computing x − y as x + + 1. The subtraction is the correct difference for the signed
subtraction.

These formulas are perhaps interesting, but on most machines they would not be
quite as efficient as the formulas that do not even use the carry bit (e.g., overflow = (x
≡ y)& (s x) for addition, and (x y) &(d x) for subtraction, where s and d are
the sum and difference, respectively, of x and y).

How the Computer Sets Overflow for Signed Add/Subtract

Machines often set “overflow” for signed addition by means of the logic “the carry into
the sign position is not equal to the carry out of the sign position.” Curiously, this logic
gives the correct overflow indication for both addition and subtraction, assuming the
subtraction x − y is done by x + + 1. Furthermore, it is correct whether or not there
is a carry- or borrow-in. This does not seem to lead to any particularly good methods
for computing the signed overflow predicate in software, however, even though it is

Chapter 2. Basics

easy to compute the carry into the sign position. For addition and subtraction, the
carry/borrow into the sign position is given by the sign bit after evaluating the following
expressions (where c is 0 or 1):

In fact, these expressions give, at each position i, the carry/borrow into position i.

Unsigned Add/Subtract

The following branch-free code can be used to compute the overflow predicate for
unsigned add/subtract, with the result being in the sign position. The expressions
involving a right shift are probably useful only when it is known that c = 0. The
expressions in brackets compute the carry or borrow generated from the least
significant position.

For unsigned add ’s and subtract’s, there are much simpler formulas in terms of
comparisons [MIPS]. For unsigned addition, overflow (carry) occurs if the sum is less
(by unsigned comparison) than either of the operands. This and similar formulas are
given below. Unfortunately, there is no way in these formulas to allow for a variable c
that represents the carry- or borrow-in. Instead, the program must test c, and use a
different type of comparison depending upon whether c is 0 or 1.

The first formula for each case above is evaluated before the add/subtract that may
overflow, and it provides a way to do the test without causing overflow. The second
formula for each case is evaluated after the add/subtract that may overflow.

There does not seem to be a similar simple device (using comparisons) for
computing the signed overflow predicate.

Chapter 2. Basics

Multiplication

For multiplication, overflow means that the result cannot be expressed in 32 bits (it can
always be expressed in 64 bits, whether signed or unsigned). Checking for overflow is
simple if you have access to the high-order 32 bits of the product. Let us denote the
two halves of the 64-bit product by hi(x × y) and lo(x × y). Then the overflow
predicates can be computed as follows [MIPS]:

One way to check for overflow of multiplication is to do the multiplication and then
check the result by dividing. Care must be taken not to divide by 0, and there is a
further complication for signed multiplication. Overflow occurs if the following
expressions are true:

The complication arises when x = −231 and y = −1. In this case the multiplication
overflows, but the machine may very well give a result of −231. This causes the
division to overflow, and thus any result is possible (for some machines). Therefore, this
case has to be checked separately, which is done by the term y < 0 & x = −231. The
above expressions use the “conditional and” operator to prevent dividing by 0 (in C,
use the && operator).

It is also possible to use division to check for overflow of multiplication without
doing the multiplication (that is, without causing overflow). For unsigned integers, the
product overflows iff xy > 232 − 1, or x > ((232 − 1)/y), or, since x is an integer, x >

(232 − 1)/y . Expressed in computer arithmetic, this is

For signed integers, the determination of overflow of x * y is not so simple. If x and
y have the same sign, then overflow occurs iff xy > 231 − 1. If they have opposite
signs, then overflow occurs iff xy < −231. These conditions can be tested as indicated
in Table 2–2 , which employs signed division. This test is awkward to implement,
because of the four cases. It is difficult to unify the expressions very much because of
problems with overflow and with not being able to represent the number +231.

The test can be simplified if unsigned division is available. We can use the absolute
values of x and y, which are correctly represented under unsigned integer
interpretation. The complete test can then be computed as shown below. The variable
c = 231 − 1 if x and y have the same sign, and c = 231 otherwise.

TABLE 2–2. O VERFLOW TEST FOR SIGNED MULTIPLICATION

Chapter 2. Basics

The number of leading zeros instruction can be used to give an estimate of
whether or not x * y will overflow, and the estimate can be refined to give an accurate
determination. First, consider the multiplication of unsigned numbers. It is easy to show
that if x and y, as 32-bit quantities, have m and n leading 0’s, respectively, then the
64-bit product has either m + n or m + n + 1 leading 0’s (or 64, if either x = 0 or y
= 0). Overflow occurs if the 64-bit product has fewer than 32 leading 0’s. Hence,

nlz(x) + nlz(y) ≥ 32: Multiplication definitely does not overflow.
nlz(x) + nlz(y) ≤ 30: Multiplication definitely does overflow.

For nlz(x) + nlz(y) = 31, overflow may or may not occur. In this case, the overflow
assessment can be made by evaluating t = x y/2 . This will not overflow. Since xy is
2t or, if y is odd, 2t + x, the product xy overflows if t ≥ 231. These considerations
lead to a plan for computing xy, but branching to “overflow” if the product overflows.
This plan is shown in Figure 2–2 .

For the multiplication of signed integers, we can make a partial determination of
whether or not overflow occurs from the number of leading 0’s of nonnegative
arguments, and the number of leading 1’s of negative arguments. Let

unsigned x, y, z, m, n, t;

m = nlz(x);
n = nlz(y);
if (m + n <= 30) goto overflow;
t = x*(y >> 1);
if ((int)t < 0) goto overflow;
z = t*2;
if (y & 1) {
 z = z + x;
 if (z < x) goto overflow;
}
// z is the correct product of x and y.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images1.html#p02fig02

Chapter 2. Basics

FIGURE 2–2. Determination of overflow of unsigned multiplication.

Then, we have

m + n ≥ 34: Multiplication definitely does not overflow.
m + n ≤ 31: Multiplication definitely does overflow.

There are two ambiguous cases: 32 and 33. The case m + n = 33 overflows only
when both arguments are negative and the true product is exactly 231 (machine result
is −231), so it can be recognized by a test that the product has the correct sign (that is,
overflow occurred if m n (m * n) < 0). When m + n = 32, the distinction is not
so easily made.

We will not dwell on this further, except to note that an overflow estimate for
signed multiplication can also be made based on nlz(abs(x)) + nlz(abs(y)), but again
there are two ambiguous cases (a sum of 31 or 32).

Division

For the signed division x ÷ y, overflow occurs if the following expression is true:

y = 0 | (x = 0x80000000 & y = −1)

Most machines signal overflow (or trap) for the indeterminate form 0 ÷ 0.
Straightforward code for evaluating this expression, including a final branch to the

overflow handling code, consists of seven instructions, three of which are branches.
There do not seem to be any particularly good tricks to improve on this, but here are a
few possibilities:

[abs(y 0x80000000) | (abs(x) & abs(y = 0x80000000))] < 0

That is, evaluate the large expression in brackets, and branch if the result is less than
0. This executes in about nine instructions, counting the load of the constant and the
final branch, on a machine that has the indicated instructions and that gets the
“compare to 0” for free.

Some other possibilities are to first compute z from

z ← (x 0x80000000) | (y + 1)

(three instructions on many machines), and then do the test and branch on y = 0 | z
= 0 in one of the following ways:

These execute in nine, seven, and eight instructions, respectively, on a machine that
has the indicated instructions. The last line represents a good method for PowerPC.

For the unsigned division , overflow occurs if and only if y = 0.
Some machines have a “long division” instruction (see page 192), and you may

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_192

Chapter 2. Basics

want to predict, using elementary instructions, when it would overflow. We will discuss
this in terms of an instruction that divides a doubleword by a fullword, producing a
fullword quotient and possibly also a fullword remainder.

Such an instruction overflows if either the divisor is 0 or if the quotient cannot be
represented in 32 bits. Typically, in these overflow cases both the quotient and
remainder are incorrect. The remainder cannot overflow in the sense of being too large
to represent in 32 bits (it is less than the divisor in magnitude), so the test that the
remainder will be correct is the same as the test that the quotient will be correct.

We assume the machine either has 64-bit general registers or 32-bit registers and
there is no problem doing elementary operations (shifts, adds, and so forth) on 64-bit
quantities. For example, the compiler might implement a doubleword integer data type.

In the unsigned case the test is trivial: for x ÷ y with x a doubleword and y a
fullword, the division will not overflow if (and only if) either of the following equivalent
expressions is true.

On a 32-bit machine, the shifts need not be done; simply compare y to the register
that contains the high-order half of x. To ensure correct results on a 64-bit machine, it
is also necessary to check that the divisor y is a 32-bit quantity (e.g., check that

.
The signed case is more interesting. It is first necessary to check that y ≠ 0 and, on

a 64-bit machine, that y is correctly represented in 32 bits (check that
. Assuming these tests have been done, the table that

follows shows how the tests might be done to determine precisely whether or not the
quotient is representable in 32 bits by considering separately the four cases of the
dividend and divisor each being positive or negative. The expressions in the table are in
ordinary arithmetic, not computer arithmetic.

In each column, each relation follows from the one above it in an if-and-only-if
way. To remove the floor and ceiling functions, some relations from Theorem D1 on
page 183 are used.

As an example of interpreting this table, consider the leftmost column. It applies to
the case in which x ≥ 0 and y > 0. In this case the quotient is x/y , and this must
be strictly less than 231 to be representable as a 32-bit quantity. From this it follows
that the real number x/y must be less than 231, or x must be less than 231y. This test
can be implemented by shifting y left 31 positions and comparing the result to x.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_183

Chapter 2. Basics

When the signs of x and y differ, the quotient of conventional division is x/y .
Because the quotient is negative, it can be as small as −231.

In the bottom row of each column the comparisons are all of the same type (less
than). Because of the possibility that x is the maximum negative number, in the third
and fourth columns an unsigned comparison must be used. In the first two columns
the quantities being compared begin with a leading 0-bit, so an unsigned comparison
can be used there, too.

These tests can, of course, be implemented by using conditional branches to
separate out the four cases, doing the indicated arithmetic, and then doing a final
compare and branch to the code for the overflow or non-overflow case. However,
branching can be reduced by taking advantage of the fact that when y is negative, −y
is used, and similarly for x. Hence the tests can be made more uniform by using the
absolute values of x and y. Also, using a standard device for optionally doing the
additions in the second and third columns results in the following scheme:

Using the three-instruction method of computing the absolute value (see page 18), on
a 64-bit version of the basic RISC this amounts to 12 instructions, plus a conditional
branch.

2–14 Condition Code Result of Add, Subtract, and Multiply
Many machines provide a “condition code” that characterizes the result of integer
arithmetic operations. Often there is only one add instruction, and the characterization
reflects the result for both unsigned and signed interpretation of the operands and
result (but not for mixed types). The characterization usually consists of the following:

• Whether or not carry occurred (unsigned overflow)
• Whether or not signed overflow occurred
• Whether the 32-bit result, interpreted as a signed two’s-complement integer

and ignoring carry and overflow, is negative, 0, or positive
Some older machines give an indication of whether the infinite precision result (that

is, 33-bit result for add ’s and subtract’s) is positive, negative, or 0. However, this
indication is not easily used by compilers of high-level languages, and so has fallen out
of favor.

For addition, only nine of the 12 combinations of these events are possible. The
ones that cannot occur are “no carry, overflow, result > 0,” “no carry, overflow, result =
0,” and “carry, overflow, result < 0.” Thus, four bits are, just barely, needed for the
condition code. Two of the combinations are unique in the sense that only one value of
inputs produces them: Adding 0 to itself is the only way to get “no carry, no overflow,
result = 0,” and adding the maximum negative number to itself is the only way to get
“carry, overflow, result = 0.” These remarks remain true if there is a “carry in”—that is,
if we are computing x + y + 1.

Chapter 2. Basics

For subtraction, let us assume that to compute x – y the machine actually
computes x + + 1, with the carry produced as for an add (in this scheme the
meaning of “carry” is reversed for subtraction, in that carry = 1 signifies that the result
fits in a single word, and carry = 0 signifies that the result does not fit in a single
word). Then for subtraction, only seven combinations of events are possible. The ones
that cannot occur are the three that cannot occur for addition, plus “no carry, no
overflow, result = 0,” and “carry, overflow, result = 0.”

If a machine’s multiplier can produce a doubleword result, then two multiply
instructions are desirable: one for signed and one for unsigned operands. (On a 4-bit
machine, in hexadecimal, F × F = 01 signed, and F × F = E1 unsigned.) For these
instructions, neither carry nor overflow can occur, in the sense that the result will
always fit in a doubleword.

For a multiplication instruction that produces a one-word result (the low-order word
of the doubleword result), let us take “carry” to mean that the result does not fit in a
word with the operands and result interpreted as unsigned integers, and let us take
“overflow” to mean that the result does not fit in a word with the operands and result
interpreted as signed two’s-complement integers. Then again, there are nine possible
combinations of results, with the missing ones being “no carry, overflow, result > 0,”
“no carry, overflow, result = 0,” and “carry, no overflow, result = 0.” Thus, considering
addition, subtraction, and multiplication together, ten combinations can occur.

2–15 Rotate Shifts
These are rather trivial. Perhaps surprisingly, this code works for n ranging from 0 to
32 inclusive, even if the shifts are mod-32.

If your machine has double-length shifts, they can be used to do rotate shifts.
These instructions might be written

shldi RT,RA,RB,I
shrdi RT,RA,RB,I

They treat the concatenation of RA and RB as a single double-length quantity, and shift
it left or right by the amount given by the immediate field I. (If the shift amount is in a
register, the instructions are awkward to implement on most RISCs because they
require reading three registers.) The result of the left shift is the high-order word of the
shifted double-length quantity, and the result of the right shift is the low-order word.

Using shldi, a rotate left of Rx can be accomplished by

shldi RT,Rx,Rx,I

and similarly a rotate right shift can be accomplished with shrdi.
A rotate left shift of one position can be accomplished by adding the contents of a

register to itself with “end-around carry” (adding the carry that results from the
addition to the sum in the low-order position). Most machines do not have that
instruction, but on many machines it can be accomplished with two instructions: (1)
add the contents of the register to itself, generating a carry (into a status register), and

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images1.html#p02pro01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images1.html#p02pro02

Chapter 2. Basics

(2) add the carry to the sum.

2–16 Double-Length Add/Subtract
Using one of the expressions shown on page 31 for overflow of unsigned addition and
subtraction, we can easily implement double-length addition and subtraction without
accessing the machine’s carry bit. To illustrate with double-length addition, let the
operands be (x1, x0) and (y1, y0), and the result be (z1, z0). Subscript 1 denotes the
most significant half, and subscript 0 the least significant. We assume that all 32 bits of
the registers are used. The less significant words are unsigned quantities.

This executes in nine instructions. The second line can be ,
permitting a four-instruction solution on machines that have this comparison operator in
a form that gives the result as a 1 or 0 in a register, such as the “SLTU” (Set on Less
Than Unsigned) instruction on MIPS [MIPS].

Similar code for double-length subtraction (x – y) is

This executes in eight instructions on a machine that has a full set of logical

instructions. The second line can be , permitting a four-instruction
solution on machines that have the “SLTU” instruction.

Double-length addition and subtraction can be done in five instructions on most
machines by representing the multiple-length data using only 31 bits of the least
significant words, with the high-order bit being 0 except momentarily when it contains
a carry or borrow bit.

2–17 Double-Length Shifts
Let (x1, x0) be a pair of 32-bit words to be shifted left or right as if they were a single
64-bit quantity, with x1 being the most significant half. Let (y1, y0) be the result,
interpreted similarly. Assume the shift amount n is a variable ranging from 0 to 63.
Assume further that the machine’s shift instructions are modulo 64 or greater. That is,
a shift amount in the range 32 to 63 or –32 to –1 results in an all-0 word, unless the
shift is a signed right shift, in which case the result is 32 sign bits from the word
shifted. (This code will not work on the Intel x86 machines, which have mod-32 shifts.)

Under these assumptions, the shift left double operation can be accomplished as
follows (eight instructions):

Chapter 2. Basics

The main connective in the first assignment must be or, not plus, to give the correct
result when n = 32. If it is known that 0 ≤ n ≤ 32, the last term of the first
assignment can be omitted, giving a six-instruction solution.

Similarly, a shift right double unsigned operation can be done with

Shift right double signed is more difficult, because of an unwanted sign
propagation in one of the terms. Straightforward code follows:

If your machine has the conditional move instructions, it is a simple matter to
express this in branch-free code, in which form it takes eight instructions. If the
conditional move instructions are not available, the operation can be done in ten
instructions by using the familiar device of constructing a mask with the shift right
signed 31 instruction to mask the unwanted sign propagating term:

2–18 Multibyte Add, Subtract, Absolute Value
Some applications deal with arrays of short integers (usually bytes or halfwords), and
often execution is faster if they are operated on a word at a time. For definiteness, the
examples here deal with the case of four 1-byte integers packed into a word, but the
techniques are easily adapted to other packings, such as a word containing a 12-bit
integer and two 10-bit integers, and so on. These techniques are of greater value on
64-bit machines, because more work is done in parallel.

Addition must be done in a way that blocks the carries from one byte into another.
This can be accomplished by the following two-step method:

1. Mask out the high-order bit of each byte of each operand and add (there will
then be no carries across byte boundaries).

2. Fix up the high-order bit of each byte with a 1-bit add of the two operands and
the carry into that bit.

The carry into the high-order bit of each byte is given by the high-order bit of each

Chapter 2. Basics

byte of the sum computed in step 1. The subsequent similar method works for
subtraction:

These execute in eight instructions, counting the load of 0x7F7F7F7F, on a machine
that has a full set of logical instructions. (Change the and and or of 0x80808080 to
and not and or not, respectively, of 0x7F7F7F7F.)

There is a different technique for the case in which the word is divided into only two
fields. In this case, addition can be done by means of a 32-bit addition followed by
subtracting out the unwanted carry. On page 30 we noted that the expression (x + y)

 x y gives the carries into each position. Using this and similar observations about
subtraction gives the following code for adding/subtracting two halfwords modulo 216

(seven instructions):

Multibyte absolute value is easily done by complementing and adding 1 to each
byte that contains a negative integer (that is, has its high-order bit on). The following
code sets each byte of y equal to the absolute value of each byte of x (eight
instructions):

The third line could as well be m ← a + a − b. The addition of b in the fourth line
cannot carry across byte boundaries, because the quantity x m has a high-order 0 in
each byte.

2–19 Doz, Max, Min
The “doz” function is “difference or zero,” defined as follows:

Chapter 2. Basics

It has been called “first grade subtraction” because the result is 0 if you try to take
away too much.3 If implemented as a computer instruction, perhaps its most important
use is to implement the max(x, y) and min(x, y) functions (in both signed and
unsigned forms) in just two simple instructions, as will be seen. Implementing max(x,
y) and min(x, y) in hardware is difficult because the machine would need paths from
the output ports of the register file back to an input port, bypassing the adder. These
paths are not normally present. If supplied, they would be in a region that’s often
crowded with wiring for register bypasses. The situation is illustrated in Figure 2–3 . The
adder is used (by the instruction) to do the subtraction x − y. The high-order bits of
the result of the subtraction (sign bit and carries, as described on page 27) define
whether x ≥ y or x < y The comparison result is fed to a multiplexor (MUX) that
selects either x or y as the result to write into the target register. These paths, from
register file outputs x and y to the multiplexor, are not normally present and would
have little use. The difference or zero instructions can be implemented without these
paths because it is the output of the adder (or 0) that is fed back to the register file.

FIGURE 2–3. Implementing max(x, y) and min(x, y).

Using difference or zero, max(x, y) and min(x, y) can be implemented in two
instructions as follows:

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch02fn3

Chapter 2. Basics

In the signed case, the result of the difference or zero instruction can be
negative. This happens if overflow occurs in the subtraction. Overflow should be
ignored; the addition of y or subtraction from x will overflow again, and the result will
be correct. When doz(x, y) is negative, it is actually the correct difference if it is
interpreted as an unsigned integer.

Suppose your computer does not have the difference or zero instructions, but you
want to code doz(x, y), max(x, y), and so forth, in an efficient branch-free way. In the
next few paragraphs we show how these functions might be coded if your machine has
the conditional move instructions, comparison predicates, efficient access to the carry
bit, or none of these.

If your machine has the conditional move instructions, it can get doz(x, y) in
three instructions, and destructive4 max(x, y) and min(x, y) in two instructions. For
example, on the full RISC, z ← doz(x, y) can be calculated as follows (r0 is a
permanent zero register):

sub z,x,y Set z = x - y.
cmplt t,x,y Set t = 1 if x < y, else 0.
movne z,t,r0 Set z = 0 if x < y.

Also on the full RISC, x ← max(x, y) can be calculated as follows:

cmplt t,x,y Set t = 1 if x < y, else 0.
movne x,t,y Set x = y if x < y.

The min function, and the unsigned counterparts, are obtained by changing the
comparison conditions.

These functions can be computed in four or five instructions using comparison
predicates (three or four if the comparison predicates give a result of –1 for “true”):

On some machines, the carry bit may be a useful aid to computing the unsigned
versions of these functions. Let carry(x − y) denote the bit that comes out of the adder
for the operation x+ + 1, moved to a GPR. Thus, carry(x − y) = 1 iff x ≥ y. Then
we have

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch02fn4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images1.html#p043equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images1.html#p043equ02

Chapter 2. Basics

On most machines that have a subtract that generates a carry or borrow, and
another form of subtract that uses that carry or borrow as an input, the expression
carry(x − y) − 1 can be computed in one more instruction after the subtraction of y
from x. For example, on the Intel x86 machines, minu(x, y) can be computed in four
instructions as follows:

sub eax,ecx ; Inputs x and y are in eax and ecx resp.
sbb edx,edx ; edx = 0 if x >= y, else -1.
and eax,edx ; 0 if x >= y, else x - y.
add eax,ecx ; Add y, giving y if x >= y, else x.

In this way, all three of the functions can be computed in four instructions (three
instructions for dozu(x, y) if the machine has and with complement).

A method that applies to nearly any RISC is to use one of the above expressions
that employ a comparison predicate, and to substitute for the predicate one of the
expressions given on page 23. For example:

These require from seven to ten instructions, depending on the computer’s instruction
set, plus one more to get max or min.

These operations can be done in four branch-free basic RISC instructions if it is
known that −231 ≤ x − y ≤ 231 − 1 (that is an expression in ordinary arithmetic, not
computer arithmetic). The same code works for both signed and unsigned integers,
with the same restriction on x and y. A sufficient condition for these formulas to be
valid is that, for signed integers, −230 ≤ x, y ≤ 230 − 1, and for unsigned integers, 0
≤ x,y ≤231 −1.

Some uses of the difference or zero instruction are given here. In these, the
result of doz(x, y) must be interpreted as an unsigned integer.

1. It directly implements the Fortran IDIM function.
2. To compute the absolute value of a difference [Knu7]:

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images1.html#p043equ05

Chapter 2. Basics

Corollary: |x| = doz(x, 0) + doz(0, x) (other three-instruction solutions are
given on page 18).

3. To clamp the upper limit of the true sum of unsigned integers x and y to the
maximum positive number (232 − 1) [Knu7]:

¬dozu(¬x, y).

4. Some comparison predicates (four instructions each):

5. The carry bit from the addition x + y (five instructions):

The expression doz(x, −y), with the result interpreted as an unsigned integer, is in
most cases the true sum x + y with the lower limit clamped at 0. However, it fails if y
is the maximum negative number.

The IBM RS/6000 computer, and its predecessor the 801, have the signed version
of difference or zero. Knuth’s MMIX computer [Knu7] has the unsigned version
(including some varieties that operate on parts of words in parallel). This raises the
question of how to get the signed version from the unsigned version, and vice versa.
This can be done as follows (where the additions and subtractions simply complement
the sign bit):

doz(x,y) = dozu(x + 231, y + 231),
dozu(x,y) = doz(x − 231, y − 231).

Some other identities that may be useful are:

doz(¬x, ¬y) = doz(y, x),
dozu(¬x, ¬y) = dozu(y, x).

The relation doz(−x, −y) = doz(y, x) fails if either x or y, but not both, is the
maximum negative number.

2–20 Exchanging Registers
A very old trick is exchanging the contents of two registers without using a third [IBM]:

x ← x y
y ← y x
x ← x y

This works well on a two-address machine. The trick also works if is replaced by
the ≡ logical operation (complement of exclusive or) and can be made to work in

Chapter 2. Basics

various ways with add ’s and subtract’s:

Unfortunately, each of these has an instruction that is unsuitable for a two-address
machine, unless the machine has “reverse subtract.”

This little trick can actually be useful in the application of double buffering, in which
two pointers are swapped. The first instruction can be factored out of the loop in which
the swap is done (although this negates the advantage of saving a register):

Exchanging Corresponding Fields of Registers

The problem here is to exchange the contents of two registers x and y wherever a
mask bit mi = 1, and to leave x and y unaltered wherever mi = 0. By “corresponding”
fields, we mean that no shifting is required. The 1-bits of m need not be contiguous.
The straightforward method is as follows:

By using “temporaries” for the four and expressions, this can be seen to require seven
instructions, assuming that either m or can be loaded with a single instruction and
the machine has and not as a single instruction. If the machine is capable of executing
the four (independent) and expressions in parallel, the execution time is only three
cycles.

A method that is probably better (five instructions, but four cycles on a machine
with unlimited instruction-level parallelism) is shown in column (a) below. It is
suggested by the “three exclusive or” code for exchanging registers.

The steps in column (b) do the same exchange as that of column (a), but column (b) is
useful if m does not fit in an immediate field, but does, and the machine has the

Chapter 2. Basics

equivalence instruction.
Still another method is shown in column (c) above [GLS1]. It also takes five

instructions (again assuming one instruction must be used to load m into a register),
but executes in only three cycles on a machine with sufficient instruction-level
parallelism.

Exchanging Two Fields of the Same Register

Assume a register x has two fields (of the same length) that are to be swapped,
without altering other bits in the register. That is, the object is to swap fields B and D
without altering fields A, C, and E, in the computer word illustrated below. The fields
are separated by a shift distance k.

Straightforward code would shift D and B to their new positions, and combine the
words with and and or operations, as follows:

Here, m is a mask with 1’s in field D (and 0’s elsewhere), and m′ is a mask with 1’s in
fields A, C, and E. This code requires 11 instructions and six cycles on a machine with
unlimited instruction-level parallelism, allowing for four instructions to generate the two
masks.

A method that requires only eight instructions and executes in five cycles, under the
same assumptions, is shown below [GLS1]. It is similar to the code in column (c) on
page 46 for interchanging corresponding fields of two registers. Again, m is a mask
that isolates field D.

The idea is that t1 contains B D in position D (and 0’s elsewhere), and t2 contains B
 D in position B. This code, and the straightforward code given earlier, work correctly

if B and D are “split fields”—that is, if the 1-bits of mask m are not contiguous.

Conditional Exchange

The exchange methods of the preceding two sections, which are based on exclusive
or, degenerate into no-operations if the mask m is 0. Hence, they can perform an
exchange of entire registers, or of corresponding fields of two registers, or of two fields

Chapter 2. Basics

of the same register, if m is set to all 1’s if some condition c is true, and to all 0’s if c
is false. This gives branch-free code if m can be set up without branching.

2–21 Alternating among Two or More Values
Suppose a variable x can have only two possible values a and b, and you wish to
assign to x the value other than its current one, and you wish your code to be
independent of the values of a and b. For example, in a compiler x might be an
opcode that is known to be either branch true or branch false, and whichever it is,
you want to switch it to the other. The values of the opcodes branch true and
branch false are arbitrary, probably defined by a C #define or enum declaration in a
header file.

The straightforward code to do the switch is

if (x == a) x = b;
else x = a;

or, as is often seen in C programs,

x = x == a ? b : a;

A far better (or at least more efficient) way to code it is either

If a and b are constants, these require only one or two basic RISC instructions. Of
course, overflow in calculating a + b can be ignored.

This raises the question: Is there some particularly efficient way to cycle among
three or more values? That is, given three arbitrary but distinct constants a, b, and c,
we seek an easy-to-evaluate function f that satisfies

It is perhaps interesting to note that there is always a polynomial for such a
function. For the case of three constants,

(The idea is that if x = a, the first and last terms vanish, and the middle term simplifies
to b, and so on.) This requires 14 arithmetic operations to evaluate, and for arbitrary
a, b, and c, the intermediate results exceed the computer’s word size. But it is just a
quadratic; if written in the usual form for a polynomial and evaluated using Horner’s
rule,5 it would require only five arithmetic operations (four for a quadratic with integer
coefficients, plus one for a final division). Rearranging Equation (5) accordingly gives

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images1.html#p02pro03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images1.html#p02pro04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch02fn5

Chapter 2. Basics

This is getting too complicated to be interesting, or practical.
Another method, similar to Equation (5) in that just one of the three terms survives,

is

f(x) = ((−(x = c)) & a) + ((−(x = a)) & b) + ((−(x = b)) & c).

This takes 11 instructions if the machine has the equal predicate, not counting loads of
constants. Because the two addition operations are combining two 0 values with a
nonzero, they can be replaced with or or exclusive or operations.

The formula can be simplified by precalculating a – c and b – c, and then using
[GLS1]:

f(x) = ((−(x = c)) & (a – c)) + ((−(x = a)) & (b – c)) + c, or

f (x) = ((−(x = c)) & (a c)) ((–(x = a)) & (b c)) c.

Each of these operations takes eight instructions, but on most machines these are
probably no better than the straightforward C code shown below, which executes in
four to six instructions for small a, b, and c.

if (x == a) x = b;
else if (x == b) x = c;
else x = a;

Pursuing this matter, there is an ingenious branch-free method of cycling among
three values on machines that do not have comparison predicate instructions [GLS1]. It
executes in eight instructions on most machines.

Because a, b, and c are distinct, there are two bit positions, n1 and n2, where the
bits of a, b, and c are not all the same, and where the “odd one out” (the one whose
bit differs in that position from the other two) is different in positions n1 and n2. This
is illustrated below for the values 21, 31, and 20, shown in binary.

Without loss of generality, rename a, b, and c so that a has the odd one out in
position n1 and b has the odd one out in position n2, as shown above. Then there are
two possibilities for the values of the bits at position n1, namely (an1

, bn1
, cn1

) = (0,
1, 1) or (1, 0, 0). Similarly, there are two possibilities for the bits at position n2,
namely (an , bn , cn) = (0, 1, 0) or (1, 0, 1). This makes four cases in all, and

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images1.html#p02pro05

Chapter 2. Basics

2 2 2

formulas for each of these cases are shown below.

In these formulas, the left operand of each multiplication is a single bit. A
multiplication by 0 or 1 can be converted into an and with a value of 0 or all 1’s. Thus,
the formulas can be rewritten as illustrated below for the first formula.

Because all variables except x are constants, this can be evaluated in eight instructions
on the basic RISC. Here again, the additions and subtractions can be replaced with
exclusive or.

This idea can be extended to cycling among four or more constants. The essence of
the idea is to find bit positions n1, n2, ..., at which the bits uniquely identify the
constants. For four constants, three bit positions always suffice. Then (for four
constants) solve the following equation for s, t, u, and v (that is, solve the system of
four linear equations in which f(x) is a, b, c, or d, and the coefficients xni are 0 or 1):

f(x) = xn1
s + xn2

t + xn3
u + v

If the four constants are uniquely identified by only two bit positions, the equation to
solve is

f(x) = xn1
s + xn2

t + xn1
 xn2

u + v.

2–22 A Boolean Decomposition Formula
In this section, we have a look at the minimum number of binary Boolean operations,
or instructions, that suffice to implement any Boolean function of three, four, or five

Chapter 2. Basics

variables. By a “Boolean function” we mean a Boolean-valued function of Boolean
arguments.

Our notation for Boolean algebra uses “+” for or, juxtaposition for and, for
exclusive or, and either an overbar or a prefix ¬ for not. These operators can be
applied to single-bit operands or “bitwise” to computer words. Our main result is the
following theorem:

THEOREM. If f(x, y, z) is a Boolean function of three variables, then it can
be decomposed into the form g(x, y) zh(x, y), where g and h are Boolean
functions of two variables.6

Proof [Ditlow]. f(x, y, z) can be expressed as a sum of minterms, and then and
z can be factored out of their terms, giving

Because the operands to “+” cannot both be 1, the or can be replaced with exclusive
or, giving

where we have twice used the identity (a b) c = ac bc.

This is in the required form with g(x, y) = f0(x, y) and h(x, y) = f0(x, y) f1(x,
y). f0(x, y), incidentally, is f(x, y, z) with z = 0, and f1(x, y) is f(x, y, z) with z = 1.

COROLLARY. If a computer’s instruction set includes an instruction for each
of the 16 Boolean functions of two variables, then any Boolean function of
three variables can be implemented with four (or fewer) instructions.
One instruction implements g(x, y), another implements h(x, y), and these are
combined with and and exclusive or.

As an example, consider the Boolean function that is 1 if exactly two of x, y, and z
are 1:

Before proceeding, the interested reader might like to try to implement f with four
instructions, without using the theorem.

From the proof of the theorem,

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch02fn6

Chapter 2. Basics

which is four instructions.
Clearly, the theorem can be extended to functions of four or more variables. That

is, any Boolean function f(x1, x2, ..., xn) can be decomposed into the form g(x1, x2,
..., xn–1) xnh(x1, x2, ..., xn–1). Thus, a function of four variables can be
decomposed as follows:

This shows that a computer that has an instruction for each of the 16 binary Boolean
functions can implement any function of four variables with ten instructions. Similarly,
any function of five variables can be implemented with 22 instructions.

However, it is possible to do much better. For functions of four or more variables
there is probably no simple plug-in equation like the theorem gives, but exhaustive
computer searches have been done. The results are that any Boolean function of four
variables can be implemented with seven binary Boolean instructions, and any such
function of five variables can be implemented with 12 such instructions [Knu4, 7.1.2].

In the case of five variables, only 1920 of the 225 = 4,294,967,296 functions
require 12 instructions, and these 1920 functions are all essentially the same function.
The variations are obtained by permuting the arguments, replacing some arguments
with their complements, or complementing the value of the function.

2–23 Implementing Instructions for All 16 Binary Boolean
Operations
The instruction sets of some computers include all 16 binary Boolean operations. Many
of the instructions are useless in that their function can be accomplished with another
instruction. For example, the function f(x, y) = 0 simply clears a register, and most
computers have a variety of ways to do that. Nevertheless, one reason a computer
designer might choose to implement all 16 is that there is a simple and quite regular
circuit for doing it.

Refer to Table 2–1 on page 17, which shows all 16 binary Boolean functions. To
implement these functions as instructions, choose four of the opcode bits to be the
same as the function values shown in the table. Denoting these opcode bits by c0, c1,
c2, and c3, reading from the bottom up in the table, and the input registers by x and
y, the circuit for implementing all 16 binary Boolean operations is described by the logic
expression

For example, with c0 = c1 = c2 = c3 = 0, the instruction computes the zero function,
f(x, y) = 0. With c0 = 1 and the other opcode bits 0 it is the and instruction. With c0
= c3 = 0 and c1 = c2 = 1 it is exclusive or, and so forth.

This can be implemented with n 4:1 MUXs, where n is the word size of the
machine. The data bits of x and y are the select lines, and the four opcode bits are the
data inputs to each MUX. The MUX is a standard building block in today’s technology,
and it is usually a very fast circuit. It is illustrated below.

Chapter 2. Basics

The function of the circuit is to select c0, c1, c2, or c3 to be the output, depending on
whether x and y are 00, 01, 10, or 11, respectively. It is like a four-position rotary
switch.

Elegant as this is, it is somewhat expensive in opcode points, using 16 of them.
There are a number of ways to implement all 16 Boolean operations using only eight
opcode points, at the expense of less regular logic. One such scheme is illustrated in
Table 2–3 .

TABLE 2–3. EIGHT SUFFICIENT BOOLEAN INSTRUCTIONS

The eight operations not shown in the table can be done with the eight instructions
shown, by interchanging the inputs or by having both register fields of the instruction
refer to the same register. See exercise 13.

IBM’s POWER architecture uses this scheme, with the minor difference that POWER
has or with complement rather than complement and or. The scheme shown in
Table 2–3 allows the last four instructions to be implemented by complementing the
result of the first four instructions, respectively.

Chapter 2. Basics

Historical Notes

The algebra of logic expounded in George Boole’s An Investigation of the Laws of
Thought (1854)7 is somewhat different from what we know today as “Boolean
algebra.” Boole used the integers 1 and 0 to represent truth and falsity, respectively,
and he showed how they could be manipulated with the methods of ordinary numerical
algebra to formalize natural language statements involving “and,” “or,” and “except.”
He also used ordinary algebra to formalize statements in set theory involving
intersection, union of disjoint sets, and complementation. He also formalized statements
in probability theory, in which the variables take on real number values from 0 to 1.
The work often deals with questions of philosophy, religion, and law.

Boole is regarded as a great thinker about logic because he formalized it, allowing
complex statements to be manipulated mechanically and flawlessly with the familiar
methods of ordinary algebra.

Skipping ahead in history, there are a few programming languages that include all
16 Boolean operations. IBM’s PL/I (ca. 1966) includes a built-in function named BOOL.
In BOOL(x, y, z), z is a bit string of length four (or converted to that if necessary), and
x and y are bit strings of equal length (or converted to that if necessary). Argument z
specifies the Boolean operation to be performed on x and y. Binary 0000 is the zero
function, 0001 is xy, 0010 is x , and so forth.

Another such language is Basic for the Wang System 2200B computer (ca. 1974),
which provides a version of BOOL that operates on character strings rather than on bit
strings or integers [Neum].

Still another such language is MIT PDP-6 Lisp, later called MacLisp [GLS1].

Exercises

1. David de Kloet suggests the following code for the snoob function, for x ≠ 0,
where the final assignment to y is the result:

This is essentially the same as Gosper’s code (page 15), except the right shift is
done with a while-loop rather than with a divide instruction. Because division
is usually costly in time, this might be competitive with Gosper’s code if the
while-loop is not executed too many times. Let n be the length of the bit
strings x and y, k the number of 1-bits in the strings, and assume the code is
executed for all values of x that have exactly k 1-bits. Then for each invocation
of the function, how many times, on average, will the body of the while-loop
be executed?

2. The text mentions that a left shift by a variable amount is not right-to-left
computable. Consider the function x << (x & 1) [Knu8]. This is a left shift by a

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch02fn7
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans2

Chapter 2. Basics

variable amount, but it can be computed by

x + (x & 1) *x, or
x + (x & (−(x & 1))),

which are all right-to-left computable operations. What is going on here? Can
you think of another such function?

3. Derive Dietz’s formula for the average of two unsigned integers,

4. Give an overflow-free method for computing the average of four unsigned
integers, (a + b + c + d)/4 .

5. Many of the comparison predicates shown on page 23 can be simplified
substantially if bit 31 of either x or y is known. Show how the seven-instruction

expression for can be simplified to three basic RISC, non-comparison,
instructions if y31 = 0.

6. Show that if two numbers, possibly distinct, are added with “end-around carry,”
the addition of the carry bit cannot generate another carry out of the high-order
position.

7. Show how end-around carry can be used to do addition if negative numbers are
represented in one’s-complement notation. What is the maximum number of bit
positions that a carry (from any bit position) might be propagated through?

8. Show that the MUX operation, (x & m) | (y & ~m), can be done in three
instructions on the basic RISC (which does not have the and with
complement instruction).

9. Show how to implement x y in four instructions with and-or-not logic.

10. Given a 32-bit word x and two integer variables i and j (in registers), show
code to copy the bit of x at position i to position j. The values of i and j have
no relation, but assume that 0 ≤ i, j ≤ 31.

11. How many binary Boolean instructions are sufficient to evaluate any n-variable
Boolean function if it is decomposed recursively by the method of the theorem?

12. Show that alternative decompositions of Boolean functions of three variables are

(a) f(x, y, z) = g(x, y) h(x, y) (the “negative Davio decomposition”), and
(b) f(x, y, z) = g(x, y) (z + h (x, y)).

13. It is mentioned in the text that all 16 binary Boolean operations can be done
with the eight instructions shown in Table 2–3 , by interchanging the inputs or
by having both register fields of the instruction refer to the same register.
Show how to do this.

14. Suppose you are not concerned about the six Boolean functions that are really
constants or unary functions, namely f(x, y) = 0, 1, x, y, , and , but you
want your instruction set to compute the other ten functions with one
instruction. Can this be done with fewer than eight binary Boolean instruction
types (opcodes)?

15. Exercise 13 shows that eight instruction types suffice to compute any of the 16
two-operand Boolean operations with one R-R (register-register) instruction.
Show that six instruction types suffice in the case of R-I (register-immediate)

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans6
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans6
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans7
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans7
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans8
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans8
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans9
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans9
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans11
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans11
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans13
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans13
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans15
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans15

Chapter 2. Basics

instructions. With R-I instructions, the input operands cannot be interchanged
or equated, but the second input operand (the immediate field) can be
complemented or, in fact, set to any value at no cost in execution time.
Assume for simplicity that the immediate fields are the same length as the
general purpose registers.

16. Show that not all Boolean functions of three variables can be implemented with
three binary logical instructions.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans16
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch02ans16

Chapter 3. Power-of-2 Boundaries

Chapter 3. Power-of-2 Boundaries

3–1 Rounding Up/Down to a Multiple of a Known Power of 2
Rounding an unsigned integer x down to, for example, the next smaller multiple of 8 is

trivial: x & −8 does it. An alternative is . These work for signed
integers as well, provided “round down” means to round in the negative direction (e.g.,
(−37) & (−8) = −40).

Rounding up is almost as easy. For example, an unsigned integer x can be rounded
up to the next greater multiple of 8 with either of

These expressions are correct for signed integers as well, provided “round up” means to
round in the positive direction. The second term of the second expression is useful if
you want to know how much you must add to x to make it a multiple of 8 [Gold].

To round a signed integer to the nearest multiple of 8 toward 0, you can combine
the two expressions above in an obvious way:

An alternative for the first line is , which is useful if the
machine lacks and immediate, or if the constant is too large for its immediate field.

Sometimes the rounding factor is given as the log2 of the alignment amount (e.g., a
value of 3 means to round to a multiple of 8). In this case, code such as the following
can be used, where k = log2(alignment amount):

3–2 Rounding Up/Down to the Next Power of 2
We define two functions that are similar to floor and ceiling, but which are directed
roundings to the closest integral power of 2, rather than to the closest integer.
Mathematically, they are defined by

Chapter 3. Power-of-2 Boundaries

The initial letters of the function names are intended to suggest “floor” and “ceiling.”
Thus, flp2(x) is the greatest power of 2 that is ≤x, and clp2(x) is the least power of 2
that is ≥x. These definitions make sense even when x is not an integer (e.g., flp2(0.1)
= 0.0625). The functions satisfy several relations analogous to those involving floor and
ceiling, such as those shown below, where n is an integer.

Computationally, we deal only with the case in which x is an integer, and we take it
to be unsigned, so the functions are well defined for all x. We require the value
computed to be the arithmetically correct value modulo 232 (that is, we take clp2(x) to
be 0 for x > 231). The functions are tabulated below for a few values of x.

Functions flp2 and clp2 are connected by the relations shown below. These can be
used to compute one from the other, subject to the indicated restrictions.

Chapter 3. Power-of-2 Boundaries

The round-up and round-down functions can be computed quite easily with the
number of leading zeros instruction, as shown below. However, for these relations
to hold for x = 0 and x > 231, the computer must have its shift instructions defined to
produce 0 for shift amounts of –1, 32, and 63. Many machines (e.g., PowerPC) have
“mod-64” shifts, which do this. In the case of −1, it is adequate if the machine shifts
in the opposite direction (that is, a shift left of –1 becomes a shift right of 1).

Rounding Down

Figure 3–1 illustrates a branch-free algorithm that might be useful if number of
leading zeros is not available. This algorithm is based on right-propagating the
leftmost 1-bit, and executes in 12 instructions.

unsigned flp2(unsigned x) {
 x = x | (x >> 1);
 x = x | (x >> 2);
 x = x | (x >> 4);
 x = x | (x >> 8);
 x = x | (x >> 16);
 return x - (x >> 1);
}

FIGURE 3–1. Greatest power of 2 less than or equal to x, branch free.

Figure 3–2 shows two simple loops that compute the same function. All variables
are unsigned integers. The loop on the right keeps turning off the rightmost 1-bit of x
until x = 0, and then returns the previous value of x.

y = 0x80000000; do {
while (y > x) y = x;
 y = y >> 1; x = x & (x - 1);
return y; } while(x != 0);
 return y;

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images2.html#p03fig01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images2.html#p03fig02

Chapter 3. Power-of-2 Boundaries

FIGURE 3–2. Greatest power of 2 less than or equal to x, simple loops.

The loop on the left executes in 4nlz(x) + 3 instructions. The loop on the right, for
x ≠ 0, executes in 4 pop(x) instructions,1 if the comparison to 0 is zero-cost.

Rounding Up

The right-propagation trick yields a good algorithm for rounding up to the next power
of 2. This algorithm, shown in Figure 3–3 , is branch free and runs in 12 instructions.

unsigned clp2(unsigned x) {
 x = x − 1;
 x = x | (x >> 1);
 x = x | (x >> 2);
 x = x | (x >> 4);
 x = x | (x >> 8);
 x = x | (x >> 16);
 return x + 1;
}

FIGURE 3–3. Least power of 2 greater than or equal to x.

An attempt to compute this with the obvious loop does not work out very well:

y = 1;

while (y < x) // Unsigned comparison.
 y = 2*y;
return y;

This code returns 1 for x = 0, which is probably not what you want, loops forever for x
≥ 231, and executes in 4n + 3 instructions, where n is the power of 2 of the returned
integer. Thus, it is slower than the branch-free code, in terms of instructions executed,
for n≥ 3 (x≥ 8).

3–3 Detecting a Power-of-2 Boundary Crossing
Assume memory is divided into blocks that are a power of 2 in size, starting at address
0. The blocks may be words, doublewords, pages, and so on. Then, given a starting
address a and a length l, we wish to determine whether or not the address range from
a to a + l –1, l ≥ 2, crosses a block boundary. The quantities a and l are unsigned and
any values that fit in a register are possible.

If l = 0 or 1, a boundary crossing does not occur, regardless of a. If l exceeds the
block size, a boundary crossing does occur, regardless of a. For very large values of l
(wraparound is possible), a boundary crossing can occur even if the first and last bytes
of the address range are in the same block.

There is a surprisingly concise way to detect boundary crossings on the IBM
System/370 [CJS]. This method is illustrated below for a block size of 4096 bytes (a
common page size).

O RA,=A(-4096)
ALR RA,RL

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch03fn1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images2.html#p03fig03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images2.html#p062equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images2.html#p063equ01

Chapter 3. Power-of-2 Boundaries

BO CROSSES

The first instruction forms the logical or of RA (which contains the starting address a)
and the number 0xFFFFF000. The second instruction adds in the length and sets the
machine’s 2-bit condition code. For the add logical instruction, the first bit of the
condition code is set to 1 if a carry occurred, and the second bit is set to 1 if the 32-bit
register result is nonzero. The last instruction branches if both bits are set. At the
branch target, RA will contain the length that extends beyond the first page (this is an
extra feature that was not asked for).

If, for example, a = 0 and l = 4096, a carry occurs, but the register result is 0, so
the program properly does not branch to label CROSSES.

Let us see how this method can be adapted to RISC machines, which generally do
not have branch on carry and register result nonzero. Using a block size of 8 for
notational simplicity, the method of [CJS] branches to CROSSES if a carry occurred ((a |
–8) + l≥ 232) and the register result is nonzero ((a | –8) + l ≠ 232). Thus, it is
equivalent to the predicate

(a | –8) + l > 232.

This in turn is equivalent to getting a carry in the final addition in evaluating ((a | –8) –
1) + l. If the machine has branch on carry, this can be used directly, giving a
solution in about five instructions, counting a load of the constant −8.

If the machine does not have branch on carry, we can use the fact that carry

occurs in x + y iff (see “Unsigned Add/Subtract” on page 31) to obtain the
expression

Using various identities such as ¬(x − 1) = −x gives the following equivalent
expressions for the “boundary crossed” predicate:

These can be evaluated in five or six instructions on most RISC computers, counting
the final conditional branch.

Using another tack, clearly an 8-byte boundary is crossed iff

(a & 7) + l − 1 ≥ 8.

This cannot be directly evaluated because of the possibility of overflow (which occurs if
l is very large), but it is easily rearranged to 8 − (a & 7) < l, which can be directly
evaluated on the computer (no part of it overflows). This gives the expression

which can be evaluated in five instructions on most RISCs (four if it has subtract

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_31
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_31

Chapter 3. Power-of-2 Boundaries

from immediate). If a boundary crossing occurs, the length that extends beyond the
first block is given by l − (8 − (a & 7)), which can be calculated with one additional
instruction (subtract).

This formula can be easily understood from the figure below [Kumar], which
illustrates that a & 7 is the offset of a in its block, and thus 8 − (a & 7) is the space
remaining in the block.

Exercises

1. Show how to round an unsigned integer to the nearest multiple of 8, with the
halfway case (a) rounding up, (b) rounding down, and (c) rounding up or down,
whichever makes the next bit to the left a zero (“unbiased” rounding).

2. Show how to round an unsigned integer to the nearest multiple of 10, with the
halfway case (a) rounding up, (b) rounding down, and (c) rounding up or down,
whichever results in an even multiple of 10. Feel free to use division,
remaindering, and multiplication instructions, and don’t be concerned about
values very close to the largest unsigned integer.

3. Code a function in C that does an “unaligned load.” The function is given an
address a and it loads the four bytes from addresses a through a + 3 into a
32-bit GPR, as if those four bytes contained an integer. Parameter a addresses
the low-order byte (that is, the machine is little-endian). The function should be
branch free, it should execute at most two load instructions and, if a is full-
word aligned, it must not attempt to load from address a + 4, because that
may be in a read-protected block.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch03ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch03ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch03ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch03ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch03ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch03ans3

Chapter 4. Arithmetic Bounds

Chapter 4. Arithmetic Bounds

4–1 Checking Bounds of Integers
By “bounds checking” we mean to verify that an integer x is within two bounds a and
b—that is, that

a ≤ x ≤ b.

We first assume that all quantities are signed integers.
An important application is the checking of array indexes. For example, suppose a

one-dimensional array A can be indexed by values from 1 to 10. Then, for a reference
A(i), a compiler might generate code to check that

1 ≤ i ≤ 10

and to branch or trap if this is not the case. In this section we show that this check can
be done with a single comparison, by performing the equivalent check [PL8]:

This is probably better code, because it involves only one compare-branch (or compare-
trap), and because the quantity i– 1 is probably needed anyway for the array
addressing calculations.

Does the implementation

always work, even if overflow may occur in the subtractions? It does, provided we
somehow know that a ≤ b. In the case of array bounds checking, language rules may
require that an array not have a number of elements (or number of elements along any
axis) that are 0 or negative, and this rule can be verified at compile time or, for
dynamic extents, at array allocation time. In such an environment, the transformation
above is correct, as we will now show.

It is convenient to use a lemma, which is good to know in its own right.
LEMMA. If a and b are signed integers and a ≤ b, then the computed value b – a

correctly represents the arithmetic value b − a, if the computed value is interpreted as
unsigned.

Proof. (Assume a 32-bit machine.) Because a ≤ b, the true difference b − a is in
the range 0 to (231 − 1) − (−231) = 232 − 1. If the true difference is in the range 0
to 231 − 1, then the machine result is correct (because the result is representable
under signed interpretation), and the sign bit is off. Hence the machine result is correct
under either signed or unsigned interpretation.

If the true difference is in the range 231 to 232 − 1, then the machine result will
differ by some multiple of 232 (because the result is not representable under signed
interpretation). This brings the result (under signed interpretation) to the range −231 to
−1. The machine result is too low by 232, and the sign bit is on. Reinterpreting the

32 31

Chapter 4. Arithmetic Bounds

result as unsigned increases it by 2 , because the sign bit is given a weight of + 2
rather than −231. Hence the reinterpreted result is correct.

The “bounds theorem” is
THEOREM. If a and b are signed integers and a ≤ b, then

Proof. We distinguish three cases, based on the value of x. In all cases, by the
lemma, since a ≤ b, the computed value b – a is equal to the arithmetic value b – a if
b – a is interpreted as unsigned, as it is in Equation (1).

Case 1, x < a: In this case, x – a interpreted as unsigned is x– a + 232. Whatever
the values of x and b are (within the range of 32-bit numbers),

x + 232 > b.

Therefore

x– a + 232 > b−a,

and hence

In this case, both sides of Equation (1) are false.
Case 2, a ≤ x ≤ b: Then, arithmetically, x − a ≤ b − a. Because a ≤ x, by the

lemma x − a equals the computed value x − a if the latter is interpreted as unsigned.
Hence

that is, both sides of Equation (1) are true.
Case 3, x > b: Then x − a > b − a. Because in this case x > a (because b ≥ a), by

the lemma x − a equals the value of x − a if the latter is interpreted as unsigned.
Hence

that is, both sides of Equation (1) are false.
The theorem stated above is also true if a and b are unsigned integers. This is

because for unsigned integers the lemma holds trivially, and the above proof is also
valid.

Below is a list of similar bounds-checking transformations, with the theorem above
stated again. These all hold for either signed or unsigned interpretations of a, b, and x.

Chapter 4. Arithmetic Bounds

In the last rule, b – a – 1 can be replaced with b + ¬a.
There are some quite different transformations that may be useful when the test is

of the form –2n–1 ≤ x ≤ 2n–1 – 1. This is a test to see if a signed quantity x can be
correctly represented as an n-bit two’s-complement integer. To illustrate with n = 8,
the following tests are equivalent:

Equation (b) is simply an application of the preceding material in this section. Equation
(c) is as well, after shifting x right seven positions. Equations (c) – (f) and possibly (g)
are probably useful only if the constants in Equations (a) and (b) exceed the size of the
immediate fields of the computer’s compare and add instructions.

Another special case involving powers of 2 is

or, more generally,

4–2 Propagating Bounds through Add’s and Subtract’s
Some optimizing compilers perform “range analysis” of expressions. This is the process
of determining, for each occurrence of an expression in a program, upper and lower
bounds on its value. Although this optimization is not a really big winner, it does permit
improvements such as omitting the range check on a C “switch” statement and omitting
some subscript bounds checks that compilers may provide as a debugging aid.

Chapter 4. Arithmetic Bounds

Suppose we have bounds on two variables x and y as follows, where all quantities
are unsigned:

Then, how can we compute tight bounds on x + y, x – y, and – x? Arithmetically, of
course, a + c ≤ x + y ≤ b + d; but the point is that the additions may overflow.

The way to calculate the bounds is expressed in the following:
THEOREM. If a, b, c, d, x, and y are unsigned integers and

then

Inequalities (4) say that the bounds on x + y are “normally” a + c and b + d, but if
the calculation of a + c does not overflow and the calculation of b + d does overflow,
then the bounds are 0 and the maximum unsigned integer. Equations (5) are
interpreted similarly, but the true result of a subtraction being less than 0 constitutes
an overflow (in the negative direction).

Proof. If neither a + c nor b + d overflows, then x + y, with x and y in the
indicated ranges, cannot overflow, making the computed results equal to the true
results, so the second inequality of (4) holds. If both a + c and b + d overflow, then so
also does x + y. Now arithmetically, it is clear that

a + c−232 ≤ x + y −232 ≤ b + d − 232.

This is what is calculated when the three terms overflow. Hence, in this case also,

If a + c does not overflow, but b + d does, then

a + c ≤ 232 − 1 and b + d ≥ 232.

Chapter 4. Arithmetic Bounds

Because x + y takes on all values in the range a + c to b + d, it takes on the values
232 − 1 and 232—that is, the computed value x + y takes on the values 232 − 1 and 0
(although it doesn’t take on all values in that range).

Lastly, the case that a + c overflows, but b + d does not, cannot occur, because a ≤
b and c ≤ d.

This completes the proof of inequalities (4). The proof of (5) is similar, but
“overflow” means that a true difference is less than 0.

Inequalities (6) can be proved by using (5) with a = b = 0, and then renaming the
variables. (The expression – x with x an unsigned number means to compute the value
of 232 − x, or of ¬x + 1 if you prefer.)

Because unsigned overflow is so easy to recognize (see “Unsigned Add/Subtract” on
page 31), these results are easily embodied in code, as shown in Figure 4–1 , for
addition and subtraction. The computed lower and upper limits are variables s and t,
respectively.

FIGURE 4–1. Propagating unsigned bounds through addition and subtraction
operations.

Signed Numbers

The case of signed numbers is not so clean. As before, suppose we have bounds on
two variables x and y as follows, where all quantities are signed:

We wish to compute tight bounds on x + y, x − y, and – x. The reasoning is very
similar to that for the case of unsigned numbers, and the results for addition are shown
below.

The first row means that if both of the additions a + c and b + d overflow in the
negative direction, then the computed sum x + y lies between the computed sums a +
c and b + d. This is because all three computed sums are too high by the same amount
(232). The second row means that if the addition a + c overflows in the negative

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_31
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_31

Chapter 4. Arithmetic Bounds

direction, and the addition b + d either does not overflow or overflows in the positive
direction, then the computed sum x + y can take on the extreme negative number and
the extreme positive number (although perhaps not all values in between), which is not
difficult to show. The other rows are interpreted similarly.

The rules for propagating bounds on signed numbers through the subtraction
operation can easily be derived by rewriting the bounds on y as

− d ≤ – y ≤ – c

and using the rules for addition. The results are shown below.

The rules for negation can be derived from the rules for subtraction by taking a = b
= 0, omitting some impossible combinations, simplifying, and renaming. The results are
as follows:

C code for the case of signed numbers is a bit messy. We will consider only addition.
It seems to be simplest to check for the two cases in (7) in which the computed limits
are the extreme negative and positive numbers. Overflow in the negative direction
occurs if the two operands are negative and the sum is nonnegative (see “Signed
Add/Subtract” on page 28). Thus, to check for the condition that a + c < –231, we
could let s = a + c; and then code something like “if (a < 0 && c < 0 && s >= 0)
....” It will be more efficient,1 however, to perform logical operations directly on the
arithmetic variables, with the sign bit containing the true/false result of the logical
operations. Then, we write the above condition as “if ((a & c & ~s) < 0)” These
considerations lead to the program fragment shown in Figure 4–2 .

s = a + c;
t = b + d;
u = a & c & ~s & ~(b & d &~t);
v = ((a ^ c) | ~(a ^ s)) & (~b & ~d & t);
if ((u | v) < 0) {
 s = 0x80000000;
 t = 0x7FFFFFFF;}

FIGURE 4–2. Propagating signed bounds through an addition operation.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_28
file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch04fn1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images3.html#p04fig02

Chapter 4. Arithmetic Bounds

Here u is true (sign bit is 1) if the addition a + c overflows in the negative
direction, and the addition b + d does not overflow in the negative direction. Variable v
is true if the addition a + c does not overflow and the addition b + d overflows in the
positive direction. The former condition can be expressed as “a and c have different
signs, or a and s have the same sign.” The “if” test is equivalent to “if (u < 0 || v <
0)—that is, if either u or v is true.”

4–3 Propagating Bounds through Logical Operations
As in the preceding section, suppose we have bounds on two variables x and y as
follows, where all quantities are unsigned:

Then what are some reasonably tight bounds on x | y, x & y, x y, and ¬x?

Combining inequalities (8) with some inequalities from Section 2–3 on page 17, and
noting that ¬x = 232 − 1 − x, yields

where it is assumed that the addition b + d does not overflow. These are easy to
compute and might be good enough for the compiler application mentioned in the
preceding section; however, the bounds in the first two inequalities are not tight. For
example, writing constants in binary, suppose

Then, by inspection (e.g., trying all 36 possibilities for x and y), we see that 01010 ≤
(x | y) ≤ 10111. Thus, the lower bound is not max(a, c), nor is it a | c, and the upper
bound is not b + d, nor is it b | d.

Given the values of a, b, c, and d in inequalities (8), how can one obtain tight
bounds on the logical expressions? Consider first the minimum value attained by x | y.
A reasonable guess might be the value of this expression with x and y both at their
minima—that is, a | c. Example (9), however, shows that the minimum can be lower
than this.

To find the minimum, our procedure is to start with x = a and y = c, and then find
an amount by which to increase either x or y so as to reduce the value of x | y. The
result will be this reduced value. Rather than assigning a and c to x and y, we work
directly with a and c, increasing one of them when doing so is valid and it reduces the
value of a | c.

The procedure is to scan the bits of a and c from left to right. If both bits are 0, the
result will have a 0 in that position. If both bits are 1, the result will have a 1 in that

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_17

Chapter 4. Arithmetic Bounds

position (clearly, no values of x and y could make the result less). In these cases,
continue the scan to the next bit position. If one scanned bit is 1 and the other is 0,
then it is possible that changing the 0 to 1 and setting all the following bits in that
bound’s value to 0 will reduce the value of a | c. This change will not increase the value
of a | c, because the result has a 1 in that position anyway, from the other bound.
Therefore, form the number with the 0 changed to 1 and subsequent bits changed to
0. If that is less than or equal to the corresponding upper limit, the change can be
made; do it, and the result is the or of the modified value with the other lower bound.
If the change cannot be made (because the altered value exceeds the corresponding
upper bound), continue the scan to the next bit position.

That’s all there is to it. It might seem that after making the change the scan should
continue, looking for other opportunities to further reduce the value of a | c. However,
even if a position is found that allows a 0 to be changed to 1, setting the subsequent
bits to 0 does not reduce the value of a | c, because those bits are already 0.

C code for this algorithm is shown in Figure 4–3 . We assume that the compiler will
move the subexpressions ~a & c and a & ~c out of the loop. More significantly, if the
number of leading zeros instruction is available, the program can be speeded up by
initializing m with

m = 0x80000000 >> nlz(a ^ c);

unsigned minOR(unsigned a, unsigned b,
 unsigned c, unsigned d) {
 unsigned m, temp;

 m = 0x80000000;
 while (m != 0) {
 if (~a & c & m) {
 temp = (a | m)& -m;
 if (temp <= b) {a = temp; break;}
 }
 else if (a & ~c & m) {
 temp = (c | m) & -m;
 if (temp <= d) {c = temp; break;}
 }
 m = m >> 1;
 }
 return a | c;
}

FIGURE 4–3. Minimum value of x | y with bounds on x and y.

This skips over initial bit positions in which a and c are both 0 or both 1. For this
speedup to be effective when a ^ c is 0 (that is, when a = c), the machine’s shift right
instruction should be mod-64. If number of leading zeros is not available, it may be
worthwhile to use some version of the flp2 function (see page 60) with argument a ^
c.

Now let us consider the maximum value attained by x |y, with the variables
bounded as shown in inequalities (8). The algorithm is similar to that for the minimum,
except it scans the values of bounds b and d (from left to right), looking for a position
in which both bits are 1. If such a position is found, the algorithm tries to increase the
value of c | d by decreasing one of the bounds by changing the 1 to 0, and setting all
subsequent bits in that bound to 1. If this is acceptable (if the resulting value is greater

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images3.html#p74pro01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images3.html#p04fig03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#page_60

Chapter 4. Arithmetic Bounds

than or equal to the corresponding lower bound), the change is made and the result is
the value of c | d using the modified bound. If the change cannot be done, it is
attempted on the other bound. If the change cannot be done to either bound, the scan
continues. C code for this algorithm is shown in Figure 4–4 . Here the subexpression b
& d can be moved out of the loop, and the algorithm can be speeded up by initializing
m with

unsigned maxOR(unsigned a, unsigned b,
 unsigned c, unsigned d) {
 unsigned m, temp;

 m = 0x80000000;
 while (m != 0) {
 if (b & d & m) {
 temp = (b - m) | (m - 1);
 if (temp >= a) {b = temp; break;}
 temp = (d - m) | (m - 1);
 if (temp >= c) {d = temp; break;}
 }
 m = m >> 1;
 }
 return b | d;
}

FIGURE 4–4. Maximum value of x | y with bounds on x and y.

m = 0x80000000 >> nlz(b & d);

There are two ways in which we might propagate the bounds of inequalities (8)
through the expression x & y: algebraic and direct computation. The algebraic method
uses DeMorgan’s rule:

x & y = ¬(¬x | ¬y)

Because we know how to propagate bounds precisely through or, and it is trivial to
propagate them through not (), we have

minAND(a, b, c, d) = ¬maxOR(¬b, ¬a, ¬d, ¬c), and
maxAND(a, b, c, d) = ¬minOR(¬b, ¬a, ¬d, ¬c).

For the direct computation method, the code is very similar to that for propagating
bounds through or. It is shown in Figures 4–5 and 4–6 .

unsigned minAND(unsigned a, unsigned b,
 unsigned c, unsigned d) {
 unsigned m, temp;

 m = 0x80000000;
 while (m != 0) {
 if (~a & ~c & m) {
 temp = (a | m) & -m;
 if (temp <= b) {a = temp; break;}
 temp = (c | m) & -m;
 if (temp <= d) {c = temp; break;}
 }

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images3.html#p04fig04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images3.html#p75pro01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images3.html#p04fig05

Chapter 4. Arithmetic Bounds

 m = m >> 1;
 }
 return a & c;
}

FIGURE 4–5. Minimum value of x& y with bounds on x and y.

unsigned maxAND(unsigned a, unsigned b,
 unsigned c, unsigned d) {
 unsigned m, temp;

 m = 0x80000000;
 while (m != 0) {
 if (b & ~d & m) {
 temp = (b & ~m) | (m - 1);
 if (temp >= a) {b = temp; break;}
 }
 else if (~b & d & m) {
 temp = (d & ~m) | (m - 1);
 if (temp >= c) {d = temp; break;}
 }
 m = m >> 1;
 }
 return b & d;
}

FIGURE 4–6. Maximum value of x& y with bounds on x and y.

The algebraic method of finding bounds on expressions in terms of the functions for
and, or, and not works for all the binary logical expressions except exclusive or and
equivalence. The reason these two present a difficulty is that when expressed in terms
of and, or, and not, there are two terms containing x and y. For example, we are to
find

The two operands of the or cannot be separately minimized (without proof that it
works, which actually it does), because we seek one value of x and one value of y that
minimizes the whole or expression.

The following expressions can be used to propagate bounds through exclusive or:

It is straightforward to evaluate the minXOR and maxXOR functions by direct
computation. The code for minXOR is the same as that for minOR (Figure 4–3) except
with the two break statements removed, and the return value changed to a ^ c. The
code for maxXOR is the same as that for maxOR (Figure 4–4) except with the four lines
under the if clause replaced with

temp = (b - m) | (m - 1);

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images3.html#p04fig06
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images3.html#p078equ01

Chapter 4. Arithmetic Bounds

if (temp >= a) b = temp;
else {
 temp = (d - m) | (m - 1);
 if (temp >= c) d = temp;
}

and the return value changed to b ^ d.

Signed Bounds

If the bounds are signed integers, propagating them through logical expressions is
substantially more complicated. The calculation is irregular if 0 is within the range a to
b, or c to d. One way to calculate the lower and upper bounds for the expression x | y
is shown in Table 4–1 . A “+” entry means that the bound at the top of the column is
greater than or equal to 0, and a “–” entry means that it is less than 0. The column
labeled “minOR (signed)” contains expressions for computing the lower bound of x | y,
and the last column contains expressions for computing the upper bound of x | y. One
way to program this is to construct a value ranging from 0 to 15 from the sign bits of
a, b, c, and d, and use a “switch” statement. Notice that not all values from 0 to 15 are
used, because it is impossible to have a > b or c > d.

TABLE 4–1. S IGNED MINOR AND MAXOR FROM UNSIGNED

For signed numbers, the relation

a ≤ x ≤ b ¬b ≤ ¬x ≤ ¬a

holds, so the algebraic method can be used to extend the results of Table 4–1 to other
logical expressions (except for exclusive or and equivalence). We leave this and similar
extensions to others.

Exercises

1. For unsigned integers, what are the bounds on x – y if

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch04ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch04ans1

Chapter 4. Arithmetic Bounds

2. Show how the maxOR function (Figure 4–4) can be simplified if either a = 0 or c
= 0 on a machine that has the number of leading zeros instruction.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch04ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch04ans2

Chapter 5. Counting Bits

Chapter 5. Counting Bits

5–1 Counting 1-Bits
The IBM Stretch computer (ca. 1960) had a means of counting the number of 1-bits in
a word, as well as the number of leading 0’s. It produced these two quantities as a by-
product of all logical operations! The former function is sometimes called population
count (e.g., on Stretch and the SPARCv9).

For machines that don’t have this instruction, a good way to count the number of 1-
bits is to first set each 2-bit field equal to the sum of the two single bits that were
originally in the field, and then sum adjacent 2-bit fields, putting the results in each 4-
bit field, and so on. A more complete discussion of this trick is in [RND]. The method is
illustrated in Figure 5–1 , in which the first row shows a computer word whose 1-bits
are to be summed, and the last row shows the result (23 decimal).

FIGURE 5–1. Counting 1-bits, “divide and conquer” strategy.

This is an example of the “divide and conquer” strategy, in which the original
problem (summing 32 bits) is divided into two problems (summing 16 bits), which are
solved separately, and the results are combined (added, in this case). The strategy is
applied recursively, breaking the 16-bit fields into 8-bit fields, and so on.

In the case at hand, the ultimate small problems (summing adjacent bits) can all be
done in parallel, and combining adjacent sums can also be done in parallel in a fixed
number of steps at each stage. The result is an algorithm that can be executed in
log2(32) = 5 steps.

Other examples of divide and conquer are the well-known techniques of binary

Chapter 5. Counting Bits

search, a sorting method known as quicksort, and a method for reversing the bits of a
word, discussed on page 129.

The method illustrated in Figure 5–1 can be committed to C code as

x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
x = (x & 0x0F0F0F0F) + ((x >> 4) & 0x0F0F0F0F);
x = (x & 0x00FF00FF) + ((x >> 8) & 0x00FF00FF);
x = (x & 0x0000FFFF) + ((x >> 16) & 0x0000FFFF);

The first line uses (x >> 1) & 0x55555555 rather than the perhaps more natural (x &
0xAAAAAAAA) >> 1, because the code shown avoids generating two large constants in a
register. This would cost an instruction if the machine lacks the and not instruction. A
similar remark applies to the other lines.

Clearly, the last and is unnecessary, and other and’s can be omitted when there is
no danger that a field’s sum will carry over into the adjacent field. Furthermore, there is
a way to code the first line that uses one fewer instruction. This leads to the
simplification shown in Figure 5–2 , which executes in 21 instructions and is branch-
free.

int pop(unsigned x) {
 x = x - ((x >> 1) & 0x55555555);
 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
 x = (x + (x >> 4)) & 0x0F0F0F0F;
 x = x + (x >> 8);
 x = x + (x >> 16);
 return x & 0x0000003F;
}

FIGURE 5–2. Counting 1-bits in a word.

The first assignment to x is based on the first two terms of the rather surprising
formula

In Equation (1), we must have x ≥ 0. By treating x as an unsigned integer, Equation
(1) can be implemented with a sequence of 31 shift right immediate’s of 1, and 31
subtract’s. The procedure of Figure 5–2 uses the first two terms of this on each 2-bit
field, in parallel.

There is a simple proof of Equation (1), which is shown below for the case of a
four-bit word. Let the word be b3b2b1b0, where each bi = 0 or 1. Then,

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_129
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p081equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig02

Chapter 5. Counting Bits

Alternatively, Equation (1) can be derived by noting that bit i of the binary
representation of a nonnegative integer x is given by

and summing this for i = 0 to 31. Work it out—the last term is 0 because x < 232.
Equation (1) generalizes to other bases. For base ten it is

where the terms are carried out until they are 0. This can be proved by essentially the
same technique used above.

A variation of the above algorithm is to use a base 4 analogue of Equation (1) as a
substitute for the second executable line of Figure 5–2:

x = x - 3*((x >> 2) & 0x33333333)

This code, however, uses the same number of instructions as the line it replaces (six),
and requires a fast multiply-by-3 instruction.

An algorithm in HAKMEM memo [HAK, item 169] counts the number of 1-bits in a
word by using the first three terms of (1) to produce a word of 3-bit fields, each of
which contains the number of 1-bits that were in it. It then adds adjacent 3-bit fields
to form 6-bit field sums, and then adds the 6-bit fields by computing the value of the
word modulo 63. Expressed in C, the algorithm is (the long constants are in octal)

int pop(unsigned x) {
 unsigned n;

 n = (x >> 1) & 033333333333; // Count bits in
 x = x - n; // each 3-bit
 n = (n >> 1) & 033333333333; // field.
 x = x - n;
 x = (x + (x >> 3)) & 030707070707; // 6-bit sums.
 return x%63; // Add 6-bit sums.
}

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05pro01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p084equ01

Chapter 5. Counting Bits

The last line uses the unsigned modulus function. (It could be either signed or
unsigned if the word length were a multiple of 3.) That the modulus function sums the
6-bit fields becomes clear by regarding the word x as an integer written in base 64.
The remainder upon dividing a base b integer by b – 1 is, for b ≥ 3, congruent mod b
– 1 to the sum of the digits and, of course, is less than b – 1. Because the sum of the
digits in this case must be less than or equal to 32, mod(x, 63) must be equal to the
sum of the digits of x, which is to say equal to the number of 1-bits in the original x.

This algorithm requires only ten instructions on the DEC PDP-10, because that
machine has an instruction for computing the remainder with its second operand
directly referencing a fullword in memory. On a basic RISC, it requires about 13
instructions, assuming the machine has unsigned modulus as one instruction (but not
directly referencing a fullword immediate or memory operand). It is probably not very
fast, because division is almost always a slow operation. Also, it doesn’t apply to 64-bit
word lengths by simply extending the constants, although it does work for word lengths
up to 62.

The return statement in the code above can be replaced with the following, which
runs faster on most machines, but is perhaps less elegant (octal notation again).

return ((x * 0404040404) >> 26) + // Add 6-bit sums.
 (x >> 30);

A variation on the HAKMEM algorithm is to use Equation (1) to count the number of
1’s in each 4-bit field, working on all eight 4-bit fields in parallel [Hay1]. Then, the 4-
bit sums can be converted to 8-bit sums in a straightforward way, and the four bytes
can be added with a multiplication by 0x01010101. This gives

int pop(unsigned x) {
 unsigned n;

 n = (x >> 1) & 0x77777777; // Count bits in
 x = x - n; // each 4-bit
 n = (n >> 1) & 0x77777777; // field.
 x = x - n;
 n = (n >> 1) & 0x77777777;
 x = x - n;
 x = (x + (x >> 4)) & 0x0F0F0F0F; // Get byte sums.
 x = x*0x01010101; // Add the bytes.
 return x >> 24;
}

This is 19 instructions on the basic RISC. It works well if the machine is two-
address, because the first six lines can be done with only one move register instruction.
Also, the repeated use of the mask 0x77777777 permits loading it into a register and
referencing it with register-to-register instructions. Furthermore, most of the shifts are
of only one position.

A quite different bit-counting method, illustrated in Figure 5–3 , is to turn off the
rightmost 1-bit repeatedly [Weg, RND], until the result is 0. It is very fast if the
number of 1-bits is small, taking 2 + 5pop(x) instructions.

int pop(unsigned x) {
 int n;

 n = 0;
 while (x ! = 0) {

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p084equ02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p084equ03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig03

Chapter 5. Counting Bits

 n = n+ 1;
 x = x & (x - 1);
 }
 returnn;
}

FIGURE 5–3. Counting 1-bits in a sparsely populated word.

This has a dual algorithm that is applicable if the number of 1-bits is expected to be
large. The dual algorithm keeps turning on the rightmost 0-bit with x = x | (x + 1),
until the result is all 1’s (–1). Then, it returns 32 – n. (Alternatively, the original number
x can be complemented, or n can be initialized to 32 and counted down.)

A rather amazing algorithm is to rotate x left one position, 31 times, adding the 32
terms [MM]. The sum is the negative of pop(x)! That is,

where the additions are done modulo the word size, and the final sum is interpreted as
a two’s-complement integer. This is just a novelty; it would not be useful on most
machines, because the loop is executed 31 times and thus it requires 63 instructions,
plus the loop-control overhead.

To see why Equation (2) works, consider what happens to a single 1-bit of x. It
gets rotated to all positions, and when these 32 numbers are added, a word of all 1-
bits results. This is –1. To illustrate, consider a 6-bit word size and x = 001001
(binary):

Of course, rotate-right would work just as well.
The method of Equation (1) is very similar to this “rotate and sum” method, which

becomes clear by rewriting (1) as

This gives a slightly better algorithm than Equation (2) provides. It is better because it
uses shift right, which is more commonly available than rotate, and because the loop

Chapter 5. Counting Bits

can be terminated when the shifted quantity becomes 0. This reduces the loop-control
code and may save a few iterations. The two algorithms are contrasted in Figure 5–4 .

int pop(unsigned x) {
 int i, sum;

// Rotate and sum method // Shift right & subtract

 sum = x; // sum = x;
 for (i = 1; i <= 31; i++) { // while (x != 0) {
 x = rotatel (x, 1); // x = x >> 1;
 sum = sum + x; // sum = sum - x;
 } // }
 return -sum; // return sum;
}

FIGURE 5–4. Two similar bit-counting algorithms.

A less interesting algorithm that may be competitive with all the algorithms for
pop(x) in this section is to have a table that contains pop(x) for, say, x in the range 0
to 255. The table can be accessed four times, adding the four numbers obtained. A
branch-free version of the algorithm looks like this:

int pop(unsigned x) { // Table lookup.
 static char table[256] = {
 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
 ...
 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8};
 return table[x & 0xFF] +
 table[(x >> 8) & 0xFF] +
 table[(x >> 16) & 0xFF] +
 table[(x >> 24)];
}

Item 167 in [HAK] contains a short algorithm for counting the number of 1-bits in a
9-bit quantity that is right-adjusted and isolated in a register. It works only on
machines with registers of 36 or more bits. Below is a version of that algorithm that
works on 32-bit machines, but only for 8-bit quantities.

x = x * 0x08040201; // Make 4 copies.
x = x >> 3; // So next step hits proper bits.
x = x & 0x11111111; // Every 4th bit.
x = x * 0x11111111; // Sum the digits (each 0 or 1).
x = x >> 28; // Position the result.

A version for 7-bit quantities is

x = x * 0x02040810; // Make 4 copies, left-adjusted.
x = x & 0x11111111; // Every 4th bit.
x = x * 0x11111111; // Sum the digits (each 0 or 1).
x = x >> 28; // Position the result.

In these, the last two steps can be replaced with steps to compute the remainder of
x modulo 15.

These are not particularly good; most programmers would probably prefer to use
table lookup. The latter algorithm above, however, has a version that uses 64-bit

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05equ04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p086equ03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p087equ02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p087equ03

Chapter 5. Counting Bits

arithmetic, which might be useful for a 64-bit machine that has fast multiplication. Its
argument is a 15-bit quantity. (I don’t believe there is a similar algorithm that deals
with 16-bit quantities, unless it is known that not all 16 bits are 1.) The data type long
long is a C extension found in many C compilers, old and new, for 64-bit integers. It is
made official in the C99 standard. The suffix ULL makes unsigned long long constants.

int pop(unsigned x) {
 unsigned long long y;
 y = x * 0x0002000400080010ULL;
 y = y & 0x1111111111111111ULL;
 y = y * 0x1111111111111111ULL;
 y = y >> 60;
 return y;
}

Sum and Difference of Population Counts of Two Words

To compute pop(x) + pop(y) (if your computer does not have the population count
instruction), some time can be saved by using the first two lines of Figure 5–2 on x
and y separately, adding x and y, and then executing the last three stages of the
algorithm on the sum. After the first two lines of Figure 5–2 are executed, x and y
consist of eight 4-bit fields, each containing a maximum value of 4. Thus, x and y can
safely be added, because the maximum value in any 4-bit field of the sum would be 8,
so no overflow occurs. (In fact, three words can be combined in this way.)

This idea also applies to subtraction. To compute pop(x) – pop(y), use

Then, use the technique just described to compute pop(x) + pop(y). The code is shown
in Figure 5–5 . It uses 32 instructions, versus 43 for two applications of the code in
Figure 5–2 followed by a subtraction.

int popDiff(unsigned x, unsigned y) {
 x = x - ((x >> 1) & 0x55555555);
 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
 y = ~y;
 y = y - ((y >> 1) & 0x55555555);
 y = (y & 0x33333333) + ((y >> 2) & 0x33333333);
 x = x + y;
 x = (x & 0x0F0F0F0F) + ((x >> 4) & 0x0F0F0F0F);
 x = x + (x >> 8);
 x = x + (x >> 16);
 return (x & 0x0000007F) - 32;
}

FIGURE 5–5. Computing pop(x) – pop(y).

Comparing the Population Counts of Two Words

Sometimes one wants to know which of two words has the larger population count
without regard to the actual counts. Can this be determined without doing a population
count of the two words? Computing the difference of two population counts as in
Figure 5–5 , and comparing the result to 0 is one way, but there is another way that is

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p087equ04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig05

Chapter 5. Counting Bits

preferable if either the population counts are expected to be low or if there is a strong
correlation between the particular bits that are set in the two words.

The idea is to clear a single bit in each word until one of the words is all zero; the
other word then has the larger population count. The process runs faster in its worst
and average cases if the bits that are 1 at the same positions in each word are first
cleared. The code is shown in Figure 5–6 . The procedure returns a negative integer if
pop(x) < pop(y), 0 if pop(x) = pop(y), and a positive integer (1) if pop(x) > pop(y).

int popCmpr(unsigned xp, unsigned yp) {
 unsigned x, y;
 x = xp & ~yp; // Clear bits where
 y = yp & ~xp; // both are 1.
 while (1) {
 if (x == 0) return y | -y;
 if (y == 0) return 1;
 x = x & (x - 1); // Clear one bit
 y = y & (y - 1); // from each.
 }
}

FIGURE 5–6. Comparing pop(x) with pop(y).

After clearing the common 1-bits in each 32-bit word, the maximum possible
number of 1-bits in both words together is 32. Therefore, the word with the smaller
number of 1-bits can have at most 16. Thus, the loop in Figure 5–6 is executed a
maximum of 16 times, which gives a worst case of 119 instructions executed on the
basic RISC (16 · 7 + 7). A simulation using uniformly distributed random 32-bit integers
showed that the average population count of the word with the smaller population
count is approximately 6.186, after clearing the common 1-bits. This gives an average
execution time of about 50 instructions executed for random 32-bit inputs, not as good
as using Figure 5–5 . For this procedure to beat that of Figure 5–5 , the number of 1-
bits in either x or y, after clearing the common 1-bits, would have to be three or less.

Counting the 1-bits in an Array

The simplest way to count the number of 1-bits in an array (vector) of fullwords, in the
absence of the population count instruction, is to use a procedure such as that of Figure
5–2 on page 82 on each word of the array and simply add the results. We call this the
“naive” method. Ignoring loop control, the generation of constants, and loads from the
array, it takes 16 instructions per word: 15 for the code of Figure 5–2 , plus one for the
addition. We assume the procedure is expanded in line, the masks are loaded outside
the loop, and the machine has a sufficient number of registers to hold all the quantities
used in the calculation.

Another way is to use the first two executable lines of Figure 5–2 on groups of
three words in the array, adding the three partial results. Because each partial result
has a maximum value of 4 in each four-bit field, the sum of the three has a maximum
value of 12 in each four-bit field, so no overflow occurs. This idea can be applied to the
8- and 16-bit fields. Coding and compiling this method indicates that it gives about a
20% reduction over the naive method in total number of instructions executed on the
basic RISC. Much of the savings are cancelled by the additional housekeeping
instructions required. We will not dwell on this method because there is a much better
way to do it.

The better way seems to have been invented by Robert Harley and David Seal in

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig06

Chapter 5. Counting Bits

about 1996 [Seal1]. It is based on a circuit called a carry-save adder (CSA), or 3:2
compressor. A CSA is simply a sequence of independent full adders1 [H&P], and it is
often used in binary multiplier circuits.

In Boolean algebra notation, the logic for each full adder is

h ← ab + ac + bc = ab + (a + b)c = ab + (a b)c,
l ← (a b) c.

where a, b, and c are the 1-bit inputs, l is the low-bit output (sum) and h is the high-
bit output (carry). Changing a + b on the first line to a b is justified because when a
and b are both 1, the term ab makes the value of the whole expression 1. By first
assigning a b to a temporary, the full adder logic can be evaluated in five logical
instructions, each operating on 32 bits in parallel (on a 32-bit machine). We will refer
to these five instructions as CSA(h, l, a, b, c). This is a “macro,” with h and l being
outputs.

One way to use the CSA operation is to process elements of the array A in groups
of three, reducing each group of three words to two, and applying the population count
operation to these two words. In the loop, these two population counts are summed.
After executing the loop, the total population count of the array is twice the
accumulated population count of the CSA’s high-bit outputs, plus the accumulated
population count of the low-bit outputs.

Let nc be the number of instructions required for the CSA steps and np be the
number of instructions required to do the population count of one word. On a typical
RISC machine nc = 5 and np = 15. Ignoring loads from the array and loop control (the
code for which may vary quite a bit from one machine to another), the loop discussed
above takes (nc + 2np + 2)/3 ≈ 12.33 instructions per word of the array (the “+2” is
for the two additions in the loop). This is in contrast to the 16 instructions per word
required by the naive method.

There is another way to use the CSA operation that results in a program that’s more
efficient and slightly more compact. This is shown in Figure 5–7 . It takes (nc + np +
1)/2 =10.5 instructions per word (ignoring loop control and loads). In this code, the
CSA operation expands into

#define CSA(h,l, a,b,c) \
 {unsigned u = a ^ b; unsigned v = c; \
 h = (a & b) | (u & v); l = u ^ v;}

int popArray(unsigned A[], int n) {

 int tot, i;
 unsigned ones, twos;

 tot = 0; // Initialize.
 ones = 0;
 for (i = 0; i <= n - 2; i = i + 2) {
 CSA(twos, ones, ones, A[i], A[i+1])
 tot = tot + pop(twos);
 }
 tot = 2*tot + pop(ones);

 if (n & 1) // If there's a last one,
 tot = tot + pop(A[i]); // add it in.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch05fn1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig07

Chapter 5. Counting Bits

 return tot;
}

FIGURE 5–7. Array population count, processing elements in groups of two.

u = ones ^ A[i];
v = A[i+1];
twos = (ones & A[i]) | (u & v);
ones = u ^ v;

The code relies on the compiler to common the loads.
There are ways to use the CSA operation to further reduce the number of

instructions required to compute the population count of an array. They are most easily
understood by means of a circuit diagram. For example, Figure 5–8 illustrates a way to
code a loop that takes array elements eight at a time and compresses them into four
quantities, labeled eights, fours, twos, and ones. The fours, twos, and ones are fed
back into the CSAs on the next loop iteration, and the 1-bits in eights are counted by
an execution of the word-level population count function, and this count is
accumulated. When all of the array has been processed, the total population count is

8pop(eights) + 4pop(fours) + 2pop(twos) + pop(ones).

FIGURE 5–8. A circuit for the array population count.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p090pro01

Chapter 5. Counting Bits

The code is shown in Figure 5–9 , which uses the CSA macro defined in Figure 5–7 .
The numbering of the CSA blocks in Figure 5–8 corresponds to the order of the CSA
macro calls in Figure 5–9 . The execution time of the loop, exclusive of array loads and
loop control, is (7nc + np + 1)/8 = 6.375 instructions per word of the array.

int popArray(unsigned A[], int n) {

 int tot, i;
 unsigned ones, twos, twosA, twosB,
 fours, foursA, foursB, eights;

 tot = 0; // Initialize.
 fours = twos = ones = 0;

 for (i = 0; i <= n - 8; i = i + 8) {
 CSA(twosA, ones, ones, A[i], A[i+1])
 CSA(twosB, ones, ones, A[i+2], A[i+3])
 CSA(foursA, twos, twos, twosA, twosB)
 CSA(twosA, ones, ones, A[i+4], A[i+5])
 CSA(twosB, ones, ones, A[i+6], A[i+7])
 CSA(foursB, twos, twos, twosA, twosB)
 CSA(eights, fours, fours, foursA, foursB)
 tot = tot + pop(eights);
 }
 tot = 8*tot + 4*pop(fours + 2*pop(twos) + pop(ones);

 for (i = i; i < n; i++) // Simply add in the last
 tot = tot + pop(A[i]); // 0 to 7 elements.
 return tot;
}

FIGURE 5–9. Array population count, processing elements in groups of eight.

The CSAs can be connected in many arrangements other than that shown in Figure
5–8. For example, increased parallelism might result from feeding the first three array
elements into one CSA, and the next three into a second CSA, which allows the
instructions of these two CSAs to execute in parallel. One might also be able to
permute the three input operands of the CSA macros for increased parallelism. With the
plan shown in Figure 5–8 , one can easily see how to use only the first three CSAs to
construct a program that processes array elements in groups of four, and also how to
expand it to construct programs that process array elements in groups of 16 or more.
The plan shown also spreads out the loads somewhat, which would be advantageous
for a machine that has a relatively low limit on the number of loads that can be
outstanding at any one time.

The plan of Figure 5–8 can be generalized so that very few word population counts
are done. To sketch how this program might be constructed, it needs an array of m×2
words to hold two of each of the variables we have called ones, twos, fours, and so
forth. For an array of size n, choosing m ≥ log2(n + 1) + 1 is sufficient (m = 31 is
sufficient for any size array that can be held in a machine with a 32-bit byte-addressed
space). A byte array of size m is also needed to keep track of how many (0, 1, or 2)
values are currently in each row of the m×2 array. The program processes array
elements in groups of two. For each group, the CSA is invoked to compress those two
array elements with a saved value of ones, which is most conveniently kept in the [0,0]
position of the m×2 array. In an inner loop, the resulting twos is saved in the array, by
scanning down (usually not far at all) to find a row with fewer than two items. If the
twos row is full, its two values are combined with twos (using the CSA). The twos

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig09

Chapter 5. Counting Bits

output is put in the array, resetting its row count to 1. The scan continues with the
fours output to find a place to put it, and so forth.

After completing the pass over the input array, the program next makes a pass over
the (much shorter) m×2 array, compressing all full rows, so that all rows contain only
one significant value. Lastly, the program invokes the word-level population count
operation on the first element of each row until a row with a zero count is encountered,
computing the total array population count as

pop(row 0) + 2pop(row 1) + 4pop(row 2) +

The value suggested above for m ensures that the last row will have a zero count,
which can be used to terminate the scans.

The resulting program executes exactly log2(n + 3) word population counts.
Unfortunately it is not practical, because the housekeeping steps for loading from and
storing into the intermediate result arrays outweigh the computational instructions that
are saved. An experimental program (without trying too hard to optimize it) ran in
about 29 instructions per array word (counting all instructions in the loop). This is
significantly worse than the naive method.

Table 5–1 summarizes the number of instructions executed by this plan for various
group sizes. The values in the middle two columns ignore loads and loop control. The
fourth column gives the total loop instruction execution count, per word of the input
array, produced by a compiler for the basic RISC machine (which does not have
indexed loads).

TABLE 5–1. INSTRUCTIONS PER WORD FOR THE ARRAY POPULATION COUNT

For small arrays, there are better plans than that of Figure 5–8 . For example, for an
array of seven words, the plan of Figure 5–10 is quite efficient [Seal1]. It executes in
4nc + 3np + 4 = 69 instructions, or 9.86 instructions per word. Similar plans exist that
apply to arrays of size 2k − 1 words for any positive integer k. The plan for 15 words

Chapter 5. Counting Bits

executes in 11nc + 4np + 6 = 121 instructions, or 8.07 instructions per word.

FIGURE 5–10. A circuit for the total population count of seven words.

Applications

An application of the population count function is in computing the “Hamming distance”
between two bit vectors, a concept from the theory of error-correcting codes. The
Hamming distance is simply the number of places where the vectors differ; that is,

dist(x, y) = pop(x y).

See, for example, the chapter on error-correcting codes in [Dewd].
Another application is to allow reasonably fast direct-indexed access to a moderately

sparse array A that is represented in a certain compact way. In the compact
representation, only the defined, or nonzero, elements of the array are stored. There is
an auxiliary bit string array bits of 32-bit words, which has a 1-bit for each index i for
which A[i] is defined. As a speedup device, there is also an array of words bitsum such
that bitsum[j] is the total number of 1-bits in all the words of bits that precede entry j.
This is illustrated below for an array in which elements 0, 2, 32, 47, 48, and 95 are
defined.

Chapter 5. Counting Bits

Given an index i, 0 ≤ i ≤ 95, the corresponding index sparse_i into the data array is
given by the number of 1-bits in array bits that precede the bit corresponding to i. This
can be calculated as follows:

j = i >> 5; // j = i/32.
k = i & 31; // k = rem(i, 32);
mask = 1 << k; // A "1" at position k.
if ((bits[j] & mask) == 0) goto no_such_element;
mask = mask - 1; // l's to right of k.
sparse_i = bitsum[j] + pop(bits[j] & mask);

The cost of this representation is two bits per element of the full array.
The population function can be used to generate binomially distributed random

integers. To generate an integer drawn from a population given by BINOMIAL(t, p)
where t is the number of trials and p = 1/2, generate t random bits and count the
number of 1’s in the t bits. This can be generalized to probabilities p other than 1/2;
see for example [Knu2, sec. 3.4.1, prob. 27].

Still another application of the population function is in computing the number of
trailing 0’s in a word (see “Counting Trailing 0’s” on page 107).

According to computer folklore, the population count function is important to the
National Security Agency. No one (outside of NSA) seems to know just what they use it
for, but it may be in cryptography work or in searching huge amounts of material.

5–2 Parity
The “parity” of a string refers to whether it contains an odd or an even number of 1-
bits. The string has “odd parity” if it contains an odd number of 1-bits; otherwise, it
has “even parity.”

Computing the Parity of a Word

Here we mean to produce a 1 if a word x has odd parity, and a 0 if it has even parity.
This is the sum, modulo 2, of the bits of x—that is, the exclusive or of all the bits of x.

One way to compute this is to compute pop(x); the parity is the rightmost bit of the
result. This is fine if you have the population count instruction, but if not, there are
better ways than using the code for pop(x).

A rather direct method is to compute

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p095pro01

Chapter 5. Counting Bits

where n is the word size, and then the parity of x is given by the rightmost bit of y.
(Here denotes exclusive or, but for this formula ordinary addition could be used.)

The parity can be computed much more quickly, for moderately large n, as follows
(illustrated for n = 32; the shifts can be signed or unsigned):

This executes in ten instructions, as compared to 62 for the first method, even if the
implied loop is completely unrolled. Again, the parity bit is the rightmost bit of y. In
fact, with either of these, if the shifts are unsigned, then bit i of y gives the parity of
the bits of x at and to the left of i. Furthermore, because exclusive or is its own
inverse, xi xj is the parity of bits i − 1 through j, for i ≥ j.

This is an example of the “parallel prefix,” or “scan” operation, which has
applications in parallel computing [KRS; HS]. Given a sufficient number of processors, it
can convert certain seemingly serial processes from O(n) to O(log2n) time. For
example, if you have an array of words and you wish to compute the exclusive or scan
operation on the entire array of bits, you can first use (3) on the entire array, and then
continue with shifts of 32 bits, 64 bits, and so on, doing exclusive or’s on the words of
the array. This takes more elementary (word length) exclusive or operations than a
simple left-to-right process, and hence it is not a good idea for a uniprocessor. But on a
parallel computer with a sufficient number of processors, it can do the job in O(log2n)
rather than O(n) time (where n is the number of words in the array).

A direct application of (3) is the conversion of a Gray coded integer to binary (see
page 312).

If the code (3) is changed to use left shifts, the parity of the whole word x winds up
in the leftmost bit position, and bit i of y gives the parity of the bits of x at and to the
right of position i. This is called the “parallel suffix” operation, because each bit is a
function of itself and the bits that follow it.

If rotate shift’s are used, the result is a word of all 1’s if the parity of x is odd, and
of all 0’s if even.

The five assignments in (3) can be done in any order (provided variable x is used in
the first one). If they are done in reverse order, and if you are interested only in
getting the parity in the low-order bit of y, then the last two lines:

y = y ^(y >> 2);
y = y ^(y >> 1);

can be replaced with [Huef]

y = 0x6996 >> (y & 0xF);

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_312
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p097equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p097equ02

Chapter 5. Counting Bits

This is an “in-register table lookup” operation. On the basic RISC it saves one
instruction, or two if the load of the constant is not counted. The low-order bit of y has
the original word’s parity, but the other bits of y do not contain anything useful.

The following method executes in nine instructions and computes the parity of x as
the integer 0 or 1 (the shifts are unsigned).

x = x ^ (x >> 1);
x = (x ^ (x >> 2)) & 0x11111111;
x = x*0x11111111;
p = (x >> 28) & 1;

After the second statement above, each hex digit of x is 0 or 1, according to the parity
of the bits in that hex digit. The multiply adds these digits, putting the sum in the high-
order hex digit. There can be no carry out of any hex column during the add part of
the multiply, because the maximum sum of a column is 8.

The multiply and shift could be replaced by an instruction to compute the remainder
after dividing x by 15, giving a (slow) solution in eight instructions, if the machine has
remainder immediate.

On a 64-bit machine, the above code employing multiplication gives the correct
result after making the obvious changes (expand the hex constants to 16 nibbles, each
with value 1, and change the final shift amount from 28 to 60). In this case, the
maximum sum in any 4-bit column of the partial products, other than the most
significant column, is 15, so again no overflow occurs that affects the result in the most
significant column. On the other hand, the variation that computes the remainder upon
division by 15 does not work on a 64-bit machine, because the remainder is the sum of
the nibbles modulo 15, and the sum may be as high as 16.

Adding a Parity Bit to a 7-Bit Quantity

Item 167 in [HAK] contains a novel expression for putting even parity on a 7-bit
quantity that is right-adjusted and isolated in a register. By this we mean to set the bit
to the left of the seven bits, to make an 8-bit quantity with even parity. Their code is
for a 36-bit machine, but it works on a 32-bit machine as well.

modu((x * 0x10204081) & 0x888888FF, 1920)

Here, modu(a, b) denotes the remainder of a upon division by b, with the arguments
and result interpreted as unsigned integers, “*” denotes multiplication modulo 232, and
the constant 1920 is 15 · 27. Actually, this computes the sum of the bits of x, and
places the sum just to the left of the seven bits comprising x. For example, the
expression maps 0x0000007F to 0x000003FF, and 0x00000055 to 0x00000255.

Another ingenious formula from [HAK] is the following, which puts odd parity on a
7-bit integer:

modu((x * 0x00204081) | 0x3DB6DB00, 1152),

where 1152 = 9 · 27. To understand this, it helps to know that the powers of 8 are ±1
modulo 9. If the 0x3DB6DB00 is changed to 0xBDB6DB00, this formula applies
even parity.

These methods are not practical on today’s machines, because memory is cheap but
division is still slow. Most programmers would compute these functions with a simple
table lookup.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p097equ03

Chapter 5. Counting Bits

Applications

The parity operation is widely used to calculate a check bit to append to data. It is also
useful in multiplying bit matrices in GF(2) (in which the add operation is exclusive or).

5–3 Counting Leading 0’s
There are several simple ways to count leading 0’s with a binary search technique.
Below is a model that has several variations. It executes in 20 to 29 instructions on the
basic RISC. The comparisons are “logical” (unsigned integers).

if (x == 0) return(32);
n = 0;
if (x <= 0x0000FFFF) {n = n +16; x = x <<16;}
if (x <= 0x00FFFFFF) {n = n + 8; x = x << 8;}
if (x <= 0x0FFFFFFF) {n = n + 4; x = x << 4;}
if (x <= 0x3FFFFFFF) {n = n + 2; x = x << 2;}
if (x <= 0x7FFFFFFF) {n = n + 1;}
return n;

One variation is to replace the comparisons with and’s:

if ((x & 0xFFFF0000) == 0) {n = n +16; x = x <<16;}
if ((x & 0xFF000000) == 0) {n = n + 8; x = x << 8}
...

Another variation, which avoids large immediate values, is to use shift right
instructions.

The last if statement is simply adding 1 to n if the high-order bit of x is 0, so an
alternative, which saves a branch instruction, is:

n = n + 1 - (x >> 31);

The “+ 1” in this assignment can be omitted if n is initialized to 1 rather than to 0.
These observations lead to the algorithm (12 to 20 instructions on the basic RISC)
shown in Figure 5–11. A further improvement is possible for the case in which x begins
with a 1-bit: change the first line to

if ((int)x <= 0) return (~x >> 26) & 32;

int nlz(unsigned x) {
 int n;

 if (x == 0) return(32);
 n = 1;
 if ((x >> 16) == 0) {n = n +16; x = x <<16;}
 if ((x >> 24) == 0) {n = n + 8; x = x << 8;}
 if ((x >> 28) == 0) {n = n + 4; x = x << 4;}
 if ((x >> 30) == 0) {n = n + 2; x = x << 2;}
 n = n - (x >> 31);
 return n;
}

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p099equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p099equ02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p099equ03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p099equ04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig11

Chapter 5. Counting Bits

FIGURE 5–11. Number of leading zeros, binary search.

Figure 5–12 illustrates a sort of reversal of the above. It requires fewer operations
the more leading 0’s there are, and avoids large immediate values and large shift
amounts. It executes in 12 to 20 instructions on the basic RISC.

int nlz(unsigned x) {
 unsigned y;
 int n;

 n = 32;
 y = x >>16; if (y != 0) {n = n -16; x = y;}
 y = x >> 8; if (y != 0) {n = n - 8; x = y;}
 y = x >> 4; if (y != 0) {n = n - 4; x = y;}
 y = x >> 2; if (y != 0) {n = n - 2; x = y;}
 y = x >> 1; if (y != 0) return n - 2;
 return n - x;
}

FIGURE 5–12. Number of leading zeros, binary search, counting down.

This algorithm is amenable to a “table assist”: the last four executable lines can be
replaced by

static char table[256] = {0,1,2,2,3,3,3,3,4,4,...,8);
return n - table[x];

Many algorithms can be aided by table lookup, but this will not often be mentioned
here.

For compactness, this and the preceding algorithms in this section can be coded as
loops. For example, the algorithm of Figure 5–12 becomes the algorithm shown in
Figure 5–13. This executes in 23 to 33 basic RISC instructions, ten of which are
conditional branches.

int nlz(unsigned x) {
 unsigned y;
 int n, c;

 n = 32;
 c = 16;
 do {
 y = x >> c; if (y != 0) {n = n - c; x = y;}
 c = c >> 1;
 } while (c != 0);
 return n - x;
}

FIGURE 5–13. Number of leading zeros, binary search, coded as a loop.

One can, of course, simply shift left one place at a time, counting, until the sign bit
is on; or shift right one place at a time until the word is all 0. These algorithms are
compact and work well if the number of leading 0’s is expected to be small or large,
respectively. One can combine the methods, as shown in Figure 5–14. We mention this
because the technique of merging two algorithms and choosing the result of whichever

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p100equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig13

Chapter 5. Counting Bits

one stops first is more generally applicable. It leads to code that runs fast on
superscalar machines, because of the proximity of independent instructions. (These
machines can execute two or more instructions simultaneously, provided they are
independent.)

int nlz(int x) {
 int y, n;

 n = 0;
 y = x;
L: if (x < 0) return n;
 if (y == 0) return 32 - n;
 n = n + 1;
 x = x << 1;
 y = y >> 1;
 goto L;
}

FIGURE 5–14. Number of leading zeros, working both ends at the same time.

On the basic RISC, this executes in min(3 + 6nlz(x), 5 + 6(32 – nlz(x)))
instructions, or 99 worst case. One can imagine a superscalar machine executing the
entire loop body in one cycle if the comparison results are obtained as a by-product of
the shifts, or in two cycles otherwise, plus the branch overhead.

It is straightforward to convert either of the algorithms of Figure 5–11 or Figure 5–
12 to a branch-free counterpart. Figure 5–15 shows a version that does the job in 28
basic RISC instructions.

int nlz(unsigned x) {
 int y, m, n;

 y = -(x >> 16); // If left half of x is 0,
 m = (y >> 16) & 16; // set n = 16. If left half
 n = 16 - m; // is nonzero, set n = 0 and
 x = x >> m; // shift x right 16.
 // Now x is of the form 0000xxxx.
 y = x - 0x100; // If positions 8–15 are 0,
 m = (y >> 16) & 8; // add 8 to n and shift x left 8.
 n = n + m;
 x = x << m;

 y = x - 0x1000; // If positions 12–15 are 0,
 m = (y >> 16) & 4; // add 4 to n and shift x left 4.
 n = n + m;
 x = x << m;

 y = x - 0x4000; // If positions 14–15 are 0,
 m = (y >> 16) & 2; // add 2 to n and shift x left 2.
 n = n + m;
 x = x << m;

 y = x >> 14; // Set y = 0, 1, 2, or 3.
 m = y & ~(y >> 1); // Set m = 0, 1, 2, or 2 resp.
 return n + 2 - m;
}

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig15

Chapter 5. Counting Bits

FIGURE 5–15. Number of leading zeros, branch-free binary search.

If your machine has the population count instruction, a good way to compute the
number of leading zeros function is given in Figure 5–16. The five assignments to x can
be reversed, or, in fact, done in any order. This is branch-free and takes 11
instructions. Even if population count is not available, this algorithm may be useful.
Using the 21-instruction code for counting 1-bits given in Figure 5–2 on page 82, it
executes in 32 branch-free basic RISC instructions.

int nlz(unsigned x) {
 int pop(unsigned x);

 x = x | (x >> 1);
 x = x | (x >> 2);
 x = x | (x >> 4);
 x = x | (x >> 8);
 x = x | (x >>16);
 return pop(~x);
}

FIGURE 5–16. Number of leading zeros, right-propagate and count 1-bits.

Robert Harley [Harley] devised an algorithm for nlz(x) that is very similar to Seal’s
algorithm for ntz(x) (see Figure 5–25 on page 111). Harley’s method propagates the
most significant 1-bit to the right using shift’s and or’s, and multiplies modulo 232 by a
special constant, producing a product whose high-order six bits uniquely identify the
number of leading 0’s in x. It then does a shift right and a table lookup (indexed load)
to translate the six-bit identifier to the actual number of leading 0’s. As shown in Figure
5–17, it consists of 14 instructions, including a multiply, plus an indexed load. Table
entries shown as u are unused.

int nlz(unsigned x) {

 static char table[64] =
 {32,31, u,16, u,30, 3, u, 15, u, u, u,29,10, 2, u,
 u, u,12,14,21, u,19, u, u,28, u,25, u, 9, 1, u,
 17, u, 4, u, u, u,11, u, 13,22,20, u,26, u, u,18,
 5, u, u,23, u,27, u, 6, u,24, 7, u, 8, u, 0, u};

 x = x | (x >> 1); // Propagate leftmost
 x = x | (x >> 2); // 1-bit to the right.
 x = x | (x >> 4);
 x = x | (x >> 8);
 x = x | (x >>16);
 x = x*0x06EB14F9; // Multiplier is 7*255**3.
 return table[x >> 26];
}

FIGURE 5–17. Number of leading zeros, Harley’s algorithm.

The multiplier is 7·2553, so the multiplication can be done as shown below. In this
form, the function consists of 19 elementary instructions, plus an indexed load.

x = (x << 3) - x; // Multiply by 7.
x = (x 8) - x; // Multiply by 255.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig16
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig17
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p103equ01

Chapter 5. Counting Bits

<<
x = (x << 8) - x; // Again.
x = (x << 8) - x; // Again.

There are many multipliers that have the desired uniqueness property and whose
factors are all of the form 2k ± 1. The smallest is 0x045BCED1 = 17 · 65· 129 ·513.
There are no such multipliers consisting of three factors if the table size is 64 or 128
entries. If the table size is 256 entries, however, there are a number of such multipliers.
The smallest is 0x01033CBF = 65·255·1025 (using this would save two instructions at
the expense of a larger table).

Julius Goryavsky [Gor] has found several variations of Harley’s algorithm that reduce
the table size at the expense of a few instructions, or have improved parallelism, or
have other desirable properties. One, shown in Figure 5–18, is a clear winner if the
multiplication is done with shifts and adds. The code changes only the table and the
lines that contain the shift right of 16 and the following multiply in Figure 5–17. If the
machine has and not, this saves two instructions because the multiplier can be factored
as 511·2047 · 16383 (mod 232), which can be done in six elementary instructions
rather than eight. If the machine does not have and not, it saves one instruction.

...
static char table[64] =
 {32,20,19, u, u,18, u, 7, 10,17, u, u,14, u, 6, u,
 u, 9, u,16, u, u, 1,26, u,13, u, u,24, 5, u, u,
 u,21, u, 8,11, u,15, u, u, u, u, 2,27, 0,25, u,
 22, u,12, u, u, 3,28, u, 23, u, 4,29, u, u,30,31};
...
x = x & ~(x >> 16);
x = x*0xFD7049FF;
...

FIGURE 5–18. Number of leading zeros, Goryavsky’s variation of Harley’s
algorithm.

Floating-Point Methods

The floating-point post-normalization facilities can be used to count leading zeros. It
works out quite well with IEEE-format floating-point numbers. The idea is to convert the
given unsigned integer to double-precision floating-point, extract the exponent, and
subtract it from a constant. Figure 5–19 illustrates a complete procedure for this.

int nlz(unsigned k) {
 union {
 unsigned asInt[2];
 doubleasDouble;
 };
 int n;

 asDouble = (double)k + 0.5;
 n = 1054 - (as!nt[LE] >> 20);
 return n;
}

FIGURE 5–19. Number of leading zeros, using IEEE floating-point.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig18
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig19

Chapter 5. Counting Bits

The code uses the C++ “anonymous union” to overlay an integer with a double-
precision floating-point quantity. Variable LE must be 1 for execution on a little-endian
machine, and 0 for big-endian. The addition of 0.5, or some other small number, is
necessary for the method to work when k = 0.

We will not attempt to assess the execution time of this code, because machines
differ so much in their floating-point capabilities. For example, many machines have
their floating-point registers separate from the integer registers, and on such machines
data transfers through memory may be required to convert an integer to floating-point
and then move the result to an integer register.

The code of Figure 5–19 is not valid C or C++ according to the ANSI standard,
because it refers to the same memory locations as two different types. Thus, one
cannot be sure it will work on a particular machine and compiler. It does work with
IBM’s XLC compiler on AIX, and with the GCC compiler on AIX and on Windows 2000
and XP, at all optimization levels (as of this writing, anyway). If the code is altered to
do the overlay defining with something like

xx = (double)k + 0.5;
n = 1054 - (*((unsigned *)&xx + LE) >> 20);

it does not work on these systems with optimization turned on. This code, incidentally,
violates a second ANSI standard, namely, that pointer arithmetic can be performed only
on pointers to array elements [Cohen]. The failure, however, is due to the first
violation, involving overlay defining.

In spite of the flakiness of this code,2 three variations are given below.

asDouble = (double)k;
n = 1054 - (asInt[LE] >> 20);
n = (n & 31) + (n >> 9);

k = k & ~(k >> 1);
asFloat = (float)k + 0.5f;
n = 158 - (asInt >> 23);

k = k & ~(k >> 1);
asFloat = (float)k;
n = 158 - (asInt >> 23);
n = (n & 31) + (n >> 6);

In the first variation, the problem with k = 0 is fixed not by a floating-point addition
of 0.5, but by integer arithmetic on the result n (which would be 1054, or 0x41E, if the
correction were not done).

The next two variations use single-precision floating-point, with the “anonymous
union” changed in an obvious way. Here there is a new problem: Rounding can throw
off the result when the rounding mode is either round to nearest (almost universally
used) or round toward +∞. For round to nearest mode, the rounding problem occurs
for k in the ranges hexadecimal FFFFFF80 to FFFFFFFF, 7FFFFFC0 to 7FFFFFFF,
3FFFFFE0 to 3FFFFFFF, and so on. In rounding, an add of 1 carries all the way to the
left, changing the position of the most significant 1-bit. The correction steps used
above clear the bit to the right of the most significant 1-bit, blocking the carry. If k is a
64-bit quantity, this correction is also needed for the code of Figure 5–19 and for the
first of the three variations given above.

The GNU C/C++ compiler has a unique feature that allows coding any of these
schemes as a macro, giving in-line code for the function references [Stall]. This feature

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p105equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch05fn2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p105equ02

Chapter 5. Counting Bits

allows statements, including declarations, to be inserted in code where an expression is
called for. The sequence of statements would usually end with an expression, which is
taken to be the value of the construction. Such a macro definition is shown below, for
the first single-precision variation. (In C, it is customary to use uppercase for macro
names.)

#define NLZ(kp) \
 ({union {unsigned _asInt; float _asFloat;}; \
 unsigned _k = (kp), _kk = _k & ~(_k >> 1); \
 _asFloat = (float)_kk + 0.5f; \
 158 - (_asInt >> 23);})

The underscores are used to avoid name conflicts with parameter kp; presumably,
user-defined names do not begin with underscores.

Comparing the Number of Leading Zeros of Two Words

There is a simple way to determine which of two words x and y has the larger number
of leading zeros [Knu5] without actually computing nlz(x) or nlz(y). The methods are
shown in the equivalences below. The three relations not shown are, of course,
obtained by complementing the sense of the comparison on the right.

Relation to the Log Function

The “nlz” function is, essentially, the “integer log base 2” function. For unsigned x ≠ 0,

See also Section 11–4, “Integer Logarithm,” on page 291.
Another closely related function is bitsize, the number of bits required to represent

its argument as a signed quantity in two’s-complement form. We take its definition to
be

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p106equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11lev4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11lev4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_291

Chapter 5. Counting Bits

From this definition, bitsize(x) = bitsize(−x−1). But − x − 1 = ¬x, so an algorithm
for bitsize is (where the shift is signed)

x = x ^ (x >> 31); // If (x < 0) x = -x - 1;
return 33 - nlz(x);

An alternative, which is the same function as bitsize(x) except it gives the result 0
for x = 0, is

32 - nlz(x ^ (x << 1))

Applications

Two important applications of the number of leading zeros function are in simulating
floating-point arithmetic operations and in various division algorithms (see Figure 9–1
on page 185 and Figure 9–3 on page 196). The instruction seems to have a miscellany
of other uses.

It can be used to get the “x = y” predicate in only three instructions (see
“Comparison Predicates” on page 23), and as an aid in computing certain elementary
functions (see pages 281, 284, 290, and 294).

A novel application is to generate exponentially distributed random integers by
generating uniformly distributed random integers and taking nlz of the result [GLS1].
The result is 0 with probability 1/2, 1 with probability 1/4, 2 with probability 1/8, and
so on. Another application is as an aid in searching a word for a consecutive string of 1-
bits (or 0-bits) of a certain length, a process that is used in some disk block allocation
algorithms. For these last two applications, the number of trailing zeros function could
also be used.

5–4 Counting Trailing 0’s
If the number of leading zeros instruction is available, then the best way to count
trailing 0’s is, most likely, to convert it to a count leading 0’s problem:

32 − nlz(¬x&(x−1)).

If population count is available, a slightly better method is to form a mask that
identifies the trailing 0’s, and count the 1-bits in it [Hay2], such as

Variations exist using other expressions for forming a mask that identifies the
trailing zeros of x, such as those given in Section 2–1 , “Manipulating Rightmost Bits,”
on page 11. These methods are also reasonable even if the machine has none of the
bit-counting instructions. Using the algorithm for pop(x) given in Figure 5–2 on page
82, the first expression above executes in about 3 + 21 = 24 instructions (branch-
free).

Figure 5–20 shows an algorithm that does it directly, in 12 to 20 basic RISC
instructions (for x ≠ 0).

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p107equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p107equ02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09fig1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_185
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09fig3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_196
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_281
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_284
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_290
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_294
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_11
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig20

Chapter 5. Counting Bits

int ntz(unsigned x) {
 int n;

 if (x == 0) return(32);
 n = 1;
 if ((x & 0x0000FFFF) == 0) {n = n + 16; x = x >>16;}
 if ((x & 0x000000FF) == 0) {n = n + 8; x = x >> 8;}
 if ((x & 0x0000000F) == 0) {n = n + 4; x = x >> 4;}
 if ((x & 0x00000003) == 0) {n = n + 2; x = x >> 2;}
 return n - (x & 1);
}

FIGURE 5–20. Number of trailing zeros, binary search.

The n + 16 can be simplified to 17 if that helps, and if the compiler is not smart
enough to do that for you (this does not affect the number of instructions as we are
counting them).

Figure 5–21 shows a variation that uses smaller immediate values and simpler
operations. It executes in 12 to 21 basic RISC instructions. Unlike the above procedure,
when the number of trailing 0’s is small, the procedure of Figure 5–21 executes a
larger number of instructions, but also a larger number of “fall-through” branches.

int ntz(unsigned x) {
 unsigned y;
 int n;

 if (x == 0) return 32;
 n = 31;
 y = x <<16; if (y != 0) {n = n -16; x = y;}
 y = x << 8; if (y != 0) {n = n - 8; x = y;}
 y = x << 4; if (y != 0) {n = n - 4; x = y;}
 y = x << 2; if (y != 0) {n = n - 2; x = y;}
 y = x << 1; if (y != 0) {n = n - 1;}
 return n;
}

FIGURE 5–21. Number of trailing zeros, smaller immediate values.

The line just above the return statement can alternatively be coded

n = n - ((x << 1) >> 31);

which saves a branch, but not an instruction.
In terms of number of instructions executed, it is hard to beat the “search tree”

[Aus2]. Figure 5–22 illustrates this procedure for an 8-bit argument. This procedure
executes in seven instructions for all paths except the last two (return 7 or 8), which
require nine. A 32-bit version would execute in 11 to 13 instructions. Unfortunately, for
large word sizes, the program is quite large. The 8-bit version above is 12 lines of
executable source code and would compile into about 41 instructions. A 32-bit version
would be 48 lines and about 164 instructions, and a 64-bit version would be twice that.

int ntz(char x) {
 if (x & 15) {

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig21
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p108pro01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig22

Chapter 5. Counting Bits

 if (x & 3) {
 if (x & 1) return 0;
 else return 1;
 }
 else if (x & 4) return 2;
 else return 3;
 }
 else if (x & 0x30) {
 if (x & 0x10) return 4;
 else return 5;
 }
 else if (x & 0x40) return 6;
 else if (x) return 7;
 else return 8;
}

FIGURE 5–22. Number of trailing zeros, binary search tree.

If the number of trailing 0’s is expected to be small or large, then the simple loops
shown in Figure 5–23 are quite fast. The algorithm on the left executes in 5 + 3ntz(x),
and that on the right in 3 + 3(32 – ntz(x)) basic RISC instructions.

int ntz(unsigned x) {
 int n;

 x = ~x & (x - 1);
 n = 0; // n = 32;
 while (x != 0) { // while (x != 0) {
 n = n + 1; // n = n - 1;
 x = x >> 1; // x = x + x;
 } // }
 return n; // return n;
}

FIGURE 5–23. Number of trailing zeros, simple counting loops.

Dean Gaudet [Gaud] devised an algorithm that is interesting because with the right
instructions it is branch-free, load-free (does not use table lookup), and has lots of
parallelism. It is shown in Figure 5–24.

int ntz(unsigned x) {
 unsigned y, bz, b4, b3, b2, b1, b0;

 y = x & -x; // Isolate rightmost 1-bit.
 bz = y ? 0 : 1; // 1 if y = 0.
 b4 = (y & 0x0000FFFF) ? 0 : 16;
 b3 = (y & 0x00FF00FF) ? 0 : 8;
 b2 = (y & 0x0F0F0F0F) ? 0 : 4;
 b1 = (y & 0x33333333) ? 0 : 2;
 b0 = (y & 0x55555555) ? 0 : 1;
 return bz + b4 + b3 + b2 + bl +b0;
}

FIGURE 5–24. Number of trailing zeros, Gaudet’s algorithm.

As shown, the code uses the C “conditional expression” in six places. This construct has
the form a?b:c. Its value is b if a is true (nonzero), and c if a is false (zero). Although

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig23
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig24

Chapter 5. Counting Bits

a conditional expression must, in general, be compiled into compares and branches, for
the simple cases in Figure 5–24 branching can be avoided if the machine has a
compare for equality to zero instruction that sets a target register to 1 if the operand is
0, and to 0 if the operand is nonzero. Branching can also be avoided by using
conditional move instructions. Using compare, the assignment to b3 can be compiled
into five instructions on the basic RISC: two to generate the hex constant, an and, the
compare, and a shift left of 3. (The first, second, and last conditional expressions
require one, three, and four instructions, respectively.)

The code can be compiled into a total of 30 instructions. All six lines with the
conditional expressions can run in parallel. On a machine with a sufficient degree of
parallelism, it executes in ten cycles. Present machines don’t have that much
parallelism, so as a practical matter it might help to change the first two uses of y in
the program to x. This permits the first three executable statements to run in parallel.

David Seal [Seal2] devised an algorithm for computing ntz(x) that is based on the
idea of compressing the 232 possible values of x to a small dense set of integers and
doing a table lookup. He uses the expression x & – x to reduce the number of possible
values to a small number. The value of this expression is a word that contains a single
1-bit at the position of the least significant 1-bit in x, or is 0 if x = 0. Thus, x & – x has
only 33 possible values. But they are not dense; they range from 0 to 231.

To produce a dense set of 33 integers that uniquely identify the 33 values of x &
–x, Seal found a certain constant which, when multiplied by x & –x, produces the
identifying value in the high-order six bits of the low-order half of the product of the
constant and x & –x. Since x & – x is an integral power of 2 or is 0, the multiplication
amounts to a left shift of the constant, or it is a multiplication by 0. Using only the
high-order five bits is not sufficient, because 33 distinct values are needed.

The code is shown in Figure 5–25, where table entries shown as u are unused.

int ntz(unsigned x) {

 static char table[64] =
 {32, 0, 1,12, 2, 6, u,13, 3, u, 7, u, u, u, u,14,
 10, 4, u, u, 8, u, u,25, u, u, u, u, u,21,27,15,
 31,11, 5, u, u, u, u, u, 9, u, u,24, u, u,20,26,
 30, u, u, u, u,23, u,19, 29, u,22,18,28,17,16, u};

 x = (x & -x)*0x0450FBAF;
 return table[x >> 26];
}

FIGURE 5–25. Number of trailing zeros, Seal’s algorithm.

As an example, if x is an odd multiple of 16, then x & -x = 16, so the multiplication
is simply a left shift of four positions. The high-order six bits of the low-order half of
the product are then binary 010001, or 17 decimal. The table translates 17 to 4, which
is the correct number of trailing 0’s for an odd multiple of 16.

There are thousands of constants that have the necessary uniqueness property. The
smallest is 0x0431472F, and the largest is 0xFDE75C6D. Seal chose a constant for
which the multiplication can be done with a small number of shifts and adds. Since
0x0450FBAF = 17–65-65535, the multiplication can be done as follows:

x = (x << 4) + x; // x = x*17.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig25
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p111equ01

Chapter 5. Counting Bits

x = (x << 6) + x; // x = x*65.
x = (x << 16) - x; // x = x*65535.

With this substitution, the code of Figure 5–25 consists of nine elementary instructions,
plus an indexed load. Seal was interested in the ARM instruction set, which can do a
shift and add in one instruction. On that architecture, the code is six instructions,
including the indexed load.

To make the multiplication even easier to do with shifts and adds, one might hope
to find a constant of the form (2k1 ± 1)(2k2 ± 1) that has the necessary uniqueness
property. For a table size of 64, there are no such integers, and there is only one other
suitable integer that is a product of three such factors: 0x08A1FBAF = 17 · 65 ·
131071. Using a table size of 128 or 256 does not help. However, for a table size of
512 there are four suitable integers of the form (2k1 ± 1)(2k2 ± 1); the smallest is
0x0080FF7F = 129 · 65535. We leave it to the reader to determine the table associated
with this constant.

There is a variation of Seal’s method that is based on de Bruijn cycles [LPR]. These
are cyclic sequences over a given alphabet that contain as a subsequence every
sequence of the letters of the alphabet of a given length exactly once. For example, a
cycle that contains as a subsequence every sequence of {a, b, c} of length 2 is
aabacbbcc. Notice that the sequence ca wraps around from the end to the beginning. If
the alphabet size is k and the length is n, there are kn sequences. For a cycle to
contain all of these, it must be of length at least kn, which would be its length if a
different sequence started at each position. It can be shown that there is always a
cycle of this minimum possible length that contains all kn sequences.

For our purposes, the alphabet is {0, 1}, and for dealing with 32-bit words, we are
interested in a cycle that contains all 32 sequences 00000, 00001, 00010, ..., 11111.
Given such a cycle that begins with at least four 0’s, we can compute ntz(x) by first
reducing x to a word that contains a single bit at the position of the least significant bit
of x, as in Seal’s algorithm. Then, by multiplication, we can select a 5-bit field of the de
Bruijn cycle, which will be a unique value for each multiplier. This can be mapped to
give the number of trailing 0’s by a table lookup. The algorithm follows. The de Bruijn
cycle used is

0000 0100 1101 0111 0110 0101 0001 1111.

It is in effect a cycle, because in use it has trailing 0’s beyond the 32 bits shown above,
which is effectively the same as wrapping to the beginning.

There are 33 possible values of ntz(x) and only 32 five-bit subsequences in the de
Bruijn cycle. Therefore, two words with different values of ntz(x) must map to the
same number by the table lookup. The words that conflict are zero and words that end
with a 1-bit. To resolve this, the code has a test for 0 and returns 32 in that case. A
branch-free way to resolve it, useful if your computer has predicate comparison
instructions, is to change the last statement to

return table[x >> 27] + 32*(x == 0);

To compare the two algorithms, Seal’s does not require the test for zero and it
allows the alternative of doing the multiplication with six elementary instructions. The
de Bruijn algorithm uses a smaller table. The de Bruijn cycle used in Figure 5–26,
discovered by Danny Dubé [Dubé], is a good one because multiplication by it can be

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p112equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p112equ02

Chapter 5. Counting Bits

done with eight elementary instructions. The constant is 0x04D7651F = (2047 · 5 · 256
+ 1) · 31, from which one can see the shifts, adds, and subtracts that do the job.

int ntz(unsigned x) {

 static char table[32] =
 { 0, 1, 2,24, 3,19, 6,25, 22, 4,20,10,16, 7,12,26,
 31,23,18, 5,21, 9,15,11, 30,17, 8,14,29,13,28,27};

 if (x == 0) return 32;
 x = (x & -x)*0x04D7651F;
 return table[x >> 27];
}

FIGURE 5–26. Number of trailing zeros using a de Bruijn cycle.

John Reiser [Reiser] observed that there is another way to map the 33 values of the
factor x & -x in Seal’s algorithm to a dense set of unique integers: divide and use the
remainder. The smallest divisor that has the necessary uniqueness property is 37. The
resulting code is shown in Figure 5–27, where table entries shown as u are unused.

int ntz(unsigned x) {

 static char table[37] = {32, 0, 1, 26, 2, 23, 27,
 u, 3, 16, 24, 30, 28, 11, u, 13, 4,
 7, 17, u, 25, 22, 31, 15, 29, 10, 12,
 6, u, 21, 14, 9, 5, 20, 8, 19, 18};

 x = (x & -x)%37;
 return table[x];
}

FIGURE 5–27. Number of trailing zeros, Reiser’s algorithm.

It is interesting to note that if the numbers x are uniformly distributed, then the
average number of trailing 0’s is, very nearly, 1.0. To see this, sum the products pini,
where pi is the probability that there are exactly ni trailing 0’s. That is,

To evaluate this sum, consider the following array:

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig26
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig27

Chapter 5. Counting Bits

The sum of each column is a term of the series for S. Hence S is the sum of all the
numbers in the array. The sum of the rows are

1/4 + 1/8 + 1/16 + 1/32+ ... = 1/2
1/8 + 1/16 + 1/32 + 1/64+ ... = 1/4
1/16 + 1/32 + 1/64 + 1/128 + ... = 1/8
...

and the sum of these is 1/2 + 1/4 + 1/8 + ... = 1. The absolute convergence of the
original series justifies the rearrangement.

Sometimes, a function similar to ntz(x) is wanted, but a 0 argument is a special
case, perhaps an error, that should be identified with a value of the function that’s
easily distinguished from the “normal” values of the function. For example, let us define
“the number of factors of 2 in x” to be

This can be calculated from

31 − nlz(x & − x).

Applications

[GLS1] points out some interesting applications of the number of trailing zeros function.
It has been called the “ruler function” because it gives the height of a tick mark on a
ruler that’s divided into halves, quarters, eighths, and so on.

It has an application in R. W. Gosper’s loop-detection algorithm, which will now be
described in some detail, because it is quite elegant and it does more than might at
first seem possible.

Suppose a sequence X0,X1,X2, ... is defined by Xn + 1 = f(Xn). If the range of f is
finite, the sequence is necessarily periodic. That is, it consists of a leader X0, X1,...,
Xμ–1 followed by a cycle Xμ, Xu+1,..., Xμ+λ−1 that repeats without limit (Xμ = Xμ+λ,
Xμ+ 1 = Xμ + λ + 1, and so on, where λ is the period of the cycle). Given the function f,
the loop-detection problem is to find the index μ of the first element that repeats, and
the period λ. Loop detection has applications in testing random number generators and
detecting a cycle in a linked list.

One could save all the values of the sequence as they are produced and compare
each new element with all the preceding ones. This would immediately show where the
second cycle starts. But algorithms exist that are much more efficient in space and

Chapter 5. Counting Bits

time.
Perhaps the simplest is due to R. W. Floyd [Knu2, sec. 3.1, prob. 6]. This algorithm

iterates the process

with x and y initialized to X0. After the nth step, x = Xn and y = X2n. These are
compared, and if equal, it is known that Xn and X2n are separated by an integral
multiple of the period λ—that is, 2n − n = n is a multiple of λ. Then μ can be
determined by regenerating the sequence from the beginning, comparing X0 to Xn,
then X1 to Xn + 1, and so on. Equality occurs when Xμ is compared to Xn+μ. Finally, λ
can be determined by regenerating more elements, comparing Xμ to Xμ + 1, Xμ+ 2,
This algorithm requires only a small and bounded amount of space, but it evaluates f
many times.

Gosper’s algorithm [HAK, item 132; Knu2, Answers to Exercises for Section 3.1,
exercise 7] finds the period λ, but not the starting point μ of the first cycle. Its main
feature is that it never backs up to reevaluate f, and it is quite economical in space and
time. It is not bounded in space; it requires a table of size log2(Λ) + 1, where Λ is the
largest possible period. This is not a lot of space; for example, if it is known a priori that
Λ ≤ 232, then 33 words suffice.

Gosper’s algorithm, coded in C, is shown in Figure 5–28. This C function is given the
function f being analyzed and a starting value X0. It returns lower and upper bounds
on μ, and the period λ. (Although Gosper’s algorithm cannot compute μ, it can compute
lower and upper bounds μl and μu such that μu − μl + 1 ≤ max(λ − 1, 1).) The
algorithm works by comparing Xn, for n = 1, 2, ..., to a subset of size log2n + 1 of
the elements of the sequence that precede Xn. The elements of the subset are the
closest preceding Xi such that i + 1 ends in a 1-bit (that is, i is the even number
preceding n), the closest preceding Xt such that i + 1 ends in exactly one 0-bit, the
closest preceding Xt such that i + 1 ends in exactly two 0-bits, and so on.

void ld_Gosper(int (*f)(int), int X0, int *mu_l,
 int*mu_u, int *lambda){
 int Xn, k, m, kmax, n, lgl;
 int T[33];

 T[0] = X0;
 Xn = X0;
 for (n = 1; ; n++) {
 Xn = f(Xn);
 kmax = 31 - nlz(n); // Floor(log2 n).
 for (k = 0; k <= kmax; k++) {
 if (Xn == T[k]) goto L;
 }
 T[ntz(n+1)] = Xn; // No match.
 }
L:
 // Compute m = max{i | i < n and ntz(i+1) = k}.

 m = ((((n >> k) - 1) | 1) << k) - 1;
 *lambda = n - m;

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#ch03lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images4.html#p05fig28

Chapter 5. Counting Bits

 lgl = 31 - nlz(*lambda - 1); // Ceil(log2 lambda) - 1.
 *mu_u = m; // Upper bound on mu.
 *mu_l = m - max(1, 1 << lgl) + 1;// Lower bound on mu.
}

FIGURE 5–28. Gosper’s loop-detection algorithm.

Thus, the comparisons proceed as follows:

It can be shown that the algorithm always terminates with n somewhere in the second
cycle—that is, with n < μ + 2λ. See [Knu2] for further details.

The ruler function reveals how to solve the Tower of Hanoi puzzle. Number the n
disks from 0 to n − 1. At each move k, as k goes from 1 to 2n − 1, move disk ntz(k)
the minimum permitted distance to the right, in a circular manner.

The ruler function can be used to generate a reflected binary Gray code (see
Section 13–1 on page 311). Start with an arbitrary n-bit word, and at each step k, as k
goes from 1 to 2n − 1, flip bit ntz(k).

Exercises

1. Code Dubé’s algorithm for the ntz function, expanding the multiplication.

2. Code the “right justify” function, , x ≠ 0, in three basic RISC
instructions.

3. Are the parallel prefix and suffix (with XOR) operations invertible? If so, how
would you compute the inverse functions?

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#ch13lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_311
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch05ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch05ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch05ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch05ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch05ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch05ans3

Chapter 6. Searching Words

Chapter 6. Searching Words

6–1 Find First 0-Byte
The need for this function stems mainly from the way character strings are represented
in the C language. They have no explicit length stored with them; instead, the end of
the string is denoted by an all-0 byte. To find the length of a string, a C program uses
the “strlen” (string length) function. This function searches the string, from left to right,
for the 0-byte, and returns the number of bytes scanned, not counting the 0-byte.

A fast implementation of “strlen” might load and test single bytes until a word
boundary is reached, and then load a word at a time into a register, and test the
register for the presence of a 0-byte. On big-endian machines, we want a function that
returns the index of the first 0-byte from the left. A convenient encoding is values from
0 to 3 denoting bytes 0 to 3, and a value of 4 denoting that there is no 0-byte in the
word. This is the value to add to the string length, as successive words are searched, if
the string length is initialized to 0. On little-endian machines, one wants the index of
the first 0-byte from the right end of the register, because little-endian machines
reverse the four bytes when a word is loaded into a register. Specifically, we are
interested in the following functions, where “00” denotes a 0-byte, “nn” denotes a
nonzero byte, and “xx” denotes a byte that may be 0 or nonzero.

Our first procedure for the find leftmost 0-byte function, shown in Figure 6–1 ,
simply tests each byte, in left-to-right order, and returns the result when the first 0-
byte is found.

int zbytel(unsigned x) {
 if ((x >> 24) == 0) return 0;
 else if ((x & 0x00FF0000) == 0) return 1;
 else if ((x & 0x0000FF00) == 0) return 2;
 else if ((x & 0x000000FF) == 0) return 3;
 else return 4;
}

FIGURE 6–1. Find leftmost 0-byte, simple sequence of tests.

This executes in two to 11 basic RISC instructions, 11 in the case that the word has
no 0-bytes (which is the important case for the “strlen” function). A very similar
program will handle the problem of finding the rightmost 0-byte.

Figure 6–2 shows a branch-free procedure for this function. The idea is to convert
each 0-byte to 0x80, and each nonzero byte to 0x00, and then use number of leading
zeros. This procedure executes in eight instructions, if the machine has the number of
leading zeros and nor instructions. Some similar tricks are described in [Lamp].

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images5.html#p06fig01

Chapter 6. Searching Words

int zbytel(unsigned x) {
 unsigned y;
 int n;
 // Original byte: 00 80 other
 y = (x & 0x7F7F7F7F)+ 0x7F7F7F7F; // 7F 7F 1xxxxxxx
 y = ~(y 1 x 1 0x7F7F7F7F); // 80 00 00000000
 n = nlz(y) >> 3; // n = 0 ... 4, 4 if x
 return n; // has no 0-byte.
}

FIGURE 6–2. Find leftmost 0-byte, branch-free code.

The position of the rightmost 0-byte is given by the number of trailing 0’s in the
final value of y computed above, divided by 8 (with fraction discarded). Using the
expression for computing the number of trailing 0’s by means of the number of leading
zeros instruction (see Section 5–4 , “Counting Trailing 0’s,” on page 107), this can be
computed by replacing the assignment to n in the procedure above with:

n = (32 - nlz(~y & (y - 1))) >> 3;

This is a 12-instruction solution, if the machine has nor and and not.
In most situations on PowerPC, incidentally, a procedure to find the rightmost 0-

byte would not be needed. Instead, the words can be loaded with the load word byte-
reverse instruction (lwbrx).

The procedure of Figure 6–2 is more valuable on a 64-bit machine than on a 32-bit
one, because on a 64-bit machine the procedure (with obvious modifications) requires
about the same number of instructions (seven or ten, depending upon how the
constant is generated), whereas the technique of Figure 6–1 requires 23 instructions
worst case.

If only a test for the presence of a 0-byte is wanted, then a branch on zero (or
nonzero) can be inserted just after the second assignment to y.

A method similar to that of Figure 6–2 , but for finding the rightmost 0-byte in a
word x (zbyter(x)), is [Mycro]:

y = (x - 0x01010101) & ~x & 0x80808080;
n = ntz(y) >> 3;

This executes in only five instructions exclusive of loading the constants if the machine
has the and not and number of trailing zeros instructions. It cannot be used to
compute zbytel(x), because of a problem with borrows. It would be most useful for
finding the first 0-byte in a character string on a little-endian machine, or to simply test
for a 0-byte (using only the assignment to y) on a machine of either endianness.

If the nlz instruction is not available, there does not seem to be any really good way
to compute the find first 0-byte function. Figure 6–3 shows a possibility (only the
executable part of the code is shown).

This executes in ten to 13 basic RISC instructions, ten in the all-nonzero case. Thus,
it is probably not as good as the code of Figure 6–1 , although it does have fewer
branch instructions. It does not scale very well to 64-bit machines, unfortunately.

There are other possibilities for avoiding the nlz function. The value of y computed
by the code of Figure 6–3 consists of four bytes, each of which is either 0x00 or 0x80.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images5.html#p06fig02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#ch05lev4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#ch05lev4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_107
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images5.html#p118equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images5.html#p118equ02

Chapter 6. Searching Words

The remainder after dividing such a number by 0x7F is the original value with the up-
to-four 1-bits moved and compressed to the four rightmost positions. Thus, the
remainder ranges from 0 to 15 and uniquely identifies the original number. For
example,

This value can be used to index a table, 16 bytes in size, to get the desired result.
Thus, the code beginning if (y == 0) can be replaced with

static char table[16] = {4, 3, 2, 2, 1, 1, 1, 1,
 0, 0, 0, 0, 0, 0, 0, 0};
return table[y%127];

where y is unsigned. The number 31 can be used in place of 127, but with a different
table.

 // Original byte: 00 80 other
y = (x & 0x7F7F7F7F) + 0x7F7F7F7F; // 7F 7F 1xxxxxxx
y = ~(y | x | 0x7F7F7F7F); // 80 00 00000000
 // These steps map:
if (y == 0) return 4; // 00000000 ==> 4,
else if (y > 0x0000FFFF) // 80xxxxxx ==> 0,
 return (y >> 31) ^ 1; // 0080xxxx ==> 1,
else // 000080xx ==> 2,
 return (y >> 15) ^ 3; // 00000080 ==> 3.

FIGURE 6–3. Find leftmost 0-byte, not using nlz.

These methods involving dividing by 127 or 31 are really just curiosities, because
the remainder function is apt to require 20 cycles or more, even if directly implemented
in hardware. However, below are two more efficient replacements for the code in
Figure 6–3 beginning with if (y == 0):

return table[hopu(y, 0x02040810) & 15];
return table[y*0x00204081 >> 28];

Here, hopu(a, b) denotes the high-order 32 bits of the unsigned product of a and b. In
the second line, we assume the usual HLL convention that the value of the
multiplication is the low-order 32 bits of the complete product. This might be a practical
method, if either the machine has a fast multiply or the multiplication by 0x204081 is
done by shift-and-add’s. It can be done in four such instructions, as suggested by

y (1 + 27 + 214 + 221) = y (1 + 27)(1 + 214).

Using this 4-cycle way to do the multiplication, the total time for the procedure comes
to 13 cycles (7 to compute y, plus 4 for the shift-and-add’s, plus 2 for the shift right of
28 and the table index), and of course it is branch-free.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images5.html#p119equ02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images5.html#p06fig03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images5.html#p120equ01

Chapter 6. Searching Words

These scale reasonably well to a 64-bit machine. For the “modulus” method, use

return table[y%511];

where table is of size 256, with values 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4,
... (i.e., table[i] = number of trailing 0’s in i).

For the multiplicative methods, use either
return table[hopu(y, 0x02040810 20408100) & 255]; or
return table[(y*0x00020408 10204081>>56];

where table is of size 256, with values 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3,
....

The multiplication by 0x20408 10204081 can be done with

which gives a 13-cycle solution.
All these variations using the table can, of course, implement the find rightmost 0-

byte function by simply changing the data in the table.
If the machine does not have the nor instruction, the not in the second assignment

to y in Figure 6–3 can be omitted, in the case of a 32-bit machine, by using one of the
three return statements given above, with table[i] = 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
2, 2, 3, 4. This scheme does not quite work on a 64-bit machine.

Here is an interesting variation on the procedure of Figure 6–2 , again aimed at
machines that do not have number of leading zeros. Let a, b, c, and d be 1-bit
variables for the predicates “the first byte of x is nonzero,” “the second byte of x is
nonzero,” and so on. Then,

zbytel(x) = a + ab + abc + abcd.

The multiplications can be done with and’s, leading to the procedure shown in Figure
6–4 (only the executable code is shown). This comes to 15 instructions on the basic
RISC, which is not particularly fast, but there is a certain amount of parallelism. On a
superscalar machine that can execute up to three arithmetic instructions in parallel,
provided they are independent, it comes to only ten cycles.

y = (x & 0x7F7F7F7F) + 0x7F7F7F7F;
y = y | x; // Leading 1 on nonzero bytes.

t1 = y >> 31; // tl = a.
t2 = (y >> 23) & tl; // t2 = ab.
t3 = (y >> 15) & t2; // t3 = abc.
t4 = (y >> 7) & t3; // t4 = abcd.
return t1 + t2 + t3 + t4;

FIGURE 6–4. Find leftmost 0-byte by evaluating a polynomial.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images5.html#p120equ03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images5.html#p06fig04

Chapter 6. Searching Words

A simple variation of this does the find rightmost 0-byte function, based on

zbyter(x) = abcd + bcd + cd + d.

(This requires one more and than the code of Figure 6–4 .)

Some Simple Generalizations

Functions zbytel and zbyter can be used to search for a byte equal to any particular
value, by first exclusive or’ing the argument x with a word consisting of the desired
value replicated in each byte position. For example, to search x for an ASCII blank
(0x20), search x 0x 20202020 for a 0-byte.

Similarly, to search for a byte position in which two words x and y are equal, search
x y for a 0-byte.

There is nothing special about byte boundaries in the code of Figure 6–2 and its
variants. For example, to search a word for a 0-value in any of the first four bits, the
next 12, or the last 16, use the code of Figure 6–2 with the mask replaced by
0x77FF7FFF [PHO]. (If a field length is 1, use a 0 in the mask at that position.)

Searching for a Value in a Given Range

The code of Figure 6–2 can easily be modified to search for a byte in the range 0 to
any specified value less than 128. To illustrate, the following code finds the index of the
leftmost byte having value from 0 to 9:

y = (x & 0x7F7F7F7F) + 0x76767676;
y = y | x;
y = y | 0x7F7F7F7F; // Bytes > 9 are 0xFF.
y = ~y; // Bytes > 9 are 0x00,
 // bytes <= 9 are 0x80.
n = nlz(y) >> 3;

More generally, suppose you want to find the leftmost byte in a word that is in the
range a to b, where the difference between a and b is less than 128. For example, the
uppercase letters encoded in ASCII range from 0x41 to 0x5A. To find the first
uppercase letter in a word, subtract 0x41414141 in such a way that the borrow does
not propagate across byte boundaries, and then use the above code to identify bytes
having value from 0 to 0x19 (0x5A – 0x41). Using the formulas for subtraction given in
Section 2–18, “Multibyte Add, Subtract, Absolute Value,” on page 40, with obvious
simplifications possible with y = 0x41414141, gives

d = (x | 0x80808080) - 0x41414141;
d = ~((x | 0x7F7F7F7F) ^ d);
y = (d & 0x7F7F7F7F) + 0x66666666;
y = y | d;
y = y | 0x7F7F7F7F; // Bytes not from 41–5A are FF.
y = ~y; // Bytes not from 41–5A are 00,
 // bytes from 41–5A are 80.
n = nlz(y) >> 3;

For some ranges of values, simpler code exists. For example, to find the first byte
whose value is 0x30 to 0x39 (a decimal digit encoded in ASCII), simply exclusive or the
input word with 0x30303030 and then use the code given above to search for a value
in the range 0 to 9. (This simplification is applicable when the upper and lower limits
have n high-order bits in common, and the lower limit ends with 8 – n 0’s.)

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images5.html#p122equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev18
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev18
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_40
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images5.html#p122equ02

Chapter 6. Searching Words

These techniques can be adapted to handle ranges of 128 or larger with no
additional instructions. For example, to find the index of the leftmost byte whose value
is in the range 0 to 137 (0x89), simply change the line y = y | x to y = y & x in the
code above for searching for a value from 0 to 9.

Similarly, changing the line y = y | d to y = y & d in the code for finding the
leftmost byte whose value is in the range 0x41 to 0x5A causes it to find the leftmost
byte whose value is in the range 0x41 to 0xDA.

6–2 Find First String of 1-Bits of a Given Length
The problem here is to search a word in a register for the first string of 1-bits of a
given length n or longer, and to return its position, with some special indication if no
such string exists. Variants are to return only the yes/no indication and to locate the
first string of exactly n 1-bits. This problem has application in disk-allocation programs,
particularly for disk compaction (rearranging data on a disk so that all blocks used to
store a file are contiguous). The problem was suggested to me by Albert Chang, who
pointed out that it is one of the uses for the number of leading zeros instruction.

We assume here that the number of leading zeros instruction, or a suitable
subroutine for that function, is available.

An algorithm that immediately comes to mind is to first count the number of leading
0’s and skip over them by shifting left by the number obtained. Then count the leading
1’s by inverting and counting leading 0’s. If this is of sufficient length, we are done.
Otherwise, shift left by the number obtained and repeat from the beginning. This
algorithm might be coded as shown below. If n consecutive 1-bits are found, it returns
a number from 0 to 31, giving the position of the leftmost 1-bit in the leftmost such
sequence. Otherwise, it returns 32 as a “not found” indication.

int ffstr1(unsigned x, int n) {
 int k, p;

 p = 0; // Initialize position to return.
 while (x != 0) {
 k = nlz(x); // Skip over initial 0's
 x = x << k; // (if any).
 p = p + k;
 k = nlz(~x); // Count first/next group of 1's.
 if (k >= n) // If enough,
 return p; // return.
 x = x << k; // Not enough 1's, skip over
 p = p + k; // them.
 }
 return 32;
}

This algorithm is reasonable if it is expected that the loop will not be executed very
many times—for example, if it is expected that x will have long sequences of 1’s and of
0’s. This might very well be the expectation in the disk-allocation application. Its worst-
case execution time, however, is not very good; for example, about 178 full RISC
instructions executed for x = 0x55555555 and n ≥ 2.

An algorithm that is better in worst-case execution time is based on a sequence of
shift left and and instructions. To see how this works, consider searching for a string of
eight or more consecutive 1-bits in a 32-bit word x. This might be done as follows:

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images5.html#p123equ01

Chapter 6. Searching Words

After the first assignment, the 1’s in x indicate the starting positions of strings of
length 2. After the second assignment, the 1’s in x indicate the starting positions of
strings of length 4 (a string of length 2 followed by another string of length 2). After
the third assignment, the 1’s in x indicate the starting positions of strings of length 8.
Executing number of leading zeros on this word gives the position of the first string of
length 8 (or more), or 32 if none exists.

To develop an algorithm that works for any length n from 1 to 32, we will look at
this a little differently. First, observe that the above three assignments can be done in
any order. Reverse order will be more convenient. To illustrate the general method,
consider the case n = 10:

The first statement shifts by n/2. After executing it, the problem is reduced to
finding a string of five consecutive 1-bits in x1. This can be done by shifting left by

5/2 = 2, and’ing, and searching the result for a string of length 3 (5 – 2). The last
two statements identify where the strings of length 3 are in x2. The sum of the shift
amounts is always n– 1. The algorithm is shown in Figure 6–5 . The execution time
ranges from 3 to 36 full RISC instructions, as n ranges from 1 to 32.

int ffstr1(unsigned x, int n) {
 int s;

 while (n > 1) {
 s = n >> 1;
 x = x & (x >> s);
 n = n − s;
 }
 return nlz(x);
}

FIGURE 6–5. Find first string of n 1’s, shift-and-and sequence.

If n is often moderately large, it is not unreasonable to unroll this loop by repeating
the loop body five times and omitting the test n > 1. (Five is always sufficient for a 32-
bit machine.) This gives a branch-free algorithm that runs in a constant time of 20
instructions executed (the last assignment to n can be omitted). Although for small
values of n, the three assignments are executed more than necessary, the result is
unchanged by the extra steps, because variable n sticks at the value 1, and for this

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images5.html#p06fig05

Chapter 6. Searching Words

value the three steps have no effect on x or n. The unrolled version is faster than the
looping version for n ≥ 5, in terms of number of instructions executed.

A string of exactly n 1-bits can be found in six more instructions (four if and not is
available). The quantity x computed by the algorithm of Figure 6–5 has 1-bits wherever
a string of length n or more 1-bits begins. Hence, using the final value of x computed
by that algorithm, the expression

contains a 1-bit wherever the final x contains an isolated 1-bit, which is to say
wherever the original x began a string of exactly n 1-bits.

The algorithm is also easily adapted to finding strings of length n that begin at
certain locations. For example, to find strings that begin at byte boundaries, simply and
the final x with 0x80808080.

It can be used to find strings of 0-bits either by complementing x at the start, or by
changing the and’s to or’s and complementing x just before invoking nlz. For example,
below is an algorithm for finding the first (leftmost) 0-byte (see Section 6–1 , “Find First
0-Byte,” on page 117, for a precise definition of this problem).

This executes in 12 instructions on the full RISC (not as good as the algorithm of Figure
6–2 on page 118, which executes in eight instructions).

6–3 Find Longest String of 1-Bits
The nicely concise function shown in Figure 6–6 returns the length of the longest string
of 1-bits in x [Hsieh].

int maxstr1(unsigned x) {
 int k;
 for (k = 0; x ! = 0; k++) x = x & 2*x;
 return k;
}

FIGURE 6–6. Find length of longest string of 1’s.

It executes in 4n + 3 instructions on the basic RISC, where n is the length of the
longest string of 1’s, or 131 instructions in the worst case.

To reduce the worst-case execution time, a “logarithmic” version is possible. It
works by propagating 0’s one, two, four, eight, and 16 positions to the left, stopping at
the last nonzero word, and then backtracking to find the length of the longest

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images5.html#p06fig06

Chapter 6. Searching Words

contiguous string of 1’s.
For example, suppose

 x = 0011 1111 1111 0011 1111 0011 1111 1000

Then

 x2 = 0011 1111 1110 0011 1110 0011 1111 0000
 x4 = 0011 1111 1000 0011 1000 0011 1100 0000
 x8 = 0011 1000 0000 0000 0000 0000 0000 0000
x16 = all 0's

In this case, the last nonzero word is x8. Observe that each 1-bit in x8 indicates the
leftmost position of a string of eight 1’s. Thus, the longest string of 1’s begins at the
leftmost position of a 1-bit in x8, bit position 29 in the example. To test for a string of
length 12, one can test the bit at position 21 (29 – 8) in x4. Since that is 0, there is no
string of length 12. To test for a string of length 10, one can test the bit at position 21
in x2. Since that is 1, position 29 is the start of a string of length 10 (or more). Last, to
test for a string of length 11, one can test the bit at position 19 (21 – 2) in x. Because
that is 0, the longest string is of length 10, and it starts at position 29.

This scheme is coded in Figure 6–7 , except the code uses only two variables, x and
y, instead of the five variables x, x2, x4, x8, and x16. This code finds both the length
and position of the longest string of 1’s, with the position being measured from the left
end of the string. The scheme does not work if x is 0 or all 1’s. These are special-
cased, with the latter possibility being handled in a place that is not executed
frequently.

int fmaxstr1(unsigned x, int *apos) {
 unsigned y;
 int s;

 if (x == 0) {*apos = 32; return 0;}
 y = x & (x << 1);
 if (y == 0) {s = 1; goto L1;}
 x = y & (y << 2);
 if (x == 0) {s = 2; x = y; goto L2;}
 y = x & (x << 4);
 if (y == 0) {s = 4; goto L4;}
 x = y & (y << 8);
 if (x == 0) {s = 8; x = y; goto L8;}
 if (x == 0xFFFF8000) {*apos = 0; return 32;}
 s = 16;

L16: y = x & (x << 8);
 if (y != 0) {s = s + 8; x = y;}
L8: y = x & (x << 4);
 if (y != 0) {s = s + 4; x = y;}
L4: y = x & (x << 2);
 if (y != 0) {s = s + 2; x = y;}
L2: y = x & (x << 1);
 if (y != 0) {s = s + 1; x = y;}
L1: *apos = nlz(x);
 return s;
}

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images5.html#p126equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images5.html#p126equ02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images5.html#p06fig07

Chapter 6. Searching Words

FIGURE 6–7. Find length and position of longest string of 1’s.

The worst-case execution time on the basic RISC is 39 instructions, plus those
required for the nlz function. If only the length of the longest string of 1’s is wanted,
there is no significant savings in execution time, except for omitting the use of the nlz
function.

6–4 Find Shortest String of 1-Bits
It is more difficult to find the shortest string of 1-bits in a word. One way to do it is to
mark the beginnings of all strings of 1’s in a word b and the ends of all such strings in
a word e. Then, if b & e is nonzero, the shortest string is of length 1. Otherwise, shift e
left one position and test again. For example, if

x = 0011 1111 1111 0011 1111 0011 1111 1000

then

b = 0010 0000 0000 0010 0000 0010 0000 0000
e = 0000 0000 0001 0000 0001 0000 0000 1000

After shifting e left five places, b & e is nonzero. This means that the shortest string of
1-bits is of length 6.

This idea is embodied in the code shown in Figure 6–8 . As in the preceding
material, the position of the string is measured from the left, and if there are two or
more minimal length strings of equal length, this function finds the leftmost one. For
example, if x = 0x00FF0FF0 it returns length 8, position 8.

int fminstr1(unsigned x, int *apos) {
 int k;
 unsigned b, e; // Beginnings, ends.

 if (x == 0) {*apos = 32; return 0;}
 b = ~(x >> 1) & x; // 0–1 transitions.
 e = x & ~(x << 1); // 1–0 transitions.
 for (k = 1; (b & e) == 0; k++)
 e = e << 1;
 *apos = nlz(b & e);
 return k;
}

FIGURE 6–8. Find length and position of shortest string of 1’s.

The function executes in 8 + 4 n instructions on the basic RISC (without andc), plus
the time for the nlz function, for n ≥ 2, where n is the length of the shortest
contiguous string of 1’s in x.

Perhaps the ultimate problem in this class is to find the length and position of the
shortest string of 1’s in x that is at least as long as a given integer n> 0. In terms of
the storage allocation problem, this is a “best fit” algorithm. This can be done by first
left-propagating the 0’s in x by n − 1 positions and then finding the shortest string of
1’s in the revised x. See the exercises.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images5.html#p127equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images5.html#p127equ02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images5.html#p06fig08

Chapter 6. Searching Words

Exercises

1. Code an elaboration of Hsieh’s algorithm that will find both the length and
position of the longest string of 1’s in a word x. You may use the nlz function.

2. Code a function for finding the length and position of the shortest string of 1’s in
a word x that is at least as long as a given integer n.

3. Another way to find the shortest string of 1’s in a word x is to successively turn
off the rightmost string of 1’s in x and observe the change in population count
at each step. Code a function for the full RISC that uses this idea and also finds
the position of a shortest string of 1’s.

4. For “completely random” 32-bit words x (each bit independently 0 or 1 with
probability 0.5), what is the average number of strings of 1’s in x? The answer
determines the average execution time of the function of exercise 3, for such
input data.

5. Again, for “completely random” 32-bit words x, what is the average length of
the shortest contiguous string of 1’s in x? The answer determines the average
execution time of function fminstr1 in Figure 6–8 for such input data. Compute
this with a Monte Carlo or exhaustive enumeration program.

6. Of the 2n binary words of length n, for how many is their shortest contained
string of 1’s of length 1? That is, how many n-bit words begin with 10, or end
with 01, or contain the sequence 010? Find a closed-form solution or a
recursion, not an exhaustive enumeration program.

7. Similarly, of the 2n binary words of length n, for how many is their shortest
contained string of 1’s of length 2?

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch06ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch06ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch06ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch06ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch06ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch06ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch06ans4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch06ans4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch06ans5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch06ans5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch06ans6
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch06ans6
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch06ans7
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch06ans7

Chapter 7. Rearranging Bits and Bytes

Chapter 7. Rearranging Bits and Bytes

7–1 Reversing Bits and Bytes
By “reversing bits” we mean to reflect the contents of a register about the middle so
that, for example,

rev(0x01234567) = 0xE6A2C480.

By “reversing bytes” we mean a similar reflection of the four bytes of a register. Byte
reversal is a necessary operation to convert data between the “little-endian” format
used by DEC and Intel, and the “big-endian” format used by most other manufacturers.

Bit reversal can be done quite efficiently by interchanging adjacent single bits, then
interchanging adjacent 2-bit fields, and so on, as shown below [Aus1]. These five
assignment statements can be executed in any order. This is the same algorithm as the
first population count algorithm of Section 5–1 , but with addition replaced with
swapping.

x = (x & 0x55555555) << 1 | (x & 0xAAAAAAAA) >> 1;
x = (x & 0x33333333) << 2 | (x & 0xCCCCCCCC) >> 2;
x = (x & 0x0F0F0F0F) << 4 | (x & 0xF0F0F0F0) >> 4;
x = (x & 0x00FF00FF) << 8 | (x & 0xFF00FF00) >> 8;
x = (x & 0x0000FFFF) << 16 | (x & 0xFFFF0000) >> 16;

A small improvement may result on some machines by using fewer distinct large
constants and doing the last two assignments in a more straightforward way, as shown
in Figure 7–1 (30 basic RISC instructions, branch-free).

unsigned rev(unsigned x) {
 x = (x & 0x55555555) << 1 | (x >> 1) & 0x55555555;
 x = (x & 0x33333333) << 2 | (x >> 2) & 0x33333333;
 x = (x & 0x0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F;
 x = (x << 24) | ((x & 0xFF00) << 8) |
 ((x >> 8) & 0xFF00) | (x >> 24);
 return x;
}

FIGURE 7–1. Reversing bits.

The last assignment to x in this code does byte reversal in nine basic RISC
instructions. If the machine has rotate shifts, however, this can be done in seven
instructions with

PowerPC can do the byte-reversal operation in only three instructions [Hay1]: a rotate
left of 8, which positions two of the bytes, followed by two “rlwimi” (rotate left word
immediate then mask insert) instructions.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#ch05lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p129equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p07fig01

Chapter 7. Rearranging Bits and Bytes

The next algorithm, by Christopher Strachey [Strach 1961], is old by computer
standards, but it is instructive. It reverses the rightmost 16 bits of a word, assuming the
leftmost 16 bits are clear at the start, and places the reversed halfword in the left half
of the register.

Its operation is based on the number of bit positions that each bit must move. The
16 bits, taken from left to right, must move 1, 3, 5, ..., 31 positions. The bits that must
move 16 or more positions are moved first, then those that must move eight or more
positions, and so forth. The operation is illustrated below, where each letter denotes a
single bit, and a period denotes a “don’t care” bit.

0000 0000 0000 0000 abcd efgh ijkl mnop Given
0000 0000 ijkl mnop abcd efgh After shl 16
0000 mnop ijkl efgh abcd After shl 8
00op mnkl ijgh efcd ab.. After shl 4
0pon mlkj ihgf edcb a... After shl 2
ponm lkji hgfe dcba After shl 1

Straightforward code consists of 16 basic RISC instructions, plus 12 to load the
constants:

x = x | ((x & 0x000000FF) << 16);
x = (x & 0xF0F0F0F0) | ((x & 0x0F0F0F0F) << 8);
x = (x & 0xCCCCCCCC) | ((x & 0x33333333) << 4);
x = (x & 0xAAAAAAAA) | ((x & 0x55555555) << 2);
x = x << 1;

Complementation can be used to reduce the number of distinct masks. By using
more irregular masks, the rightmost 16 bits can be preserved.

If rotate shifts are available, Strachey’s idea can be used to reverse a 32-bit word.
The idea is to consider how many bit positions each bit must move rotationally to the
left to get to its final position. Taking the bits from left to right, the shift amounts are
1, 3, 5, ..., 31, 1, 3, 5, ..., 31 (no bit moves an even number of positions). The
algorithm first rotate-moves those bits that must move 16 or more positions, then
those that must move eight or more positions, and so forth, and finally those that must
move one position (which is all of the bits, because all move amounts are odd). This
scheme is shown below, for reversing a 32-bit word x. Function shlr(x, y) rotates x
left y positions.

x = shlr(x & 0x00FF00FF, 16) | x & ~0x00FF00FF;
x = shlr(x & 0x0F0F0F0F, 8) | x & ~0x0F0F0F0F;
x = shlr(x & 0x33333333, 4) | x & ~0x33333333;
x = shlr(x & 0x55555555, 2) | x & ~0x55555555;
x = shlr(x, 1);

The code uses and with complement to avoid loading some masks. If your machine
does not have that instruction, it can be avoided by rewriting the first line of code as

x = shlr(x, 16) & 0x00FF00FF | x & ~0x00FF00FF;

which is a MUX operation, and using the identity

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p130equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p130equ02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p130equ03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p131equ01

Chapter 7. Rearranging Bits and Bytes

to obtain

x = ((shlr(x, 16) ^ x) & 0x00FF00FF) ^ x;

and similarly for the other lines that have and with complement.
A slightly better way for many machines, in that it has a little instruction-level

parallelism, is to use the identity [Karv]

and common the and expression. This gives the function shown in Figure 7–2 (17
instructions, plus eight to load constants, or 25 in all).

unsigned rev(unsigned x) {
 unsigned t;
 t = x & 0x00FF00FF; x = shlr(t, 16) | t ^ x;
 t = x & 0x0F0F0F0F; x = shlr(t, 8) | t ^ x;
 t = x & 0x33333333; x = shlr(t, 4) | t ^ x;
 t = x & 0x55555555; x = shlr(t, 2) | t ^ x;
 x = shlr(x, 1);
 return x;
}

FIGURE 7–2. Reversing bits with rotate shifts.

It is perhaps worth noting that the constants 0x00FF00FF, 0x0F0F0F0F, and so on
can be generated one from another as shown below. This is not useful for 32-bit
machines (it may even be harmful by reducing parallelism), because 32-bit RISC
machines generally can load the constants in two instructions. But it might be useful
for a 64-bit machine, for which it is illustrated.

Another way to reverse bits is to break the word up into three groups of bits, and
swap the leftmost and rightmost groups, leaving the center group in place [Baum]. For
a 27-bit word, this works as illustrated below.

012345678 9abcdefgh ijklmnopq The given 27-bit word
ijklmnopq 9abcdefgh 012345678 First ternary swap
opqlmnijk fghcde9ab 678345012 Second ternary swap
qponmlkji hgfedcba9 876543210 Third ternary swap

Straightforward code for this follows. If run on a 32-bit machine, it reverses bits 0
to 26, placing the result in bit positions 0 to 26, and clearing bits 27 to 31.

x = (x & 0x000001FF) << 18 | (x & 0x0003FE00) |

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p131equ03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p07fig02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p132equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p132equ02

Chapter 7. Rearranging Bits and Bytes

 (x >> 18) & 0x000001FF;
x = (x & 0x001C0E07) << 6 | (x & 0x00E07038) |
 (x >> 6) & 0x001C0E07;
x = (x & 0x01249249) << 2 | (x & 0x02492492) |
 (x >> 2) & 0x01249249;

This amounts to 21 basic RISC instructions, plus 10 to load the constants, or 31 in all.
In comparison, the code of Figure 7–1 is 24 basic RISC instructions, plus six to load
constants, plus a shift right of 5 to right-justify the result, or 31 in all. Thus, the ternary
method is equal or superior when there are 27 or fewer bits to be reversed.

The next function, by Donald E. Knuth [Knu8], is interesting because it reverses a
32-bit word with only four stages, and the shifting and masking steps are unexpectedly
irregular. It uses one rotate shift and three ternary swaps. It works as follows:

01234567 89abcdef ghijklmn opqrstuv Given
fghijklm nopqrstu v0123456 789abcde Rotate left 15
pqrstuvm nofghijk labcde56 78901234 10-swap
tuvspqrm nojklifg hebcda96 78541230 4-swap
vutsrqpo mnlkjihg fedcba98 76543210 2-swap

Straightforward code is shown below.

x = shlr(x, 15); // Rotateleft 15.
x = (x & 0x003F801F) << 10 | (x & 0x01C003E0) |
 (x >> 10) & 0x003F801F;
x = (x & 0x0E038421) << 4 | (x & 0x11C439CE) |
 (x >> 4) & 0x0E038421;
x = (x & 0x22488842) << 2 | (x & 0x549556B5) |
 (x >> 2) & 0x22488842;

An improvement in operation count, at the expense of parallelism, results from
rewriting

x = (x & M1) << s | (x & M2) | (x >> s) & M1;

where M2 is ~(M1 | (M1 << s)), as:

t = (x ^ (x >> s)) & M1; x = (t | (t << s)) ^ x;

This results in the code in Figure 7–3 (19 full RISC instructions, plus six to load
constants, or 25 in all).

unsigned rev(unsigned x) {
 unsigned t;

 x = shlr(x, 15); // Rotateleft 15.
 t = (x ^ (x>>10)) & 0x003F801F; x = (t | (t<<10)) ^ x;
 t = (x ^ (x>> 4)) & 0x0E038421; x = (t | (t<< 4)) ^ x;
 t = (x ^ (x>> 2)) & 0x22488842; x = (t | (t<< 2)) ^ x;
 return x;
}

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p132equ03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p132equ04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p133equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p133equ03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p07fig03

Chapter 7. Rearranging Bits and Bytes

FIGURE 7–3. Reversing bits, Knuth’s algorithm.

Although Knuth’s algorithm does not beat the algorithm shown in Figure 7–2 for
reversing a 32-bit quantity with rotate shifts allowed (17 instructions, plus eight to load
constants), Knuth’s code uses only one rotate shift instruction. If it is coded as

x = (x << 15) | (x >> 17); // Rotate left 15.

then Knuth’s algorithm is 21 instructions, plus six to load constants, which is the best
found by these measures for rotating a 32-bit word using only basic RISC instructions.
This makes one wonder if there is a simple way to predict the number of shifts and
logical operations required to reverse a word of a given length.

Can Knuth’s algorithm be extended to reversing 64 bits on a 64-bit machine? Yes,
there is a simple way and a way that is more difficult to work out. The simple way is to
first swap the two halves of the 64-bit register, and then apply the 32-bit version of
Knuth’s algorithm to both halves, in parallel. The resulting code is shown in Figure 7–4 .
It is 24 operations, if the swap (rotate 32) counts as one.

unsigned long long rev(unsigned long long x) {
 unsigned long long t;

 x = (x << 32) | (x >> 32); // Swap register halves.
 x = (x & 0x0001FFFF0001FFFFLL) << 15 | // Rotate left
 (x & 0xFFFE0000FFFE0000LL) >> 17; // 15.
 t = (x ^ (x >> 10)) & 0x003F801F003F801FLL;
 x = (t | (t << 10)) ^ x;
 t = (x ^ (x >> 4)) & 0x0E0384210E038421LL;
 x = (t | (t << 4)) ^ x;
 t = (x ^ (x >> 2)) & 0x2248884222488842LL;
 x = (t | (t << 2)) ^ x;
 return x;
}

FIGURE 7–4. Knuth’s algorithm applied to 64 bits.

The other way is to find shift amounts and masks analogous to those used in
Knuth’s 32-bit reversal algorithm. This is shown below. It is 25 operations, if the rotate
left shift of 31 positions counts as one operation.

unsigned long long rev(unsigned long long x) {
 unsigned long long t;

 x = (x << 31) | (x >> 33); // I.e., shlr(x, 31).
 t = (x ^ (x >> 20)) & 0x00000FFF800007FFLL;
 x = (t | (t << 20)) ^ x;
 t = (x ^ (x >> 8)) & 0x00F8000F80700807LL;
 x = (t | (t << 8)) ^ x;
 t = (x ^ (x >> 4)) & 0x0808708080807008LL;
 x = (t | (t << 4)) ^ x;
 t = (x ^ (x >> 2)) & 0x1111111111111111LL;
 x = (t | (t << 2)) ^ x;
 return x;
}

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p133equ04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p07fig04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p134equ01

Chapter 7. Rearranging Bits and Bytes

Bit reversal can be aided by table lookup. The code that follows reverses a byte at a
time, using a 256-byte table, and accumulates in reverse order the four bytes selected
from the table. If the loop is strung out, this amounts to 13 basic RISC instructions,
plus four loads, so it could be a winner on some machines.

unsigned rev(unsigned x) {
 static unsigned char table[256] = {0x00, 0x80, 0x40,
 0xC0, 0x20, 0xA0, 0x60, 0xE0, ..., 0xBF, 0x7F, 0xFF};
 int i;
 unsigned r;

 r = 0;
 for (i = 3; i >= 0; i--) {
 r = (r << 8) + table[x & 0xFF];
 x = x >> 8;
 }
 return r;
}

Generalized Bit Reversal

[GLS1] suggests that the following sort of generalization of bit reversal, which he calls
“flip,” is a good candidate to consider for a computer’s instruction set:

if (k & 1) x = (x & 0x55555555) << 1 | (x & 0xAAAAAAAA) >> 1;
if (k & 2) x = (x & 0x33333333) << 2 | (x & 0xCCCCCCCC) >> 2;
if (k & 4) x = (x & 0x0F0F0F0F) << 4 | (x & 0xF0F0F0F0) >> 4;
if (k & 8) x = (x & 0x00FF00FF) << 8 | (x & 0xFF00FF00) >> 8;
if (k & 16) x = (x & 0x0000FFFF) << 16 | (x & 0xFFFF0000) >> 16;

(The last two and operations can be omitted.) For k = 31, this operation reverses the
bits in a word. For k = 24, it reverses the bytes in a word. For k = 7, it reverses the
bits in each byte, without changing the positions of the bytes. For k = 16, it swaps the
left and right halfwords of a word, and so on. In general, it moves the bit at position m
to position m k. It can be implemented in hardware very similarly to the way a rotate
shifter is usually implemented (five stages of MUX’s, with each stage controlled by a bit
of the shift amount k).

Bit-Reversing Novelties

Item 167 in [HAK] contains rather esoteric expressions for reversing 6-, 7-, and 8-bit
integers. Although these expressions are designed for a 36-bit machine, the one for
reversing a 6-bit integer works on a 32-bit machine, and those for 7- and 8-bit integers
work on a 64-bit machine. These expressions are as follows:

The result of all these is a “clean” integer—right-adjusted with no unused high-order

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p134equ02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p135equ01

Chapter 7. Rearranging Bits and Bytes

bits set.
In all these cases the remu function can instead be rem or mod, because its

arguments are positive. The remainder function is simply summing the digits of a base-
256 or base-1024 number, much like casting out nines. Hence, it can be replaced with
a multiply and a shift right. For example, the 6-bit formula has the following alternative
on a 32-bit machine (the multiplication must be modulo 232):

These formulas are limited in their utility, because they involve a remaindering
operation (20 cycles or more) and/or some multiplications, as well as loading of large
constants. The formula immediately above requires ten basic RISC instructions, two of
which are multiply’s, which amounts to about 20 cycles on a present-day RISC. On the
other hand, an adaptation of the code of Figure 7–1 to reverse 6-bit integers requires
about 15 instructions, and probably about 9 to 15 cycles, depending on the amount of
instruction-level parallelism in the machine. These techniques, however, do give
compact code. Below are a few more techniques that might possibly be useful, all for a
32-bit machine. They involve a sort of double application of the idea from [HAK], to
extend the technique to 8- and 9-bit integers on a 32-bit machine.

The following is a formula for reversing an 8-bit integer:

Here the remu cannot be changed to a multiply and shift. (You have to work these out,
and look at the bit patterns, to see why.)

Here is a similar formula for reversing an 8-bit integer, which is interesting because
it can be simplified quite a bit:

The simplifications are that the second product is just a shift left of the first product,
the last mask can be generated from the second with just one instruction (shift), and
the remainder can be replaced by a multiply and shift. It simplifies to 14 basic RISC
instructions, two of which are multiply’s:

Chapter 7. Rearranging Bits and Bytes

The following is a formula for reversing a 9-bit integer:

The second multiplication can be avoided, because the product is equal to the first
product shifted right six positions. The last mask is equal to the second mask shifted
right eight positions. With these simplifications, this requires 12 basic RISC instructions,
including the one multiply and one remainder. The remainder operation must be
unsigned, and it cannot be changed to a multiply and shift.

The reader who studies these marvels will be able to devise similar code for other
bit-permuting operations. As a simple (and artificial) example, suppose it is desired to
extract every other bit from an 8-bit quantity and compress the four bits to the right.
That is, the desired transformation is

0000 0000 0000 0000 0000 0000 abcd efgh ==>
0000 0000 0000 0000 0000 0000 0000 bdfh

This can be computed as follows:

On most machines, the most practical way to do all these operations is by indexing
into a table of 1-byte (or 9-bit) integers.

Incrementing a Reversed Integer

The Fast Fourier Transform (FFT) algorithm employs an integer i and its bit reversal
rev(i) in a loop in which i is incremented by 1 [PuBr]. Straightforward coding would
increment i and then compute rev(i) on each loop iteration. For small integers,
computing rev(i) by table lookup is fast and practical. For large integers, however, table
lookup is not practical and, as we have seen, computing rev(i) requires some 29
instructions.

If table lookup cannot be used, it is more efficient to maintain i in both normal and
bit-reversed forms, incrementing them both on each loop iteration. This raises the
question of how best to increment an integer that is in a register in reversed form. To

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p137equ01

Chapter 7. Rearranging Bits and Bytes

illustrate, on a 4-bit machine we wish to successively step through the values (in
hexadecimal)

0, 8, 4, C, 2, A, 6, E, 1, 9, 5, D, 3, B, 7, F.

In the FFT algorithm, i and its reversal are both some specific number of bits in
length, almost certainly less than 32, and they are both right-justified in the register.
However, we assume here that i is a 32-bit integer. After adding 1 to the reversed 32-
bit integer, a shift right of the appropriate number of bits will make the result usable by
the FFT algorithm (both i and rev(i) are used to index an array in memory).

The straightforward way to increment a reversed integer is to scan from the left for
the first 0-bit, set it to 1, and set all bits to the left of it (if any) to 0’s. One way to
code this is

unsigned x, m;

m = 0x80000000;
x = x ^ m;
if ((int)x >= 0) {
 do {
 m = m >> 1;
 x = x ^ m;
 } while (x < m);
}

This executes in three basic RISC instructions if x begins with a 0-bit, and four
additional instructions for each loop iteration. Because x begins with a 0-bit half the
time, with 10 (binary) one-fourth of the time, and so on, the average number of
instructions executed is approximately

In the second line we added and subtracted 1, with the first 1 in the form 1/2 +
1/4 + 1/8 + 1/16 + This makes the series similar to the one analyzed on page 113.
The number of instructions executed in the worst case, however, is quite large (131).

If number of leading zeros is available, adding 1 to a reversed integer can be done
as follows:

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p137equ03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p138equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_113

Chapter 7. Rearranging Bits and Bytes

Either method requires five full RISC instructions and, to properly wrap around from
0xFFFFFFFF to 0, requires that the shifts be modulo 64. (These formulas fail in this
respect on the Intel x86 machines, because the shifts are modulo 32.)

The rather puzzling one-liner below [Möbi] increments a reversed integer in six
basic RISC instructions. It is free of branches and loads but includes an integer division
operation. It works for integers of length up to that of the word size of the machine,
less 1.

To use this, both the non-reversed integer i and its reversal revi must be available.
The variable m is the modulus; if we are dealing with n-bit integers, then m = 2n.
Applying the formula gives the next value of the reversed integer. The non-reversed
integer i would be incremented separately. The reversed integer is incremented “in
place”; that is, it is not shifted to the high-order end of the register, as in the two
preceding methods.

A variation is

which executes in five instructions if the machine has and not, and if m is a constant so
that the calculation of m / 2 does not count. It works for integers of length up to that
of the word size of the machine. (For full word-size integers, use 0 for the first
occurrence of m in the formula, and 2n-1 for m / 2.)

7–2 Shuffling Bits
Another important permutation of the bits of a word is the “perfect shuffle” operation,
which has applications in cryptography. There are two varieties, called the “outer” and
“inner” perfect shuffles. They both interleave the bits in the two halves of a word in a
manner similar to a perfect shuffle of a deck of 32 cards, but they differ in which card
is allowed to fall first. In the outer perfect shuffle, the outer (end) bits remain in the
outer positions, and in the inner perfect shuffle, bit 15 moves to the left end of the
word (position 31). If the 32-bit word is (where each letter denotes a single bit)

abcd efgh ijkl mnop ABCD EFGH IJKL MNOP,

then after the outer perfect shuffle it is

aAbB cCdD eEfF gGhH iIjJ kKlL mMnN oOpP,

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p139pro01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p139pro02

Chapter 7. Rearranging Bits and Bytes

and after the inner perfect shuffle it is

AaBb CcDd EeFf GgHh IiJj KkLl MmNn OoPp.

Assume the word size W is a power of 2. Then the outer perfect shuffle operation
can be accomplished with basic RISC instructions in log2(W / 2) steps, where each step
swaps the second and third quartiles of successively smaller pieces [GLS1]. That is, a
32-bit word is transformed as follows:

abcd efgh ijkl mnop ABCD EFGH IJKL MNOP
abcd efgh ABCD EFGH ijkl mnop IJKL MNOP
abcd ABCD efgh EFGH ijkl IJKL mnop MNOP
abAB cdCD efEF ghGH ijIJ klKL mnMN opOP
aAbB cCdD eEfF gGhH iIjJ kKlL mMnN oOpP

Straightforward code for this is

x = (x & 0x0000FF00) << 8 | (x >> 8) & 0x0000FF00 | x &
0xFF0000FF;
x = (x & 0x00F000F0) << 4 | (x >> 4) & 0x00F000F0 | x &
0xF00FF00F;
x = (x & 0x0C0C0C0C) << 2 | (x >> 2) & 0x0C0C0C0C | x &
0xC3C3C3C3;
x = (x & 0x22222222) << 1 | (x >> 1) & 0x22222222 | x &
0x99999999;

which requires 42 basic RISC instructions. This can be reduced to 30 instructions,
although at an increase from 17 to 21 cycles on a machine with unlimited instruction-
level parallelism, by using the exclusive or method of exchanging two fields of a
register (described on page 47). All quantities are unsigned:

t = (x ^ (x >> 8)) & 0x0000FF00; x = x ^ t ^ (t << 8);
t = (x ^ (x >> 4)) & 0x00F000F0; x = x ^ t ^ (t << 4);
t = (x ^ (x >> 2)) & 0x0C0C0C0C; x = x ^ t ^ (t << 2);
t = (x ^ (x >> 1)) & 0x22222222; x = x ^ t ^ (t << 1);

The inverse operation, the outer unshuffle, is easily accomplished by performing the
swaps in reverse order:

t = (x ^ (x >> 1)) & 0x22222222; x = x ^ t ^ (t << 1);
t = (x ^ (x >> 2)) & 0x0C0C0C0C; x = x ^ t ^ (t << 2);
t = (x ^ (x >> 4)) & 0x00F000F0; x = x ^ t ^ (t << 4);
t = (x ^ (x >> 8)) & 0x0000FF00; x = x ^ t ^ (t << 8);

Using only the last two steps of either of the above two shuffle sequences shuffles
the bits of each byte separately. Using only the last three steps shuffles the bits of each
halfword separately, and so on. Similar remarks apply to unshuffling, except by using
the first two or three steps.

To get the inner perfect shuffle, prepend to these sequences a step to swap the left
and right halves of the register:

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p139pro03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p140equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p140equ02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_47
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p140equ03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p140equ04

Chapter 7. Rearranging Bits and Bytes

x = (x >> 16) | (x << 16);

(or use a rotate of 16 bit positions). The unshuffle sequence can be similarly modified
by appending this line of code.

Altering the transformation to swap the first and fourth quartiles of successively
smaller pieces produces the bit reversal of the inner perfect shuffle.

Perhaps worth mentioning is the special case in which the left half of the word x is
all 0. In other words, we want to move the bits in the right half of x to every other bit
position—that is, to transform the 32-bit word

0000 0000 0000 0000 ABCD EFGH IJKL MNOP

to

0A0B 0C0D 0E0F 0G0H 0I0J 0K0L 0M0N 0O0P.

The outer perfect shuffle code can be simplified to do this task in 22 basic RISC
instructions. The code below, however, does it in only 19, at no cost in execution time
on a machine with unlimited instruction-level parallelism (12 cycles with either method).
This code does not require that the left half of word x be initially cleared.

x = ((x & 0xFF00) << 8) | (x & 0x00FF);
x = ((x << 4) | x) & 0x0F0F0F0F;
x = ((x << 2) | x) & 0x33333333;
x = ((x << 1) | x) & 0x55555555;

Similarly, for the inverse of this “half shuffle” operation (a special case of compress;
see page 150), the outer perfect unshuffle code can be simplified to do the task in 26
or 29 basic RISC instructions, depending on whether or not an initial and operation is
required to clear the bits in the odd positions. The code below, however, does it in only
18 or 21 basic RISC instructions, and with less execution time on a machine with
unlimited instruction-level parallelism (12 or 15 cycles).

x = x & 0x55555555; // (If required.)
x = ((x >> 1) | x) & 0x33333333;
x = ((x >> 2) | x) & 0x0F0F0F0F;
x = ((x >> 4) | x) & 0x00FF00FF;
x = ((x >> 8) | x) & 0x0000FFFF;

7–3 Transposing a Bit Matrix
The transpose of a matrix A is a matrix whose columns are the rows of A and whose
rows are the columns of A. Here we consider the problem of computing the transpose
of a bit matrix whose elements are single bits that are packed eight per byte, with rows
and columns beginning on byte boundaries. This seemingly simple transformation is
surprisingly costly in instructions executed.

On most machines it would be very slow to load and store individual bits, mainly
due to the code that would be required to extract and (worse yet) to store individual
bits. A better method is to partition the matrix into 8×8 submatrices, load each 8×8
submatrix into registers, compute the transpose of the submatrix in registers, and then

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p140equ05
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p141equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p141equ02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p141equ03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p141equ04

Chapter 7. Rearranging Bits and Bytes

store the 8×8 result in the appropriate place in the target matrix. Figure 7–5 illustrates
the transposition of a bit matrix of size 2×3 bytes. A, B, ..., F are submatrices of size
8×8 bits. AT, BT, ... denote the transpose of submatrices A, B,

FIGURE 7–5. Transposing a 16×24-bit matrix.

For the purposes of transposing an 8×8 submatrix, it doesn’t matter whether the bit
matrix is stored in row-major or column-major order; the operations are the same in
either event. Assume for discussion that it’s in row-major order. Then the first byte of
the matrix contains the top row of A, the next byte contains the top row of B, and so
on. If L denotes the address of the first byte (top row) of a submatrix, then successive
rows of the submatrix are at locations L + n, L + 2n, ..., L + 7n.

For this problem we will depart from the usual assumption of a 32-bit machine and
assume the machine has 64-bit general registers. The algorithms are simpler and more
easily understood in this way, and it is not difficult to convert them for execution on a
32-bit machine. In fact, a compiler that supports 64-bit integer operations on a 32-bit
machine will do the work for you (although probably not as effectively as you can do by
hand).

The overall scheme is to load a submatrix with eight load byte instructions and pack
the bytes left-to-right into a 64-bit register. Then the transpose of the register’s
contents is computed. Finally, the result is stored in the target area with eight store
byte instructions.

The transposition of an 8×8 bit matrix is illustrated here, where each character
represents a single bit.

In terms of doublewords, the transformation to be done is to change the first line to
the second line below.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p143equ01

Chapter 7. Rearranging Bits and Bytes

01234567 89abcdef ghijklmn opqrstuv wxyzABCD EFGHIJKL MNOPQRST
UVWXYZ$.
08g0wEMU 19hpxFNV 2aiqyGOW 3bjrzHPX 4cksAIQY 5dltBJRZ 6emuCKS$
7fnvDLT.

Notice that the bit denoted by 1 moves seven positions to the right, the bit denoted by
2 moves 14 positions to the right, and the bit denoted by 8 moves seven positions to
the left. Every bit moves 0, 7, 14, 21, 28, 35, 42, or 49 positions to the left or right.
Since there are 56 bits in the doubleword that have to be moved and only 14 different
nonzero movement amounts, an average of about four bits can be moved at once, with
appropriate masking and shifting. Straightforward code for this follows.

y = x & 0x8040201008040201LL |
 (x & 0x0080402010080402LL) << 7 |
 (x & 0x0000804020100804LL) << 14 |
 (x & 0x0000008040201008LL) << 21 |
 (x & 0x0000000080402010LL) << 28 |
 (x & 0x0000000000804020LL) << 35 |
 (x & 0x0000000000008040LL) << 42 |
 (x & 0x0000000000000080LL) << 49 |
 (x >> 7) & 0x0080402010080402LL |
 (x >> 14) & 0x0000804020100804LL |
 (x >> 21) & 0x0000008040201008LL |
 (x >> 28) & 0x0000000080402010LL |
 (x >> 35) & 0x0000000000804020LL |
 (x >> 42) & 0x0000000000008040LL |
 (x >> 49) & 0x0000000000000080LL;

This executes in 43 instructions on the basic RISC, exclusive of mask generation
(which is not important in the application of transposing a large bit matrix, because the
masks are loop constants). Rotate shifts do not help. Some of the terms are of the
form (x & mask)<< s, and some are of the form (x >> s)& mask. This reduces the
number of masks required; the last seven are repeats of earlier masks. Notice that each
mask after the first can be generated from the first with one shift right instruction.
Because of this, it is a simple matter to write a more compact version of the code that
uses a for-loop that is executed seven times.

Another variation is to employ Steele’s method of using exclusive or to swap bit
fields (described on page 47). That technique does not help much in this application. It
results in a function that executes in 42 instructions, exclusive of mask generation. The
code starts out

t = (x ^ (x >> 7)) & 0x0080402010080402LL;
x = x ^ t ^ (t << 7);

and there are seven such pairs of lines.
Although there does not seem to be a really great algorithm for this problem, the

method to be described beats the straightforward method and its variations described
above by approximately a factor of 2 on the basic RISC, for the calculation part (not
counting loading and storing the submatrices or generating masks). The method gets
its power from its high level of bit-parallelism. It would not be a good method if the
matrix elements are words. For that, you can’t do better than loading each word and
storing it where it goes.

First, treat the 8×8-bit matrix as 16 2×2-bit matrices and transpose each of the 16

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p143equ02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_47
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p143equ03

Chapter 7. Rearranging Bits and Bytes

2×2-bit matrices. Then treat the matrix as four 2×2 submatrices whose elements are
2×2-bit matrices and transpose each of the four 2×2 submatrices. Finally, treat the
matrix as a 2×2 matrix whose elements are 4×4-bit matrices and transpose the 2×2
matrix. These transformations are illustrated below [Floyd].

A complete procedure is shown in Figure 7–6 . Parameter A is the address of the
first byte of an 8×8 submatrix of the source matrix, and parameter B is the address of
the first byte of an 8×8 submatrix in the target matrix.

The calculation part of this function executes in 21 instructions. Each of the three
major steps is swapping bits, so a version can be written that uses the Steele exclusive
or bit field swapping device. Using it, the first assignment to x in Figure 7–6 becomes:

t = (x ^ (x >> 7)) & 0x00AA00AA00AA00AALL;
x = x ^ t ^ (t << 7);

The calculation part of the revised function executes in only 18 instructions, but it has
no instruction-level parallelism.

The algorithm of Figure 7–6 runs from fine to coarse granularity, based on the
lengths of the groups of bits that are swapped. The method can also be run from
coarse to fine granularity. To do this, first treat the 8×8-bit matrix as a 2×2 matrix
whose elements are 4×4-bit matrices and transpose the 2×2 matrix. Then, treat each
of the four 4×4 submatrices as a 2×2 matrix whose elements are 2×2-bit matrices, and
transpose each of the four 2×2 submatrices, and so forth. The code for this is the same
as that of Figure 7–6 except for the three assignments that do the bit rearranging being
run in reverse order.

void transpose8(unsigned char A[8], int m, int n,
 unsigned char B[8]) {
 unsigned long long x;
 int i;

 for (i = 0; i <= 7; i++) // Load 8 bytes from the
 x = x << 8 | A[m*i]; // input array and pack
 // them into x.

 x = x & 0xAA55AA55AA55AA55LL |
 (x & 0x00AA00AA00AA00AALL) << 7 |
 (x >> 7) & 0x00AA00AA00AA00AALL;
 x = x & 0xCCCC3333CCCC3333LL |
 (x & 0x0000CCCC0000CCCCLL) << 14 |
 (x >> 14) & 0x0000CCCC0000CCCCLL;

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p144equ02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p07fig06

Chapter 7. Rearranging Bits and Bytes

 x = x & 0xF0F0F0F00F0F0F0FLL |
 (x & 0x00000000F0F0F0F0LL) << 28 |
 (x >> 28) & 0x00000000F0F0F0F0LL;

 for (i = 7; i >= 0; i--) { // Store result into
 B[n*i] = x; x = x >> 8;} // output array B.
}

FIGURE 7–6. Transposing an 8×8-bit matrix.

As was mentioned, these functions can be modified for execution on a 32-bit
machine by using two registers for each 64-bit quantity. If this is done and any
calculations that would result in zero are used to make obvious simplifications, the
results are that a 32-bit version of the straightforward method described on page 143
runs in 74 instructions (compared to 43 on a 64-bit machine), and a 32-bit version of
the function of Figure 7–6 runs in 36 instructions (compared to 21 on a 64-bit
machine). Using Steele’s bit-swapping technique gives a reduction in instructions
executed at the expense of instruction-level parallelism, as in the case of a 64-bit
machine.

Transposing a 32×32-Bit Matrix

The same recursive technique that was used for the 8×8-bit matrix can be used for
larger matrices. For a 32×32-bit matrix it takes five stages.

The details are quite different from Figure 7–6 , because here we assume that the
entire 32×32-bit matrix does not fit in the general register space, and we seek a
compact procedure that indexes the appropriate words of the bit matrix to do the bit
swaps. The algorithm to be described works best if run from coarse to fine granularity.

In the first stage, treat the matrix as four 16×16-bit matrices, and transform it as
follows:

A denotes the left half of the first 16 words of the matrix, B denotes the right half of
the first 16 words, and so on. It should be clear that the above transformation can be
accomplished by the following swaps:

Right half of word 0 with the left half of word 16,
Right half of word 1 with the left half of word 17,

...
Right half of word 15 with the left half of word 31.

To implement this in code, we will have an index k that ranges from 0 to 15. In a loop
controlled by k, the right half of word k will be swapped with the left half of word k +
16.

In the second stage, treat the matrix as 16 8×8-bit matrices, and transform it as
follows:

Chapter 7. Rearranging Bits and Bytes

This transformation can be accomplished by the following swaps:
Bits 0x00FF00FF of word 0 with bits 0xFF00FF00 of word 8,
Bits 0x00FF00FF of word 1 with bits 0xFF00FF00 of word 9, and so on.

This means that bits 0–7 (the least significant eight bits) of word 0 are swapped with
bits 8–15 of word 8, and so on. The indexes of the first word in these swaps are k =
0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23. A way to step k through these
values is

In the loop controlled by k, bits of word k are swapped with bits of word k + 8.
Similarly, the third stage does the following swaps:
Bits 0x0F0F0F0F of word 0 with bits 0xF0F0F0F0 of word 4,
Bits 0x0F0F0F0F of word 1 with bits 0xF0F0F0F0 of word 5, and so on.

The indexes of the first word in these swaps are k = 0, 1, 2, 3, 8, 9, 10, 11, 16, 17,
18, 19, 24, 25, 26, 27. A way to step k through these values is

In the loop controlled by k, bits of word k are swapped with bits of word k + 4.
These considerations are coded rather compactly in the C function shown in Figure

7–7 [GLS1]. The outer loop controls the five stages, with j taking on the values 16, 8,
4, 2, and 1. It also steps the mask m through the values 0x0000FFFF, 0x00FF00FF,
0x0F0F0F0F, 0x33333333, and 0x55555555. (The code for this, m = m ^ (m << j), is a
nice little trick. It does not have an inverse, which is the main reason this code works
best for coarse to fine transformations.) The inner loop steps k through the values
described above. The inner loop body swaps the bits of a[k] identified by mask m with
the bits of a[k+j] shifted right j and identified by m, which is equivalent to the bits of
a[k+j] identified with the complement of m. The code for performing these swaps is an
adaptation of the “three exclusive or” technique shown on page 46 column (c).

void transpose32(unsigned A[32]) {
 int j, k;
 unsigned m, t;

 m = 0x0000FFFF;
 for (j = 16; j != 0; j = j >> 1, m = m ^ (m << j)) {
 for (k = 0; k < 32; k = (k + j + 1) & ~j) {
 t = (A[k] ^ (A[k+j] >> j)) & m;
 A[k] = A[k] ^ t;
 A[k+j] = A[k+j] ^ (t << j);
 }
 }
}

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_46
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p07fig07

Chapter 7. Rearranging Bits and Bytes

FIGURE 7–7. Compact code for transposing a 32×32-bit matrix.

Based on compiling this function with the GNU C compiler to a machine very similar
to the basic RISC, this compiles into 31 instructions, with 20 in the inner loop, and 7 in
the outer loop but not in the inner loop. Thus, it executes in 4 + 5(7 + 16 · 20) =
1639 instructions. In contrast, if this function were performed using 16 calls on the
8×8 transpose program of Figure 7–6 (modified to run on a 32-bit machine), then it
would take 16(101 + 5) = 1696 instructions, assuming the 16 calls are “strung out.”
This includes five instructions for each function call (observed in compiled code).
Therefore, the two methods are, on the surface anyway, very nearly equal in execution
time.

On the other hand, for a 64-bit machine the code of Figure 7–7 can easily be
modified to transpose a 64×64-bit matrix, and it would take about 4 + 6(7 + 32 · 20)
= 3886 instructions. Doing the job with 64 executions of the 8×8 transpose method
would take about 64(85 + 5) = 5760 instructions.

The algorithm works in place, and thus if it is used to transpose a larger matrix,
additional steps are required to move 32×32-bit submatrices. It can be made to put the
result matrix in an area distinct from the source matrix by separating out either the first
or last execution of the “for j-loop” and having it store the result in the other area.

About half the instructions executed by the function of Figure 7–7 are for loop
control, and the function loads and stores the entire matrix five times. Would it be
reasonable to reduce this overhead by unrolling the loops? It would, if you are looking
for the ultimate in speed, if memory space is not a problem, if your machine’s I-fetching
can keep up with a large block of straight-line code, and especially if the branches or
loads are costly in execution time. The bulk of the program will be the six instructions
that do the bit swaps repeated 80 times (5 · 16). In addition, the program will need 32
load instructions to load the source matrix and 32 store instructions to store the result,
for a total of at least 544 instructions.

Figure 7–8 outlines a program in which the unrolling is done by hand. This program
is shown as not working in place, but it executes correctly in place, if that is desired, by
invoking it with identical arguments. The number of “swap” lines is 80. Our GNU C
compiler for the basic RISC machine compiles this into 576 instructions (branch-free,
except for the function return), counting prologs and epilogs. This machine does not
have the store multiple and load multiple instructions, but it can save and restore
registers two at a time with store double and load double instructions.

#define swap(a0, a1, j, m) t = (a0 ^ (a1 >>j)) & m; \
 a0 = a0 ^ t; \
 a1 = a1 ^ (t << j);

void transpose32(unsigned A[32], unsigned B[32]) {
 unsigned m, t;
 unsigned a0, a1, a2, a3, a4, a5, a6, a7,
 a8, a9, a10, a11, a12, a13, a14, a15,
 a16, a17, a18, a19, a20, a21, a22, a23,
 a24, a25, a26, a27, a28, a29, a30, a31;

 a0 = A[0]; a1 = A[1]; a2 = A[2]; a3 = A[3];
 a4 = A[4]; a5 = A[5]; a6 = A[6]; a7 = A[7];
 . . .
 a28 = A[28]; a29 = A[29]; a30 = A[30]; a31 = A[31];

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p07fig08

Chapter 7. Rearranging Bits and Bytes

 m = 0x0000FFFF;
 swap(a0, a16, 16, m)
 swap(a1, a17, 16, m)
 . . .
 swap(a15, a31, 16, m)
 m = 0x00FF00FF;
 swap(a0, a8, 8, m)
 swap(a1, a9, 8, m)
 . . .
 . . .
 swap(a28, a29, 1, m)
 swap(a30, a31, 1, m)

 B[0] = a0; B[1] = a1; B[2] = a2; B[3] = a3;
 B[4] = a4; B[5] = a5; B[6] = a6; B[7] = a7;
 . . .
 B[28] = a28; B[29] = a29; B[30] = a30; B[31] = a31;
}

FIGURE 7–8. Straight-line code for transposing a 32×32-bit matrix.

There is a way to squeeze a little more performance out of this if your machine has
a rotate shift instruction (either left or right). The idea is to replace all the swap
operations of Figure 7–8 , which take six instructions each, with simpler swaps that do
not involve a shift, which take four instructions each (use the swap macro given, with
the shifts omitted).

First, rotate right words A[16..31] (that is, A[k] for 16 ≤ k ≤ 131) by 16 bit
positions. Second, swap the right halves of A[0] with A[16], A[1] with A[17], and so
on, similarly to the code of Figure 7–8 . Third, rotate right words A[0..8] and A[24..31]
by eight bit positions, and then swap the bits indicated by a mask of 0x00FF00FF in
words A[0] and A[8], A[1] and A[9], and so on, as in the code of Figure 7–8 . After five
stages of this, you don’t quite have the transpose. Finally, you have to rotate left word
A[1] by one bit position, A[2] by two bit positions, and so on (31 instructions). We do
not show the code, but the steps are illustrated below for a 4×4-bit matrix.

The bit-rearranging part of the program of Figure 7–8 requires 480 instructions (80
swaps at six instructions each). The revised program, using rotate instructions, requires
80 swaps at four instructions each, plus 80 rotate instructions (16 · 5) for the first five
stages, plus a final 31 rotate instructions, for a total of 431 instructions. The prolog and
epilog code would be unchanged, so using rotate instructions in this way saves 49
instructions.

There is another quite different method of transposing a bit matrix: apply three
shearing transformations [GLS1]. If the matrix is n×n, the steps are (1) rotate row i to
the right i bit positions, (2) rotate column j upwards (j + 1) mod n bit positions, (3)
rotate row i to the right (i + 1) mod n bit positions, and (4) reflect the matrix about a
horizontal axis through the midpoint. To illustrate, for a 4×4-bit matrix:

Chapter 7. Rearranging Bits and Bytes

This method is not quite competitive with the others, because step (2) is costly. (To
do it at reasonable cost, rotate upward all columns that rotate by n/2 or more bit
positions by n / 2 bit positions [these are columns n / 2 – 1 through n–2], then rotate
certain columns upward n / 4 bit positions, and so on.) Steps 1 and 3 require only n –
1 instructions each, and step 4 requires no instructions at all if the results are simply
stored to the appropriate locations.

If an 8×8-bit matrix is stored in a 64-bit word in the obvious way (top row in the
most significant eight bits, and so on), then the matrix transpose operation is
equivalent to three outer perfect shuffles or unshuffles [GLS1]. This is a very good way
to do it if your machine has shuffle or unshuffle as a single instruction, but it is not a
good method on a basic RISC machine.

7–4 Compress, or Generalized Extract
The APL language includes an operation called compress, written B/V, where B is a
Boolean vector and V is vector of the same length as B, with arbitrary elements. The
result of the operation is a vector consisting of the elements of V for which the
corresponding bit in B is 1. The length of the result vector is equal to the number of 1’s
in B.

Here we consider a similar operation on the bits of a word. Given a mask m and a
word x, the bits of x for which the corresponding mask bit is 1 are selected and moved
(“compressed”) to the right. For example, if the word to be compressed is (where each
letter denotes a single bit)

abcd efgh ijkl mnop qrst uvwx yzAB CDEF.

and the mask is

0000 1111 0011 0011 1010 1010 0101 0101,

then the result is

0000 0000 0000 0000 efgh klop qsuw zBDF.

This operation might also be called generalized extract, by analogy with the extract
instruction found on many computers.

We are interested in code for this operation with minimum worst-case execution
time, and offer the simple loop of Figure 7–9 as a straw man to be improved upon.
This code has no branches in the loop, and it executes in 260 instructions worst case,
including the subroutine prolog and epilog.

unsigned compress(unsigned x, unsigned m) {
 unsigned r, s, b; // Result, shift, mask bit.

 r = 0;

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p150pro01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p150pro02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p150pro03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p07fig09

Chapter 7. Rearranging Bits and Bytes

 s = 0;
 do {
 b = m & 1;
 r = r | ((x & b) << s);
 s = s + b;
 x = x >> 1;
 m = m >> 1;
 } while (m != 0);
 return r;
}

FIGURE 7–9. A simple loop for the compress operation.

It is possible to improve on this by repeatedly using the parallel suffix method (see
page 97) with the exclusive or operation [GLS1]. We will denote the parallel suffix
operation by PS-XOR. The basic idea is to first identify the bits of argument x that are
to be moved right an odd number of bit positions, and move those. (This operation is
simplified if x is first anded with the mask, to clear out irrelevant bits.) Mask bits are
moved in the same way. Next, we identify the bits of x that are to be moved an odd
multiple of 2 positions (2, 6, 10, and so on), and then we move these bits of x and the
mask. Next, we identify and move the bits that are to be moved an odd multiple of 4
positions, then those that move an odd multiple of 8, and then those that move 16 bit
positions.

Because this algorithm, believed to be original with [GLS1], is a bit difficult to
understand, and because it is perhaps surprising that something along these lines can
be done at all, we will describe its operation in some detail. Suppose the inputs are

x = abcd efgh ijkl mnop qrst uvwx yzAB CDEF,
m = 1000 1000 1110 0000 0000 1111 0101 0101,
 1 1 111
 9 6 333 4444 3 2 1 0

where each letter in x represents a single bit (with value 0 or 1). The numbers below
each 1-bit in the mask m denote how far the corresponding bit of x must move to the
right. This is the number of 0’s in m to the right of the bit. As mentioned above, it is
convenient to first clear out the irrelevant bits of x, giving

x = a000 e000 ijk0 0000 0000 uvwx 0z0B 0D0F.

The plan is to first determine which bits move an odd number of positions (to the
right), and move those one bit position. Recall that the PS-XOR operation results in a
1-bit at each position where the number of 1’s at and to the right of that position is
odd. We wish to identify those bits for which the number of 0’s strictly to the right is
odd. This can be done by computing mk = ~m << 1 and performing PS-XOR on the
result. This gives

mk = 1110 1110 0011 1111 1110 0001 0101 0100,
mp = 1010 0101 1110 1010 1010 0000 1100 1100.

Observe that mk identifies the bits of m that have a 0 immediately to the right, and mp
sums these, modulo 2, from the right. Thus, mp identifies the bits of m that have an odd
number of 0’s to the right.

The bits that will be moved one position are those that are in positions that have an

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_97
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p151equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p151equ02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p151equ03

Chapter 7. Rearranging Bits and Bytes

odd number of 0’s strictly to the right (identified by mp) and that have a 1-bit in the
original mask. This is simply mv = mp & m:

mv = 1000 0000 1110 0000 0000 0000 0100 0100.

These bits of m can be moved with the assignment

m = (m ^ mv) | (mv >> 1);

and the same bits of x can be moved with the two assignments

t = x & mv;
x = (x ^ t) | (t >> 1);

(Moving the bits of m is simpler because all the selected bits are 1’s.) Here the
exclusive or is turning off bits known to be 1 in m and x, and the or is turning on bits
known to be 0 in m and x. The operations could also, alternatively, both be exclusive or,
or subtract and add, respectively. The results, after moving the bits selected by mv right
one position, are:

m = 0100 1000 0111 0000 0000 1111 0011 0011,
x = 0a00 e000 0ijk 0000 0000 uvwx 00zB 00DF.

Now we must prepare a mask for the second iteration, in which we identify bits that
are to move an odd multiple of 2 positions to the right. Notice that the quantity mk &
~mp identifies those bits that have a 0 immediately to the right in the original mask m,
and those bits that have an even number of 0’s to the right in the original mask. These
properties apply jointly, although not individually, to the revised mask m. (That is to say,
mk identifies all the positions in the revised mask m that have a 0 to the immediate right
and an even number of 0’s to the right.) This is the quantity that, if summed from the
right with PS-XOR, identifies those bits that move to the right an odd multiple of 2
positions (2, 6, 10, and so on). Therefore, the procedure is to assign this quantity to mk
and perform a second iteration of the above steps. The revised value of mk is

mk = 0100 1010 0001 0101 0100 0001 0001 0000.

A complete C function for this operation is shown in Figure 7–10. It does the job in
127 basic RISC instructions (constant)1, including the subroutine prolog and epilog.
Figure 7–11 shows the sequence of values taken on by certain variables at key points
in the computation, with the same inputs that were used in the discussion above.
Observe that a by-product of the algorithm, in the last value assigned to m, is the
original m with all its 1-bits compressed to the right.

unsigned compress(unsigned x, unsigned m) {
 unsigned mk, mp, mv, t;
 int i;

 x = x & m; // Clear irrelevant bits.
 mk = ~m << 1; // We will count 0's to right.

 for (i = 0; i < 5; i++) {
 mp = mk ^ (mk << 1); // Parallel suffix.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p152equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p152equ02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p152equ03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p152equ04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p152equ05
file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch07fn1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p07fig10

Chapter 7. Rearranging Bits and Bytes

 mp = mp ^ (mp << 2);
 mp = mp ^ (mp << 4);
 mp = mp ^ (mp << 8);
 mp = mp ^ (mp << 16);
 mv = mp & m; // Bits to move.
 m = m ^ mv | (mv >> (1 << i)); // Compress m.
 t = x & mv;
 x = x ^ t | (t >> (1 << i)); // Compress x.
 mk = mk & ~mp;
 }
 return x;
}

FIGURE 7–10. Parallel suffix method for the compress operation.

We calculate that the algorithm of Figure 7–10 would execute in 169 instructions on
a 64-bit basic RISC, as compared to 516 (worst case) for the algorithm of Figure 7–9 .

The number of instructions required by the algorithm of Figure 7–10 can be
reduced substantially if the mask m is a constant. This can occur in two situations: (1) a
call to “compress(x, m)” occurs in a loop, in which the value of m is not known, but it is
a loop constant, and (2) the value of m is known, and the code for compress is
generated in advance, perhaps by a compiler.

Notice that the value assigned to x in the loop in Figure 7–10 is not used in the
loop for anything other than the assignment to x. And x is dependent only on itself and
variable mv. Therefore, the subroutine can be coded with all references to x deleted,
and the five values computed for mv can be saved in variables mv0, mv1, ..., mv4. Then,
in situation (1) the function without references to x can be placed outside the loop in
which “compress(x, m)” occurs, and the following statements can be placed in the loop:

x = x & m;
t = x & mv0; x = x ^ t | (t >> 1);
t = x & mv1; x = x ^ t | (t >> 2);
t = x & mv2; x = x ^ t | (t >> 4);
t = x & mv3; x = x ^ t | (t >> 8);
t = x & mv4; x = x ^ t | (t >> 16);

This is only 21 instructions in the loop (the loading of the constants can be placed
outside the loop), a considerable improvement over the 127 required by the full
subroutine of Figure 7–10.

 x = abcd efgh ijkl mnop qrst uvwx yzAB CDEF
 m = 1000 1000 1110 0000 0000 1111 0101 0101
 x = a000 e000 ijk0 0000 0000 uvwx 0z0B 0D0F

i = 0, mk = 1110 1110 0011 1111 1110 0001 0101 0100
After PS, mp = 1010 0101 1110 1010 1010 0000 1100 1100
 mv = 1000 0000 1110 0000 0000 0000 0100 0100
 m = 0100 1000 0111 0000 0000 1111 0011 0011
 x = 0a00 e000 0ijk 0000 0000 uvwx 00zB 00DF

i = 1, mk = 0100 1010 0001 0101 0100 0001 0001 0000
After PS, mp = 1100 0110 0000 1100 1100 0000 1111 0000
 mv = 0100 0000 0000 0000 0000 0000 0011 0000
 m = 0001 1000 0111 0000 0000 1111 0000 1111
 x = 000a e000 0ijk 0000 0000 uvwx 0000 zBDF

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p154equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p07fig11

Chapter 7. Rearranging Bits and Bytes

i = 2, mk = 0000 1000 0001 0001 0000 0001 0000 0000
After PS, mp = 0000 0111 1111 0000 1111 1111 0000 0000
 mv = 0000 0000 0111 0000 0000 1111 0000 0000
 m = 0001 1000 0000 0111 0000 0000 1111 1111
 x = 000a e000 0000 0ijk 0000 0000 uvwx zBDF

i = 3, mk = 0000 1000 0000 0001 0000 0000 0000 0000
After PS, mp = 0000 0111 1111 1111 0000 0000 0000 0000
 mv = 0000 0000 0000 0111 0000 0000 0000 0000
 m = 0001 1000 0000 0000 0000 0111 1111 1111
 x = 000a e000 0000 0000 0000 0ijk uvwx zBDF

i = 4, mk = 0000 1000 0000 0000 0000 0000 0000 0000
After PS, mp = 1111 1000 0000 0000 0000 0000 0000 0000
 mv = 0001 1000 0000 0000 0000 0000 0000 0000
 m = 0000 0000 0000 0000 0001 1111 1111 1111
 x = 0000 0000 0000 0000 000a eijk uvwx zBDF

FIGURE 7–11. Operation of the parallel suffix method for the compress
operation.

In situation (2), in which the value of m is known, the same sort of thing can be
done, and further optimization may be possible. It might happen that one of the five
masks is 0, in which case one of the five lines shown above can be omitted. For
example, mask m1 is 0 if it happens that no bit moves an odd number of positions, and
m4 is 0 if no bit moves more than 15 positions, and so on.

As an example, for

m = 0101 0101 0101 0101 0101 0101 0101 0101,

the calculated masks are

mv0 = 0100 0100 0100 0100 0100 0100 0100 0100
mv1 = 0011 0000 0011 0000 0011 0000 0011 0000
mv2 = 0000 1111 0000 0000 0000 1111 0000 0000
mv3 = 0000 0000 1111 1111 0000 0000 0000 0000
mv4 = 0000 0000 0000 0000 0000 0000 0000 0000

Because the last mask is 0, in the compiled code situation this compression operation is
done in 17 instructions (not counting the loading of the masks). This is not quite as
good as the code shown for this operation on page 141 (13 instructions, not counting
the loading of masks), which takes advantage of the fact that alternate bits are being
selected.

Using Insert and Extract

If your computer has the insert instruction, preferably with immediate values for the
operands that identify the bit field in the target register, then in the compiled situation
insert can often be used to do the compress operation with fewer instructions than the
methods discussed above. Furthermore, it doesn’t tie up registers holding the masks.

The target register is initialized to 0, and then, for each contiguous group of 1’s in
the mask m, variable x is shifted right to right-justify the next field, and the insert
instruction is used to insert the bits of x in the appropriate place in the target register.
This does the operation in 2n + 1 instructions, where n is the number of fields (groups
of consecutive 1’s) in the mask. The worst case is 33 instructions, because the

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p155pro01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p155pro02

Chapter 7. Rearranging Bits and Bytes

maximum number of fields is 16 (which occurs for alternating 1’s and 0’s).
An example in which the insert method uses substantially fewer instructions is m =

0x0010084A. Compressing with this mask requires moving bits 1, 2, 4, 8, and 16
positions. Thus, it takes the full 21 instructions for the parallel suffix method, but only
11 instructions for the insert method (there are five fields). A more extreme case is m =
0x80000000. Here a single bit moves 31 positions, requiring 21 instructions for the
parallel suffix method, but only three instructions for the insert method and only one
instruction (shift right 31) if you are not constrained to any particular scheme.

You can also use the extract instruction in various simple ways to do the compress
operation with a known mask in 3n – 2 instructions, where n is the number of fields in
the mask.

Clearly, the problem of compiling optimal code for the compress operation with a
known mask is a difficult one.

Compress Left

To compress bits to the left, obviously you can reverse the argument x and the mask,
compress right, and reverse the result. Another way is to compress right and then shift
left by pop(). These might be satisfactory if your computer has an instruction for bit
reversal or population count, but if not, the algorithm of Figure 7–10 is easily adapted:
Just reverse the direction of all the shifts except the two in the expressions 1 << i
(eight to change).

The BESM-6 computer (ca. 1967) had an instruction for the compress left function
(“Pack Bits in A Masked by X”) and its inverse (“Unpack ...”), which operated on the
machine’s 48-bit registers. These instructions are not easy to implement. It is surmised
by cryptography experts that their only use was for breaking US codes [Knu8]. The
BESM-6 also had the population count instruction which, as has been noted, seems to
be important to the National Security Agency.

7–5 Expand, or Generalized Insert
The inverse of the compress right function moves bits from the low-order end of a
register to positions given by a mask, while keeping the bits in order. For example,
expand(0000abcd, 10011010) = a00bc0d0. Thus

compress(expand(x, m), m) = x.

This function has also been called unpack, scatter, and deposit.
It can be obtained by running the code of Figure 7–10 in reverse [Allen]. To avoid

overwriting bits in x, it is necessary to move (to the left) the bits that move a large
distance first, and to move those that move only one position last. This means that the
first five “move” quantities (mv in the code) must be computed, saved, and used in the
reverse of the order in which they were computed. For many applications this is not a
problem, because these applications apply the same mask m to large amounts of data,
and so they would compute the move quantities in advance and reuse them anyway.

The code is shown in Figure 7–12. It executes approximately 168 basic RISC
instructions (constant), including five stores and five loads. A 64-bit version for a 64-bit
machine would execute approximately 200 instructions.

For a machine that does not have the and not instruction, the MUX operation in the
second loop can be coded in one fewer instruction with

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p156equ01

Chapter 7. Rearranging Bits and Bytes

x = ((x ^ y) & mv) ^ x;

unsigned expand(unsigned x, unsigned m) {
 unsigned m0, mk, mp, mv, t;
 unsigned array[5];
 int i;

 m0 = m; // Save original mask.
 mk = ~m << 1; // We will count 0's to right.

 for (i = 0; i < 5; i++) {
 mp = mk ^ (mk << 1); // Parallel suffix.
 mp = mp ^ (mp << 2);
 mp = mp ^ (mp << 4);
 mp = mp ^ (mp << 8);
 mp = mp ^ (mp << 16);
 mv = mp & m; // Bits to move.
 array[i] = mv;
 m = (m ^ mv) | (mv >> (1 << i)); // Compress m.
 mk = mk & ~mp;
 }

 for (i = 4; i >= 0; i--) {
 mv = array[i];
 t = x << (1 << i);
 x = (x & ~mv) | (t & mv);
 }
 return x & m0; // Clear out extraneous bits.
}

FIGURE 7–12. Parallel suffix method for the expand operation.

7–6 Hardware Algorithms for Compress and Expand
This section gives hardware-oriented algorithms for the compress right function and its
inverse [Zadeck]. Like the algorithms of the preceding sections, their execution times
are proportional to the log of the computer’s word size. They are suitable for
implementation in hardware, but do not yield fast code if implemented in basic RISC
instructions. We simply describe how they work without giving C or machine code.

Compress

To illustrate the operation of the algorithm, we represent each bit of x with a letter and
consider a specific example mask m, shown below.

Input x = abcd efgh ijkl mnop qrst uvwx yzAB CDEF
Mask m = 0111 1110 0110 1100 1010 1111 0011 0010

The algorithm works in log2(W) “phases,” where W is the computer’s word size in
bits. Each phase operates in parallel on “pockets” of size 2n bits, for n ranging from 1
to log2(W). At the end of each phase, each pocket of x contains the original pocket of x
with the bits selected by that pocket of m compressed to the right. Each pocket of m
will contain an integer that is the number of 0-bits in that pocket of the original m. This
is equal to the number of bits of x that are not compressed to the right. They are the

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p07fig12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p157equ01

Chapter 7. Rearranging Bits and Bytes

known leading 0-bits in the pocket of x.
In each phase, the algorithm performs the following steps, in parallel, on each

pocket of x and m, where w is the pocket size in bits.
1. Set L = the left half of the pocket of x, extended with w / 2 0-bits on the right.
2. Shift L (all w bits) right by the amount given in the right half of the

corresponding pocket of m, inserting 0’s on the left. No 1’s will be shifted out on
the right, because the maximum shift amount is w / 2.

3. Set R = w / 2 0-bits followed by the right half of the pocket of x.
4. Replace the entire w-bit pocket of x with the or of R and the shifted L.
5. Add the left and right halves of the pocket of m, and replace the entire pocket

with the sum.
To apply these steps to the first phase (w = 2) would require first and’ing x with m,

to clear out irrelevant bits of x, and complementing m so that each bit of m is the
number of 0-bits in each 1-bit half pocket. It is simpler to make an exception of the
first phase, and combine these steps with the first compression operation by applying
the logic shown in the table below to each 2-bit pocket of x and m.

The third line, for example, has m = 10 (binary). This means that the left bit of x is
selected to be part of the result, but the right bit is not. Thus, the left bit (a) is
compressed to the right. The other bit of x is cleared, which ensures that in the final
result, all the high-order (not selected) bits will be 0.

Applying this logic to the original x and m gives:

Bit pairs, x = 0bcd ef0g 0j0k mn00 0q0s uvwx 00AB 000E
 m = 0100 0001 0101 0010 0101 0000 1000 1001

In the second phase, consider for example the second nibble above (ef0g). The
quantities L = ef00 and R = 000g are formed. L is shifted right by one position (given
by the right half of the nibble of m), giving 0ef0. This is or’ed with R, giving 0efg as
the new value of the nibble. The left and right halves of m are added, giving 0001 (no
change).

Nibbles, x = 0bcd 0efg 00jk 00mn 00qs uvwx 00AB 000E
 m = 0001 0001 0010 0010 0010 0000 0010 0011

Similarly, for the third, fourth, and fifth phases, each byte, halfword, and word of x
are compressed, and m is updated, as follows:

Bytes, x = 00bc defg 0000 jkmn 00qs uvwx 0000 0ABE
 m = 0000 0010 0000 0100 0000 0010 0000 0101

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p158equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p159equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p159equ02

Chapter 7. Rearranging Bits and Bytes

Halfwords, x = 0000 00bc defg jkmn 0000 000q suvw xABE
 m = 0000 0000 0000 0110 0000 0000 0000 0111

Words, x = 0000 0000 0000 0bcd efgj kmnq suvw xABE
 m = 0000 0000 0000 0000 0000 0000 0000 1101

Upon completion, m is an integer that gives the number of known leading 0’s in x.
Subtracting this from the word size gives the number of compressed bits in x, which
equals the number of 1-bits in the original mask m.

The reason this is not a very good algorithm for implementation with basic RISC
instructions is that it is hard to shift the half-pockets right by differing amounts. On the
other hand, it might possibly be useful on an SIMD machine that has instructions that
operate on the pockets of a word in parallel and independently.

Expand

The hardware compression algorithm can be turned into an expansion algorithm by,
essentially, running it first forward and then in reverse. As in the algorithms based on
the parallel suffix method, the five masks of the hardware compression algorithm are
computed, saved, and used in the reverse of the order in which they were computed.
Actually, the last mask is not used (nor is it used in the compression algorithm), but an
additional one is required (m0) that is simply the complement of the original mask. In
the forward pass, only the steps for computing the masks need be done; those
involving the data x can be omitted.

To illustrate, suppose we have

Input x = abcd efgh ijkl mnop qrst uvwx yzAB CDEF
Mask m = 0111 1110 0110 1100 1010 1111 0011 0010

Then the result of the expansion should be

0nop qrs0 0tu0 vw00 x0y0 zABC 00DE 00F0.

The masks are shown below.

m0 = 1000 0001 1001 0011 0101 0000 1100 1101
m1 = 0100 0001 0101 0010 0101 0000 1000 1001
m2 = 0001 0001 0010 0010 0010 0000 0010 0011
m3 = 0000 0010 0000 0100 0000 0010 0000 0101
m4 = 0000 0000 0000 0110 0000 0000 0000 0111

The integer values of each half of m4 give the number of 0-bits in the
corresponding half of the original mask m. In particular, the right half of m has seven
0-bits. This means that the seven high-order bits of the right half of x do not belong
there—they should be in the left half of x. Thus, bits 9 through 15 of x should be
shifted left just enough to put them in the left half of x, and higher-order bits of x
should be shifted left to accommodate them. This can be accomplished by shifting left
the entire 32-bit word x by seven positions and replacing the left half of x with the left
half of the shifted quantity. This gives

x = hijk lmno pqrs tuvw qrst uvwx yzAB CDEF.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p159equ03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p159equ04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p159equ05
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p159equ06
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p159equ07
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p160equ01

Chapter 7. Rearranging Bits and Bytes

In general, the algorithm works with pocket sizes from 32 down to 2, in five
phases, using masks m4 down to m0. Each pocket (in parallel) is shifted left, discarding
bits that are shifted out on the left, and supplying 0’s to vacated positions on the right,
so that the shifted quantity is the same length as the pocket from which it came. Then
the left half of the pocket is replaced by the left half of the shifted quantity. This will
leave “garbage” bits in both halves of the pocket. They will be zeroed-out after the last
phase by and’ing with the original mask.

Continuing, we treat m3 as two 16-bit pockets. The left pocket has the integer 4 in
its right half, so the left pocket of x is shifted left four positions (giving lmno pqrs tuvw
0000), and the left half of this replaces the left half of the left pocket in x, making the
left pocket of x = lmno pqrs. Performing the same operation on the right 16-bit pocket
of x gives

x = lmno pqrs pqrs tuvw vwxy zABC yzAB CDEF.

The next phase uses m2, which consists of four 8-bit pockets. Applying it to x gives

x = mnop pqrs rstu tuvw vwxy zABC BCDE CDEF.

The next phase uses m1, which consists of eight 4-bit pockets. Applying it to x
gives

x = mnop qrrs sttu vwvw wxxy zABC BCDE DEEF.

The last phase uses m0, which consists of sixteen 2-bit pockets. Applying it to x
gives

x = mnop qrss stuu vwww xxyy zABC CCDE EEFF.

The final step is to and this with the original mask to clear irrelevant bits. This gives

x = 0nop qrs0 0tu0 vw00 x0y0 zABC 00DE 00F0.

The half-pockets of each computed mask contain a count of the number of 0-bits in
the corresponding half-pocket of the original mask m. Therefore, as an alternative to
computing the masks and saving them, the machine could employ circuits for doing a
population count of the 0’s in the half-pockets “on the fly.”

7–7 General Permutations, Sheep and Goats Operation
To do general permutations of the bits in a word, or of anything else, a central problem
is how to represent the permutation. It cannot be represented very compactly. Because
there are 32! permutations of the bits in a 32-bit word, at least log2(32!) = 118
bits, or three words plus 22 bits, are required to designate one permutation out of the
32!.

One interesting way to represent permutations is closely related to the compression
operations discussed in Section 7–4 [GLS1]. Start with the direct method of simply
listing the bit position to which each bit moves. For example, for the permutation done
by a rotate left of four bit positions, the bit at position 0 (the least significant bit)
moves to position 4, 1 moves to 5, ..., 31 moves to 3. This permutation can be
represented by the vector of 32 5-bit indexes:

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p160equ02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p160equ03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p160equ04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p160equ05
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p160equ06
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p161equ01

Chapter 7. Rearranging Bits and Bytes

00100
00101
...

11111
00000
00001
00010
00011

Treating that as a bit matrix, the representation we have in mind is its transpose,
except reflected about the off diagonal so the top row contains the least significant bits
and the result uses little-endian bit numbering. This we store as five 32-bit words in
array p:

p[0] = 1010 1010 1010 1010 1010 1010 1010 1010
p[1] = 1100 1100 1100 1100 1100 1100 1100 1100
p[2] = 0000 1111 0000 1111 0000 1111 0000 1111
p[3] = 0000 1111 1111 0000 0000 1111 1111 0000
p[4] = 0000 1111 1111 1111 1111 0000 0000 0000

Each bit of p[0] is the least significant bit of the position to which the corresponding
bit of x moves, each bit of p[1] is the next more significant bit, and so on. This is
similar to the encoding of the masks denoted by mv in the previous section, except that
mv applies to revised masks in the compress algorithm, not to the original mask.

The compression operation we need compresses to the left all bits marked with 1’s
in the mask, and compresses to the right all bits marked with 0’s.2 This is sometimes
called the “sheep and goats” operation (SAG), or “generalized unshuffle.” It can be
calculated with

SAG(x, m) = compress_left(x, m) | compress(x, ~m).

With SAG as a fundamental operation, and a permutation p as described above, the
bits of a word x can be permuted by p in the following 15 steps:

x = SAG(x, p[0]);
p[1] = SAG(p[1], p[0]);
p[2] = SAG(p[2], p[0]);
p[3] = SAG(p[3], p[0]);
p[4] = SAG(p[4], p[0]);

x = SAG(x, p[1]);
p[2] = SAG(p[2], p[1]);
p[3] = SAG(p[3], p[1]);
p[4] = SAG(p[4], p[1]);

x = SAG(x, p[2]);
p[3] = SAG(p[3], p[2]);
p[4] = SAG(p[4], p[2]);

x = SAG(x, p[3]);
p[4] = SAG(p[4], p[3]);

x = SAG(x, p[4]);

In these steps, SAG is used to perform a stable binary radix sort. Array p is used as
32 5-bit keys to sort the bits of x. In the first step, all bits of x for which p[0] = 1 are
moved to the left half of the resulting word, and all those for which p[0] = 0 are

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p161equ02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch07fn2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p162equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p162equ02

Chapter 7. Rearranging Bits and Bytes

moved to the right half. Other than this, the order of the bits is not changed (that is,
the sort is “stable”). Then all the keys that will be used for the next round of sorting
are similarly sorted. The sixth line is sorting x based on the second least significant bit
of the key, and so on.

Similar to the situation of compressing, if a certain permutation p is to be used on a
number of words x, then a considerable savings results by precomputing most of the
steps above. The permutation array is revised to

p[1] = SAG(p[1], p[0]);
p[2] = SAG(SAG(p[2], p[0]), p[1]);
p[3] = SAG(SAG(SAG(p[3], p[0]), p[1]), p[2]);
p[4] = SAG(SAG(SAG(SAG(p[4], p[0]), p[1]), p[2]), p[3]);

and then each permutation is done with

x = SAG(x, p[0]);
x = SAG(x, p[1]);
x = SAG(x, p[2]);
x = SAG(x, p[3]);
x = SAG(x, p[4]);

A more direct (but perhaps less interesting) way to do general permutations of the
bits in a word is to represent a permutation as a sequence of 32 5-bit indexes. The kth
index is the bit number in the source from which the kth bit of the result comes. (This
is a “comes from” list, whereas the SAG method uses a “goes to” list.) These could be
packed six to a 32-bit word, thus requiring six words to hold all 32 bit indexes. An
instruction can be implemented in hardware such as

bitgather Rt,Rx,Ri,

where register Rt is a target register (and also a source), register Rx contains the bits
to be permuted, and register Ri contains six 5-bit indexes (and two unused bits). The
operation of the instruction is

In words, the contents of the target register are shifted left six bit positions, and six
bits are selected from word x and placed in the vacated six positions of t. The bits
selected are given by the six 5-bit indexes in word i, taken in left-to-right order. The bit
numbering in the indexes could be either little- or big-endian, and the operation would
probably be as described for either type of machine.

To permute a word, use a sequence of six such instructions, all with the same Rt
and Rx, but different index registers. In the first index register of the sequence, only
indexes i4 and i5 are significant, as the bits selected by the other four indexes are
shifted out of the left end of Rt.

An implementation of this instruction would most likely allow index values to be
repeated, so the instruction can be used to do more than permute bits. It can be used
to repeat any selected bit any number of times in the target register. The SAG
operation lacks this generality.

It is not unduly difficult to implement this as a fast (e.g., one cycle) instruction. The
bit selection circuit consists of six 32:1 MUX’s. If these are built from five stages of 2:1

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p162equ03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p163equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images6.html#p163equ02

Chapter 7. Rearranging Bits and Bytes

MUX’s in today’s technology (6 · 31 = 186 MUX’s in all), the instruction would be faster
than a 32-bit add instruction [MD].

Some of the Intel machines have instructions that work much like the bit
permutation operation described, but that permute bytes, “words” (16 bits), and
“doublewords” (32 bits). These are PSHUFB, PSHUFW, and PSHUFD (Shuffle Packed
Bytes/Words/Doublewords).

Permuting bits has applications in cryptography, and the closely related operation of
permuting subwords (e.g., permuting the bytes in a word) has applications in computer
graphics. Both of these applications are more likely to deal with 64-bit words, or
possibly with 128, than with 32. The SAG and bitgather methods apply with obvious
changes to these larger word sizes.

To encrypt or decrypt a message with the Data Encryption Standard (DES) algorithm
requires a large number of permutation-like mappings. First, key generation is done,
once per session. This involves 17 permutation-like mappings. The first, called
“permuted choice 1,” maps from a 64-bit quantity to a 56-bit quantity (it selects the 56
non-parity bits from the key and permutes them). This is followed by 16 permutation-
like mappings from 56 bits to 48 bits, all using the same mapping, called “permuted
choice 2.”

Following key generation, each block of 64 bits in the message is subjected to 34
permutation-like operations. The first and last operations are 64-bit permutations, one
being the inverse of the other. There are 16 permutations with repetitions that map 32-
bit quantities to 48 bits, all using the same mapping. Finally, there are 16 32-bit
permutations, all using the same permutation. The total number of distinct mappings is
six. They are all constants and are given in [DES].

DES is obsolete, as it was proved to be insecure in 1998 by the Electronic Frontier
Foundation, using special hardware. The National Institute of Standards and Technology
(NIST) has endorsed a temporary replacement called Triple DES, which consists of DES
run serially three times on each 64-bit block, each time with a different key (that is, the
key length is 192 bits, including 24 parity bits). Hence, it takes three times as many
permutation operations as does DES to encrypt or decrypt.

The “permanent” replacement for DES and Triple DES, the Advanced Encryption
Standard (previously known as the Rijndael algorithm [AES]), involves no bit-level
permutations. The closest it comes to a permutation is a simple rotation of 32-bit words
by a multiple of 8-bit positions. Other encryption methods proposed or in use generally
involve far fewer bit-level permutations than DES.

To compare the two permutation methods discussed here, the bitgather method has
the advantages of (1) simpler preparation of the index words from the raw data
describing the permutation, (2) simpler hardware, and (3) more general mappings. The
SAG method has the advantages of (1) doing the permutation in five rather than six
instructions, (2) having only two source registers in its instruction format (which might
fit better in some RISC architectures), (3) scaling better to permute a doubleword
quantity, and (4) permuting subwords more efficiently.

Item (3) is discussed in [LSY]. The SAG instruction allows for doing a general
permutation of a two-word quantity with two executions of the SAG instruction, a few
basic RISC instructions, and two full permutations of single words. The bitgather
instruction allows for doing it by executing three full permutations of single words, plus
a few basic RISC instructions. This does not count preprocessing of the permutation to
produce new quantities that depend only on the permutation. We leave it to the reader
to discover these methods.

Chapter 7. Rearranging Bits and Bytes

Regarding item (4), to permute, for example, the four bytes of a word with
bitgather requires executing six instructions, the same as for a general bit permutation
by bitgather. But with SAG it can be done in only two instructions, rather than the five
required for a general bit permutation by SAG. The gain in efficiency applies even when
the subwords are not a power of 2 in size; the number of steps required is log2n ,
where n is the number of subwords, not counting a possible non-participating group of
bits that stays at one end or the other.

[LSY] discusses the SAG and bitgather instructions (called “GRP” and “PPERM,”
respectively), other possible permutation instructions based on networks, and
permuting by table lookup.

There is a neat hack to add 1 to the goats—that is, to compute

without using the SAG function or its inverse [Knu8]. Here we assume SAG(x, m) puts
the goats on the right, and the addition does not overflow into the “sheep” field. We
leave to the reader the pleasure of discovering this trick.

7–8 Rearrangements and Index Transformations
Many simple rearrangements of the bits in a computer word correspond to even simpler
transformations of the coordinates, or indexes, of the bits [GLS1]. These
correspondences apply to rearrangements of the elements of any one-dimensional
array provided the number of array elements is an integral power of 2. For
programming purposes, they are useful primarily when the array elements are a
computer word or larger in size.

As an example, the outer perfect shuffle of the elements of an array A of size eight,
with the result in array B, consists of the following moves:

Each B-index is the corresponding A-index rotated left one position, using a 3-bit
rotator. The outer perfect unshuffle is, of course, accomplished by rotating right each
index. Some similar correspondences are shown in Table 7–1 . Here n is the number of
array elements, “lsb” means least significant bit, and the rotations of indexes are done
with a log2n-bit rotator.

TABLE 7–1. REARRANGEMENTS AND INDEX TRANSFORMATIONS

Chapter 7. Rearranging Bits and Bytes

7–9 An LRU Algorithm
Ever wonder how your computer keeps track of which cache line is the least recently
used? Here we describe one such algorithm, known as the reference matrix method. It
is primarily a hardware algorithm, but it might have application in software.

We won’t go into a long discussion of the intriguing world of caches, but only say
that we have in mind the high-speed caches that buffer data between a computer’s
main memory and the processor. These caches may get a request for a word every
computer cycle, and they should usually respond with the data within a cycle or two, so
there is not much time for a complicated algorithm.

A cache contains a copy of a subset of the data in main memory, and the problem
we are addressing is: when a cache miss occurs (that is, when a word at a certain
address is requested and the data at that address are not in the cache), how does the
computer decide which block (or line, in cache jargon) to replace with the requested
data? Ideally, it should replace the data in the line that will not be referenced for the
longest time in the future. But we cannot know the future, so we have to guess. The
best guess over a wide variety of application programs seems to be the least recently
used (LRU) policy. This policy replaces the line that has not been referenced for the
longest time.

Caches come in three varieties: direct-mapped, fully associative, and set-associative.
In a direct-mapped cache, certain bits of the address of the load or store instruction
directly address a particular cache line. When a miss occurs, there is no question as to
what line to replace—it must be the addressed line. There is no need for an LRU or
any other guessing policy.

In a fully associative cache, a block from main memory can be placed in any cache
line. When a load or store is executed, the address is looked up to see if it is in the

Chapter 7. Rearranging Bits and Bytes

cache. If not, it is necessary to replace the contents of some line. The machine has
complete flexibility in the choice of line to replace. Several strategies have been used
(FIFO, random, and LRU are the most common) and, as mentioned above, LRU seems
to be the one that most often results in the lowest miss rate. Unfortunately, LRU is the
most expensive to implement when there are many lines to consider for replacement.

Often the set-associative organization is chosen. It is a compromise between direct-
mapped and fully associative. The designer decides on the degree of associativity,
which is usually 2, 4, 8, or 16. The cache is divided into a number of “sets,” each of
which contains 2, 4, 8, or 16 lines (typically). The set is directly addressed, using
certain bits of the load or store address, but the line within the set must be looked up.
The lookup in the set is done much the same as in the case of a fully associative cache.
Now, when it is necessary to replace a line, the LRU algorithm need only determine
which of the lines within one set is the least recently used, and replace that.

With this brief background, we can describe the reference matrix method. To
illustrate, assume the cache is four-way set-associative. This means that there are four
lines for which we wish to keep track of the least recently used (referenced). The cache
may be fully associative and consist of only four lines, or it may be set-associative with
four lines per set.

The reference matrix method employs a square bit matrix of dimension equal to the
degree of associativity (in principle; we will modify this statement later). Each
associative set has one such matrix. The essence of the method is that when line i is
referenced, row i of the matrix is set to 1’s, and then column i is set to 0’s. Figure 7–13
illustrates the changes in the matrix from an initial state to its configuration after a
reference to lines 3, 1, 0, 2, 0, 3, and 2, in that order.

FIGURE 7–13. Illustration of the reference matrix method.

Each matrix has a row containing three 1’s, two 1’s, one 1, and no 1’s. The number
of the row with no 1’s is the least recently used line. The number of the row with one
1 is the next least recently used line, and so on. When a cache miss occurs, the
machine finds the row with all 0’s and replaces the corresponding line. It then records
it as the most recently used line by setting its row to all 1’s and its column to all 0’s.

Why does this work? Denoting the matrix by M, the reason it works is that Mij
indicates whether or not line i is more recently used than line j. If Mij = 1, line i is more
recently used than line j, and if Mij = 0, line i is not more recently used than line j.

Consider an arbitrary 4×4 matrix for which line 2 is referenced. Then the matrix
changes as shown in Figure 7–14. Setting row i to 1’s (except for the element on the
main diagonal) is recording that line i is more recently used than line j, for all j ≠ i.
Setting column i to 0’s is recording that line j is not more recently used than line i, for
all j. Relations among cache lines other than i are not changed. When all the lines have
been referenced, all the “more recently used” relations will be established.

Thus, the reference matrix is antisymmetric and the main diagonal is always all 0’s.

Chapter 7. Rearranging Bits and Bytes

Therefore, only part of the matrix, either the elements above the main diagonal or
those below the main diagonal, need be stored in the cache. That is what is done in
practice. For an n-way associative set, n(n – 1)/2 memory bits are required. For n = 4,
this is six; for n = 8, it is 28. Twenty-eight is getting to be a bit large, so the reference
matrix method, and in fact the true LRU policy, is not often used for degrees of
associativity greater than 8. Instead, there are approximate LRU methods and methods
that are not LRU at all.

In software, the LRU policy would probably be implemented with a list of the line
numbers (either a simple vector or a linked list). When line i is referenced, the list is
searched for i, and then i is moved to the top of the list. The least recently used line
number then migrates to the bottom of the list.

That method is relatively slow on references (because of rearranging the list), but
fast in deciding which line to replace. Another method, with the opposite speed
characteristics, is to have a vector of length equal to the degree of associativity, with
position i holding both the address that line i holds and its “age” (actually “newness”)
encoded as an integer. When line i is referenced, a single variable that holds the
current “age” is incremented, and the resulting value is stored in the vector at position
i. To find the least recently used line, the vector is searched for the line with the
smallest value of “age.” This method fails if the “age” integer overflows.

FIGURE 7–14. One step of the reference matrix method.

There might be one “age” integer per associative set, or only one for the whole
cache, or in hardware a cycle counter could be used.

The reference matrix method might be useful in software when the degree of
associativity is small. For example, suppose an application uses eight-way set-
associativity and is to run on a 64-bit machine. Then the reference matrix can be
stored in a single 64-bit register. Let the low-order eight bits of the register hold row 0
of the matrix, the next eight bits hold row 1, and so forth. Then when line i is
referenced, byte i of the register should be set to 1’s, and bits i, i + 8, ..., i + 56 should
be cleared. Denoting the register by m, this is accomplished as shown here.

This amounts to five or six instructions, plus a few to load constants. To find the least
recently used line, search for an all-zero byte (see Section 6–1). The advantage of this
method over the other software methods briefly outlined above is that all the work is
done in a register.

Exercises

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06lev1

Chapter 7. Rearranging Bits and Bytes

1. Explain the workings of the second Möbius formula (Equation (1), page 139).
2. The perfect outer shuffle operation and its inverse employ the following masks:

What is a formula for the general case, mk? A formula might be useful in
situations in which an upper bound on the length of the integers being shuffled
is not known in advance, such as in “bignum” applications.

3. Code a function similar to the compress function of Figure 7–9 that does the
expand operation.

4. For an n-way set-associative cache, what is the theoretical minimum number of
bits required to implement the LRU policy? Compare that to the number of bits
required for the reference matrix method, for a few small values of n.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch07ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch07ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch07ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch07ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch07ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch07ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch07ans4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch07ans4

Chapter 8. Multiplication

Chapter 8. Multiplication

8–1 Multiword Multiplication
This can be done with, basically, the traditional grade-school method. But rather than
develop an array of partial products, it is more efficient to add each new row, as it is
being computed, into a row that will become the product.

If the multiplicand is m words, and the multiplier is n words, then the product
occupies m + n words (or fewer), whether signed or unsigned.

In applying the grade-school scheme, we would like to treat each 32-bit word as a
single digit. This works out well if an instruction that gives the 64-bit product of two
32-bit integers is available. Unfortunately, even if the machine has such an instruction,
it is not readily accessible from most high-level languages. In fact, many modern RISC
machines do not have this instruction in part because it isn’t accessible from high-level
languages and thus would not be used often. (Another reason is that the instruction
would be one of a very few that give a two-register result.)

Our procedure is shown in Figure 8–1 . It uses halfwords as the “digits.” Parameter
w gets the result, and u and v are the multiplier and multiplicand, respectively. Each is
an array of halfwords, with the first halfword (w[0], u[0], and v[0]) being the least
significant digit. This is “little-endian” order. Parameters m and n are the number of
halfwords in u and v, respectively.

The picture below may help in understanding. There is no relation between m and n;
either may be the larger.

The procedure follows Algorithm M of [Knu2, 4.3.1] but is coded in C and modified
to perform signed multiplication. Observe that the assignment to t in the upper half of
Figure 8–1 cannot overflow, because the maximum value that could be assigned to t is
(216 – 1)2 + 2(216 – 1) = 232 – 1.

Multiword multiplication is simplest for unsigned operands. In fact, the code of
Figure 8–1 performs unsigned multiplication if the “correction” steps (the lines between
the three-line comment and the “return” statement) are omitted. An unsigned version
can be extended to signed in three ways:

1. Take the absolute value of each input operand, perform unsigned multiplication,
and then negate the result if the input operands had different signs.

2. Perform the multiplication using unsigned elementary multiplication, except when
multiplying one of the high-order halfwords, in which case use signed ×
unsigned or signed × signed multiplication.

3. Perform unsigned multiplication and then correct the result somehow.

void mulmns(unsigned short w[], unsigned short u[],
 unsigned short v[], int m, int n) {

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images7.html#p08fig01

Chapter 8. Multiplication

 unsigned int k, t, b;
 int i, j;

 for (i = 0; i < m; i++)
 w[i] = 0;

 for (j = 0; j < n; j++) {
 k = 0;
 for (i = 0; i < m; i++) {
 t = u[i]*v[j] + w[i + j] + k;
 w[i + j] = t; // (I.e., t & 0xFFFF).
 k = t >> 16;
 }
 w[j + m] = k;
 }

 // Now w[] has the unsigned product. Correct by
 // subtracting v*2**16m if u < 0, and
 // subtracting u*2**16n if v < 0.

 if ((short)u[m - 1] < 0) {
 b = 0; // Initialize borrow.
 for (j = 0; j < n; j++) {
 t = w[j + m] - v[j] - b;
 w[j + m] = t;
 b = t >> 31;
 }
 }
 if ((short)v[n - 1] < 0) {
 b = 0;
 for (i = 0; i < m; i++) {
 t = w[i + n] - u[i] - b;
 w[i + n] = t;
 b = t >> 31;
 }
 }
 return;
 }

FIGURE 8–1. Multiword integer multiplication, signed.

The first method requires passing over as many as m + n input halfwords to
compute their absolute value. Or, if one operand is positive and one is negative, the
method requires passing over as many as max(m, n) + m + n halfwords to
complement the negative input operand and the result. Perhaps more serious, the
algorithm would alter its inputs (which we assume are passed by address), which may
be unacceptable in some applications. Alternatively, it could allocate temporary space
for them, or it could alter them and later change them back. All these alternatives are
unappealing.

The second method requires three kinds of elementary multiplication (unsigned ×
unsigned, unsigned × signed, and signed × signed) and requires sign extension of
partial products on the left, with 0’s or 1’s, making each partial product take longer to
compute and add to the running total.

We choose the third method. To see how it works, let u and v denote the values of
the two signed integers being multiplied, and let them be of lengths M and N bits,
respectively. Then the steps in the upper half of Figure 8–1 erroneously interpret u as
an unsigned quantity, having value u + 2MuM – 1, where uM – 1 is the sign bit of u.
That is, uM – 1 = 1 if u is negative, and uM – 1 = 0 otherwise. Similarly, the program
interprets v as having value v + 2Nu .

Chapter 8. Multiplication

N – 1

The program computes the product of these unsigned numbers—that is, it computes

(u + 2MuM – 1)(v + 2NvN – 1) = uv + 2MuM – 1v + 2NvN – 1u + 2M + NuM – 1vN – 1.

To get the desired result (uv), we must subtract from the unsigned product the value
2MuM – 1v + 2NvN – 1u. There is no need to subtract the term 2M + NuM – 1vN – 1,
because we know that the result can be expressed in M + N bits, so there is no need
to compute any product bits more significant than bit position M + N – 1. These two
subtractions are performed by the steps below the three-line comment in Figure 8–1 .
They require passing over a maximum of m + n halfwords.

It might be tempting to use the program of Figure 8–1 by passing it an array of
fullword integers—that is, by “lying across the interface.” Such a program will work on a
little-endian machine, but not on a big-endian one. If we had stored the arrays in the
reverse order, with u[0] being the most significant halfword (and the program altered
accordingly), the “lying” program would work on a big-endian machine, but not on a
little-endian one.

8–2 High-Order Half of 64-Bit Product
Here we consider the problem of computing the high-order 32 bits of the product of
two 32-bit integers. This is the function of our basic RISC instructions multiply high
signed (mulhs) and multiply high unsigned (mulhu).

For unsigned multiplication, the algorithm in the upper half of Figure 8–1 works
well. Rewrite it for the special case m = n = 2, with loops unrolled, obvious
simplifications made, and the parameters changed to 32-bit unsigned integers.

For signed multiplication, it is not necessary to code the “correction steps” in the
lower half of Figure 8–1 . These can be omitted if proper attention is paid to whether
the intermediate results are signed or unsigned (declaring them to be signed causes
the right shifts to be sign-propagating shifts). The resulting algorithm is shown in
Figure 8–2 . For an unsigned version, simply change all the int declarations to
unsigned.

The algorithm requires 16 basic RISC instructions in either the signed or unsigned
version, four of which are multiplications.

int mulhs(int u, int v) {
 unsigned u0, v0, w0;
 int u1, v1, w1, w2, t;

 u0 = u & 0xFFFF; u1 = u >> 16;
 v0 = v & 0xFFFF; v1 = v >> 16;
 w0 = u0*v0;
 t = u1*v0 + (w0 >> 16);
 w1 = t & 0xFFFF;
 w2 = t >> 16;
 w1 = u0*v1 + w1;
 return u1*v1 + w2 + (w1 >> 16);
}

FIGURE 8–2. Multiply high signed.

8–3 High-Order Product Signed from/to Unsigned

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images7.html#p08fig02

Chapter 8. Multiplication

Assume that the machine can readily compute the high-order half of the 64-bit product
of two unsigned 32-bit integers, but we wish to perform the corresponding operation
on signed integers. We could use the procedure of Figure 8–2 , but that requires four
multiplications; the procedure to be given [BGN] is much more efficient than that.

The analysis is a special case of that done to convert Knuth’s Algorithm M from an
unsigned to a signed multiplication routine (Figure 8–1). Let x and y denote the two
32-bit signed integers that we wish to multiply together. The machine will interpret x as
an unsigned integer, having the value x + 232x31, where x31 is the most significant bit
of x (that is, x31 is the integer 1 if x is negative, and 0 otherwise). Similarly, y under
unsigned interpretation has the value y + 232y31.

Although the result we want is the high-order 32 bits of xy, the machine computes

(x + 232x31)(y + 232y31) = xy + 232(x31 y + y31x) + 264x31y31.

To get the desired result, we must subtract from this the quantity 232(x31y + y31x) +
264x31y31. Because we know that the result can be expressed in 64 bits, we can
perform the arithmetic modulo 264. This means that we can safely ignore the last term,
and compute the signed high-order product as shown below (seven basic RISC
instructions).

Unsigned from Signed

The reverse transformation follows easily. The resulting program is the same as (1),
except with the first instruction changed to multiply high signed and the last operation
changed to p ← p + t1 + t2.

8–4 Multiplication by Constants
It is nearly a triviality that one can multiply by a constant with a sequence of shift left
and add instructions. For example, to multiply x by 13 (binary 1101), one can code

where r gets the result.
In this section, left shifts are denoted by multiplication by a power of 2, so the

above plan is written r ← 8x + 4x + x, which is intended to show four instructions on
the basic RISC and most machines.

Chapter 8. Multiplication

What we want to convey here is that there is more to this subject than meets the
eye. First of all, there are other considerations besides simply the number of shift’s and
add’s required to do a multiplication by a given constant. To illustrate, below are two
plans for multiplying by 45 (binary 101101).

The plan on the left uses a variable t that holds x shifted left by a number of
positions that corresponds to a 1-bit in the multiplier. Each shifted value is obtained
from the one before it. This plan has these advantages:

• It requires only one working register other than the input x and the output r.
• Except for the first two, it uses only 2-address instructions.
• The shift amounts are relatively small.

The same properties are retained when the plan is applied to any multiplier.
The scheme on the right does all the shift’s first, with x as the operand. It has the

advantage of increased parallelism. On a machine with sufficient instruction-level
parallelism, the scheme on the right executes in three cycles, whereas the scheme on
the left, running on a machine with unlimited parallelism, requires four.

In addition to these details, it is nontrivial to find the minimum number of
operations to accomplish multiplication by a constant, where by an “operation” we
mean an instruction from a typical computer’s set of add and shift instructions. In what
follows, we assume this set consists of add, subtract, shift left by any constant amount,
and negate. We assume the instruction format is three-address. However, the problem
is no easier if one is restricted to only add (adding a number to itself, and then adding
the sum to itself, and so on, accomplishes a shift left of any amount), or if one
augments the set by instructions that combine a left shift and an add into one
instruction (that is, such an instruction computes z ← x + (y << n)). We also assume
that only the least-significant 32 bits of the product are wanted.

The first improvement to the basic binary decomposition scheme suggested above is
to use subtract to shorten the sequence when the multiplier contains a group of three
or more consecutive 1-bits. For example, to multiply by 28 (binary 11100), we can
compute 32x – 4x (three instructions) rather than 16x + 8x + 4x (five instructions). On
two’s-complement machines, the result is correct (modulo 232) even if the intermediate
result of 32x overflows.

To multiply by a constant m with the basic binary decomposition scheme (using only
shift’s and add’s) requires

2pop(m) – 1 – δ

Chapter 8. Multiplication

instructions, where δ = 1 if m ends in a 1-bit (is odd), and δ = 0 otherwise. If subtract
is also used, it requires

4g(m) + 2s(m) – 1 – δ

instructions, where g(m) is the number of groups of two or more consecutive 1-bits in
m, s(m) is the number of “singleton” 1-bits in m, and δ has the same meaning as
before.

For a group of size 2, it makes no difference which method is used.
The second improvement is to treat specially groups that are separated by a single

0-bit. For example, consider m = 55 (binary 110111). The group method calculates this
as (64x – 16x) + (8x – x), which requires six instructions. Calculating it as 64x – 8x –
x, however, requires only four. Similarly, we can multiply by binary 110111011 as
illustrated by the formula 512x – 64x – 4x – x (six instructions).

The formulas above give an upper bound on the number of operations required to
multiply a variable x by any given number m. Another bound can be obtained based on
the size of m in bits—that is, on n = log2 m + 1.

THEOREM. Multiplication of a variable x by an n-bit constant m, m ≥ 1, can be
accomplished with at most n instructions of the type add, subtract, and shift left by any
given amount.

Proof. (Induction on n.) Multiplication by 1 can be done in 0 instructions, so the
theorem holds for n = 1. For n > 1, if m ends in a 0-bit, then multiplication by m can
be accomplished by multiplying by the number consisting of the left n – 1 bits of m
(that is, by m / 2), in n – 1 instructions, followed by a shift left of the result by one
position. This uses n instructions altogether.

If m ends in binary 01, then mx can be calculated by multiplying x by the number
consisting of the left n – 2 bits of m, in n – 2 instructions, followed by a left shift of the
result by 2, and an add of x. This requires n instructions altogether.

If m ends in binary 11, then consider the cases in which it ends in 0011, 0111,
1011, and 1111. Let t be the result of multiplying x by the left n – 4 bits of m. If m
ends in 0011, then mx = 16t + 2x + x, which requires (n – 4) + 4 = n instructions. If
m ends in 0111, then mx = 16t + 8x – x, which requires n instructions. If m ends in
1111, then mx = 16t + 16x – x, which requires n instructions. The remaining case is
that m ends in 1011.

It is easy to show that mx can be calculated in n instructions if m ends in 001011,
011011, or 111011. The remaining case is 101011.

This reasoning can be continued, with the “remaining case” always being of the
form 101010...10101011. Eventually, the size of m will be reached, and the only
remaining case is the number 101010...10101011. This n-bit number contains n / 2 + 1
1-bits. By a previous observation, it can multiply x with 2(n / 2 + 1) – 2 = n
instructions.

Thus, in particular, multiplication by any 32-bit constant can be done in at most 32
instructions, by the method described above. By inspection, it is easily seen that for n
even, the n-bit number 101010...101011 requires n instructions, and for n odd, the n-
bit number 1010101...010110 also requires n instructions, so the bound is tight.

The methodology described so far is not difficult to work out by hand or to
incorporate into an algorithm such as might be used in a compiler; but such an
algorithm would not always produce the best code, because further improvement is
sometimes possible. This can result from factoring the multiplier m or some

Chapter 8. Multiplication

intermediate quantity along the way of computing mx. For example, consider again m
= 45 (binary 101101). The methods described above require six instructions. Factoring
45 as 5 · 9, however, gives a four-instruction solution:

Factoring can be combined with the binary decomposition methods. For example,
multiplication by 106 (binary 1101010) requires seven instructions by binary
decomposition, but writing it as 7 · 15 + 1 leads to a five-instruction solution. For large
constants, the smallest number of instructions that accomplish the multiplication may
be substantially fewer than the number obtained by the simple binary decomposition
methods described. For example, m = 0xAAAAAAAB requires 32 instructions by binary
decomposition, but writing this value as 2 · 5 · 17 · 257 · 65537 + 1 gives a ten-
instruction solution. (Ten instructions is probably not typical of large numbers. The
factorization reflects the simple bit pattern of alternate 1’s and 0’s.)

There does not seem to be a simple formula or procedure that determines the
smallest number of shift and add instructions that accomplishes multiplication by a
given constant m. A practical search procedure is given in [Bern], but it does not always
find the minimum. Exhaustive search methods to find the minimum can be devised, but
they are quite expensive in either space or time. (See, for example, the tree structure
of Figure 15 in [Knu2, 4.6.3].)

This should give an idea of the combinatorics involved in this seemingly simple
problem. Knuth [Knu2, 4.6.3] discusses the closely related problem of computing am

using a minimum number of multiplications. This is analogous to the problem of
multiplying by m using only addition instructions.

Exercises

1. Show that for a 32×32 64 bit multiplication, the low-order 32 bits of the
product are the same whether the operands are interpreted as signed or
unsigned integers.

2. Show how to modify the mulhs function (Figure 8–2) so that it calculates the
low-order half of the 64-bit product, as well as the high-order half. (Just show
the calculation, not the parameter passing.)

3. Multiplication of complex numbers is defined by

(a + bi)(c + di) = ac – bd + (ad + bc)i.

This can be done with only three multiplications.1 Let

Then the product is given by

p – q + (r – p – q)i,

which the reader can easily verify.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch08ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch08ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch08ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch08ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch08ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch08ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch08fn1

Chapter 8. Multiplication

Code a similar method to obtain the 64-bit product of two 32-bit unsigned
integers using only three multiplication instructions. Assume the machine’s
multiply instruction produces the 32 low-order bits of the product of two 32-bit
integers (which are the same for signed and unsigned multiplication).

Chapter 9. Integer Division

Chapter 9. Integer Division

9–1 Preliminaries
This chapter and the following one give a number of tricks and algorithms involving
“computer division” of integers. In mathematical formulas we use the expression x / y
to denote ordinary rational division, x ÷ y to denote signed computer division of
integers (truncating toward 0), and to denote unsigned computer division of
integers. Within C code, x/y, of course, denotes computer division, unsigned if either
operand is unsigned, and signed if both operands are signed.

Division is a complex process, and the algorithms involving it are often not very
elegant. It is even a matter of judgment as to just how signed integer division should
be defined. Most high-level languages and most computer instruction sets define the
result to be the rational result truncated toward 0. This and two other possibilities are
illustrated below.

 truncating modulus floor
7÷3 = 2 rem 1 2 rem 1 2 rem 1
(–7)÷3 = –2 rem –1 -3 rem 2 –3 rem 2
7÷–(–3) = –2 rem 1 –2 rem 1 –3 rem –2
(–7)÷– (–3) = 2 rem –1 3 rem 2 2 rem –1

The relation dividend = quotient * divisor + remainder holds for all three
possibilities. We define “modulus” division by requiring that the remainder be
nonnegative.1 We define “floor” division by requiring that the quotient be the floor of
the rational result. For positive divisors, modulus and floor division are equivalent. A
fourth possibility, seldom used, rounds the quotient to the nearest integer.

One advantage of modulus and floor division is that most of the tricks simplify. For
example, division by 2n can be replaced by a shift right signed of n positions, and the
remainder of dividing x by 2n is given by the logical and of x and 2n – 1. I suspect that
modulus and floor division more often give the result you want. For example, suppose
you are writing a program to graph an integer-valued function, and the values range
from imin to imax. You want to set up the extremes of the ordinate to be the smallest
multiples of 10 that include imin and imax. Then the extreme values are simply (imin ÷
10) * 10 and ((imax + 9) ÷ 10) * 10 if modulus or floor division is used. If
conventional division is used, you must evaluate something like:

if (imin >= 0) gmin = (imin/10)*10;
else gmin = ((imin - 9)/10)*10;
if (imax >= 0) gmax = ((imax + 9)/10)*10;
else gmax = (imax/10)*10;

Besides the quotient being more useful with modulus or floor division than with
truncating division, we speculate that the nonnegative remainder is probably wanted
more often than a remainder that can be negative.

It is hard to choose between modulus and floor division, because they differ only
when the divisor is negative, which is unusual. Appealing to existing high-level
languages does not help, because they almost universally use truncating division for x/y
when the operands are signed integers. A few give floating-point numbers, or rational

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images8.html#p181equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch09fn1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images8.html#p182equ01

Chapter 9. Integer Division

numbers, for the result. Looking at remainders, there is confusion. In Fortran 90, the
MOD function gives the remainder of truncating division and MODULO gives the remainder
of floor division (which can be negative). Similarly, in Common Lisp and ADA, REM is
the remainder of truncating division, and MOD is the remainder of floor division. In
PL/I, MOD is always nonnegative (it is the remainder of modulus division). In Pascal, A
mod B is defined only for B > 0, and then it is the nonnegative value (the remainder of
either modulus or floor division).

Anyway, we cannot change the world even if we knew how we wanted to change
it,2 so in what follows we will use the usual definition (truncating) for x ÷ y.

A nice property of truncating division is that it satisfies

(–n) ÷ d = n ÷ (–d) = –(n ÷ d), for d ≠0.

Care must be exercised when applying this to transform programs, because if n or d is
the maximum negative number, –n or –d cannot be represented in 32 bits. The
operation (–231) ÷ (–1) is an overflow (the result cannot be expressed as a signed
quantity in two’s-complement notation), and on most machines the result is undefined
or the operation is suppressed.

Signed integer (truncating) division is related to ordinary rational division by

Unsigned integer division—that is, division in which both n and d are interpreted as
unsigned integers—satisfies the upper portion of (1).

In the discussion that follows, we make use of the following elementary properties
of arithmetic, which we don’t prove here. See [Knu1] and [GKP] for interesting
discussions of the floor and ceiling functions.

THEOREM D1. For x real, k an integer,

THEOREM D2. For n, d integers, d > 0,

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch09fn2

Chapter 9. Integer Division

If d < 0:

THEOREM D3. For x real, d an integer > 0:

COROLLARY. For a, b real, b ≠ 0, d an integer > 0,

THEOREM D4. For n, d integers, d ≠ 0, and x real,

In the theorems below, rem(n, d) denotes the remainder of n divided by d. For
negative d, it is defined by rem(n, –d) = rem(n, d), as in truncating and modulus
division. We do not use rem(n, d) with n < 0. Thus, for our use, the remainder is
always nonnegative.

THEOREM D5. For n ≥ 0, d ≠0,

(whichever value is greater than or equal to 0 and less than |d|).
THEOREM D6. For n ≥ 0, d ≠ 0,

rem(2n, 2d) = 2rem(n, d).

Theorems D5 and D6 are easily proved from the basic definition of remainder—that
is, that for some integer q it satisfies

n = qd + rem(n, d) with 0 ≤ rem(n, d) < |d|,

provided n ≥ 0 and d ≠ 0 (n and d can be non-integers, but we will use these
theorems only for integers).

9–2 Multiword Division
As in the case of multiword multiplication, multiword division can be done by the
traditional grade-school method. The details, however, are surprisingly complicated.
Figure 9–1 is Knuth’s Algorithm D [Knu2, 4.3.1], coded in C. The underlying form of
division it uses is . (Actually, the quotient of these underlying
division operations is at most 17 bits long.)

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images8.html#p09fig01

Chapter 9. Integer Division

int divmnu(unsigned short q[], unsigned short r[],
 const unsigned short u[], const unsigned short v[],
 int m, int n) {

 const unsigned b = 65536; // Number base (16 bits).
 unsigned short *un, *vn; // Normalized form of u, v.
 unsigned qhat; // Estimated quotient digit.
 unsigned rhat; // A remainder.
 unsigned p; // Product of two digits.
 int s, i, j, t, k;

 if (m < n || n <= 0 || v[n-1] == 0)
 return 1; // Return if invalid param.

 if (n == 1) { // Take care of
 k = 0; // the case of a
 for (j = m - 1; j >= 0; j--) { // single-digit
 q[j] = (k*b + u[j])/v[0]; // divisor here.
 k = (k*b + u[j]) - q[j]*v[0];
 }
 if (r != NULL) r[0] = k;
 return 0;
 }

 // Normalize by shifting v left just enough so that
 // its high-order bit is on, and shift u left the
 // same amount. We may have to append a high-order
 // digit on the dividend; we do that unconditionally.

 s = nlz(v[n-1]) - 16; // 0 <= s <= 16.
 vn = (unsigned short *)alloca(2*n);
 for (i = n - 1; i > 0; i--)
 vn[i] = (v[i] << s) | (v[i-1] >> 16-s);
 vn[0] = v[0] << s;

 un = (unsigned short *)alloca(2*(m + 1));
 un[m] = u[m-1] >> 16-s;
 for (i = m - 1; i > 0; i--)
 un[i] = (u[i] << s) | (u[i-1] >> 16-s);
 un[0] = u[0] << s;
 for (j = m - n; j >= 0; j--) { // Main loop.
 // Compute estimate qhat of q[j].
 qhat = (un[j+n]*b + un[j+n-1])/vn[n-1];
 rhat = (un[j+n]*b + un[j+n-1]) - qhat*vn[n-1];
again:
 if (qhat >= b || qhat*vn[n-2] > b*rhat + un[j+n-2])
 { qhat = qhat - 1;
 rhat = rhat + vn[n-1];
 if (rhat < b) goto again;
 }

 // Multiply and subtract.
 k = 0;
 for (i = 0; i < n; i++) {
 p = qhat*vn[i];
 t = un[i+j] - k - (p & 0xFFFF);
 un[i+j] = t;
 k = (p >> 16) - (t >> 16);
 }
 t = un[j+n] - k;
 un[j+n] = t;

 q[j] = qhat; // Store quotient digit.
 if (t < 0) { // If we subtracted too

Chapter 9. Integer Division

 q[j] = q[j] - 1; // much, add back.
 k = 0;
 for (i = 0; i < n; i++) {
 t = un[i+j] + vn[i] + k;
 un[i+j] = t;
 k = t >> 16;
 }
 un[j+n] = un[j+n] + k;
 }
 } // End j.
 // If the caller wants the remainder, unnormalize
 // it and pass it back.
 if (r != NULL) {
 for (i = 0; i < n; i++)
 r[i] = (un[i] >> s) | (un[i + 1] << 16-s);
 }
 return 0;
}

FIGURE 9–1. Multiword integer division, unsigned.

The algorithm processes its inputs and outputs a halfword at a time. Of course, we
would prefer to process a fullword at a time, but it seems that such an algorithm would
require an instruction that does division. We assume here that
either the machine does not have that instruction or it is hard to access from our high-
level language. Although we generally assume the machine has
division, for this problem suffices.

Thus, for this implementation of Knuth’s algorithm, the base b is 65536. See [Knu2]
for most of the explanation of this algorithm.

The dividend u and the divisor v are in “little-endian” order—that is, u[0] and v[0]
are the least significant digits. (The code works correctly on both big- and little-endian
machines.) Parameters m and n are the number of halfwords in u and v, respectively
(Knuth defines m to be the length of the quotient). The caller supplies space for the
quotient q and, optionally, for the remainder r. The space for the quotient must be at
least m – n + 1 halfwords, and for the remainder, n halfwords. Alternatively, a value of
NULL can be given for the address of the remainder to signify that the remainder is not
wanted.

The algorithm requires that the most significant digit of the divisor, v[n – 1], be
nonzero. This simplifies the normalization steps and helps to ensure that the caller has
allocated sufficient space for the quotient. The code checks that v[n – 1] is nonzero,
and also the requirements that n ≥ 1 and m ≥ n. If any of these conditions are violated,
it returns with an error code (return value 1).

After these checks, the code performs the division for the simple case in which the
divisor is of length 1. This case is not singled out for speed; the rest of the algorithm
requires that the divisor be of length 2 or more.

If the divisor is of length 2 or more, the algorithm normalizes the divisor by shifting
it left just enough so that its high-order bit is 1. The dividend is shifted left the same
amount, so the quotient is not changed by these shifts. As explained by Knuth, these
steps are necessary to make it easy to guess each quotient digit with good accuracy.
The number of leading zeros function, nlz(x), is used to determine the shift amount.

In the normalization steps, new space is allocated for the normalized dividend and
divisor. This is done because it is generally undesirable, from the caller’s point of view,
to alter these input arguments, and because it may be impossible to alter them—they

Chapter 9. Integer Division

may be constants in read-only memory. Furthermore, the dividend may need an
additional high-order digit. C’s “alloca” function is ideal for allocating this space. It is
usually implemented very efficiently, requiring only two or three in-line instructions to
allocate the space and no instructions at all to free it. The space is allocated on the
program’s stack, in such a way that it is freed automatically upon subroutine return.

In the main loop, the quotient digits are cranked out one per loop iteration, and the
dividend is reduced until it becomes the remainder. The estimate qhat of each quotient
digit, after being refined by the steps in the loop labeled again, is always either exact or
too high by 1.

The next steps multiply qhat by the divisor and subtract the product from the
current remainder, as in the grade-school method. If the remainder is negative, it is
necessary to decrease the quotient digit by 1 and either re-multiply and subtract or,
more simply, adjust the remainder by adding the divisor to it. This need be done at
most once, because the quotient digit was either exact or 1 too high.

Lastly, the remainder is given back to the caller if the address of where to put it is
non-null. The remainder must be shifted right by the normalization shift amount s.

The “add back” steps are executed only rarely. To see this, observe that the first
calculation of each estimated quotient digit qhat is done by dividing the most significant
two digits of the current remainder by the most significant digit of the divisor. The
steps in the “again” loop amount to refining qhat to be the result of dividing the most
significant three digits of the current remainder by the most significant two digits of the
divisor (proof omitted; convince yourself of this by trying some examples using b = 10).
Note that the divisor is greater than or equal to b/2 (because of normalization), and the
dividend is less than or equal to b times the divisor (because each remainder is less
than the divisor).

How accurate is the quotient estimated by using only three dividend digits and two
divisor digits? Because normalization was done, it can be shown to be quite accurate.
To see this somewhat intuitively (not a formal proof), consider estimating u / v in this
way for base ten arithmetic. It can be shown that the estimate is always high (or
exact). Thus, the worst case occurs if truncation of the divisor to two digits decreases
the divisor by as much as possible in the sense of relative error, and truncation of the
dividend to three digits decreases it by as little as possible (which is 0), and if the
dividend is as large as possible. This occurs for the case 49900...0/5099...9, which we
estimate by 499/50 = 9.98. The true result is approximately 499/51 ≈ 9.7843. The
difference of 0.1957 reveals that the estimated quotient digit and the true quotient
digit, which are the floor functions of these ratios, will differ by at most 1, and this will
occur about 20% of the time (assuming the quotient digits are uniformly distributed).
This, in turn, means that the “add back” steps will be executed about 20% of the time.

Carrying out this (non-rigorous) analysis for a general base b yields the result that
the estimated and true quotients differ by at most 2 / b. For b = 65536, we again
obtain the result that the difference between the estimated and true quotient digits is
at most 1, and this occurs with probability 2/65536 ≈ 0.00003. Thus, the “add back”
steps are executed for only about 0.003% of the quotient digits.

An example that requires the add back step is, in decimal, 4500/501. A similar
example for base 65536 is 0x7FFF8000 00000000/0x8000 00000001.

We will not attempt to estimate the running time of this entire program, but simply
note that for large m and n, the execution time is dominated by the multiply/subtract
loop. On a good compiler this will compile into about 16 basic RISC instructions, one of
which is multiply. The “for j” loop is executed m – n + 1 times, and the
multiply/subtract loop n times, giving an execution time for this part of the program of

Chapter 9. Integer Division

(15 + mul)n(m – n + 1) cycles, where mul is the time to multiply two 16-bit variables.
The program also executes m – n + 1 divide instructions and one number of leading
zeros instruction.

Signed Multiword Division

We do not give an algorithm specifically for signed multiword division, but merely point
out that the unsigned algorithm can be adapted for this purpose as follows:

1. Negate the dividend if it is negative, and similarly for the divisor.
2. Convert the dividend and divisor to unsigned representation.
3. Use the unsigned multiword division algorithm.
4. Convert the quotient and remainder to signed representation.
5. Negate the quotient if the dividend and divisor had opposite signs.
6. Negate the remainder if the dividend was negative.

These steps sometimes require adding or deleting a most significant digit. For example,
assume for simplicity that the numbers are represented in base 256 (one byte per
digit), and that in the signed representation, the high-order bit of the sequence of
digits is the sign bit. This is much like ordinary two’s-complement representation. Then,
a divisor of 255, which has signed representation 0x00FF, must be shortened in step 2
to 0xFF. Similarly, if the quotient from step 3 begins with a 1-bit, it must be provided
with a leading 0-byte for correct representation as a signed quantity.

9–3 Unsigned Short Division from Signed Division
By “short division” we mean the division of one single word by another (e.g., 32÷32
32). It is the form of division provided by the “/” operator, when the operands are
integers, in C and many other high-level languages. C has both signed and unsigned
short division, but some computers provide only signed division in their instruction
repertoire. How can you implement unsigned division on such a machine? There does
not seem to be any really slick way to do it, but we offer some possibilities here.

Using Signed Long Division

Even if the machine has signed long division (64÷32 32), unsigned short division is
not as simple as you might think. In the XLC compiler for the IBM RS/6000, it is
implemented as illustrated below for .

The third line is really testing to see if . If d is algebraically less than or
equal to 1 at this point, then because it is not equal to 1 (from the second line), it
must be algebraically less than or equal to 0. We don’t care about the case d = 0, so
for the cases of interest, if the test on the third line evaluates to true, the sign bit of d

is on, that is, . Because from the first line it is known that , and
32

Chapter 9. Integer Division

because n cannot exceed 2 – 1, .
The notation on the fourth line means to form the double-length integer consisting

of 32 0-bits followed by the 32-bit quantity n, and divide it by d. The test for d = 1
(second line) is necessary to ensure that this division does not overflow (it would

overflow if , and then the quotient would be undefined).

By commoning the comparisons on the second and third lines,3 the above can be
implemented in 11 instructions, three of which are branches. If it is necessary that the
divide be executed when d = 0, to get the overflow interrupt, then the third line can
be changed to “else if d < 0 then q ← 1,” giving a 12-instruction solution on the
RS/6000.

It is a simple matter to alter the above code so that the probable usual cases

 do not go through so many tests (begin with if d ≤ 1 ...), but the
code volume increases slightly.

Using Signed Short Division

This section is written for a 32-bit machine, but it applies to a 64-bit machine (that is,
getting unsigned 64÷64 64 division from the same form of signed division) by
changing all occurrences of 31 to 63. It can be used to get unsigned division in Java,
which lacks unsigned integers.

If signed long division is not available, but signed short division is, then can
be implemented by somehow reducing the problem to the case n, d < 231 and using

the machine’s divide instruction. If , then can only be 0 or 1, so this
case is easily dispensed with. Then, we can reduce the dividend by using the fact that
the expression (approximates with an error of only 0 or 1.
This leads to the following method:

The test d < 0 on line 1 is really testing to determine if . If , then
the largest the quotient could be is (232 – 1) ÷ 231 = 1, so the first two lines compute
the correct quotient.

Line 4 represents the code shift right unsigned 1, divide, shift left 1. Clearly,

, and at this point as well, so these quantities can be used in
the computer’s signed division instruction. (If d = 0, overflow will be signaled here.)

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch09fn3

Chapter 9. Integer Division

The estimate computed at line 4 is

where we have used the corollary of Theorem D3. Line 5 computes the remainder
corresponding to the estimated quotient. It is

Thus, 0 ≤ r < 2d. If r < d, then q is the correct quotient. If r ≥ d, then adding 1 to q
gives the correct quotient (the program must use an unsigned comparison here,
because of the possibility that r ≥ 231).

By moving the load immediate of 0 into q ahead of the comparison , and
coding the assignment q ← 1 in line 2 as a branch to the assignment q ← q + 1 in
line 6, this can be coded in 14 instructions on most machines, four of which are
branches. It is straightforward to augment the code to produce the remainder as well:
to line 1 append r ← n, to line 2 append r ← n – d, and to the “then” clause in line 6
append r ← r – d. (Or, at the cost of a multiply, simply append r ← n – qd to the end
of the whole sequence.)

An alternative for lines 1 and 2 is

which can be coded a little more compactly, for a total of 13 instructions, three of
which are branches. But it executes more instructions in what is probably the usual
case (small numbers with n > d).

Using predicate expressions, the program can be written

which saves two branches if there is a way to evaluate the predicates without
branching. On the basic RISC they can be evaluated in one instruction (CMPGEU); on
MIPS they take two (SLTU, XORI). On most computers, they can be evaluated in four
instructions each (three if equipped with a full set of logic instructions), by using the

expression for given in “Comparison Predicates” on page 23, and simplifying
because on line 1 of the program above it is known that d31 = 1, and on line 5 it is

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_23

Chapter 9. Integer Division

known that d31 = 0. The expression simplifies to

We can get branch-free code by forcing the dividend to be 0 when . Then,
the divisor can be used in the machine’s signed divide instruction, because when it is
misinterpreted as a negative number, the result is set to 0, which is within 1 of being
correct. We’ll still handle the case of a large dividend by shifting it one position to the
right before the division, and then shifting the quotient one position to the left after the
division. This gives the following program (ten basic RISC instructions):

9–4 Unsigned Long Division
By “long division” we mean the division of a doubleword by a single word. For a 32-bit
machine, this is division, with the result unspecified in the overflow
cases, including division by 0.

Some 32-bit machines provide an instruction for unsigned long division. Its full
capability, however, gets little use, because only division is
accessible with most high-level languages. Therefore, a computer designer might elect
to provide only division and would probably want an estimate of the
execution time of a subroutine that implements the missing function. Here we give two
algorithms for providing this missing function.

Hardware Shift-and-Subtract Algorithms

As a first attempt at doing long division, we consider doing what the hardware does.
There are two algorithms commonly used, called restoring and nonrestoring division
[H&P, sec. A-2; EL]. They are both basically “shift-and-subtract” algorithms. In the
restoring version, shown below, the restoring step consists of adding back the divisor
when the subtraction gives a negative result. Here x, y, and z are held in 32-bit
registers. Initially, the double-length dividend is x || y, and the divisor is z. We need a
single-bit register c to hold the overflow from the subtraction.

Chapter 9. Integer Division

Upon completion, the quotient is in register y and the remainder is in register x.
The algorithm does not give a useful result in the overflow cases. For division of the

doubleword quantity x || y by 0, the quotient obtained is the one’s-complement of x,
and the remainder obtained is y. In particular, rem 0. The other
overflow cases are difficult to characterize.

It might be useful if, for nonzero divisors, the algorithm would give the correct
quotient modulo 232, and the correct remainder. The only way to do this seems to be
to make the register represented by c || x || y above 97 bits long, and do the loop 64
times. This is doing division. The subtractions would still be 33-bit
operations, but the additional hardware and execution time make this refinement
probably not worthwhile.

This algorithm is difficult to implement exactly in software, because most machines
do not have the 33-bit register that we have represented by c || x. Figure 9–2 ,
however, illustrates a shift-and-subtract algorithm that reflects the hardware algorithm
to some extent.

The variable t is used for a device to make the comparison come out right. We
want to do a 33-bit comparison after shifting x || y. If the first bit of x is 1 (before the
shift), then certainly the 33-bit quantity is greater than the divisor (32 bits). In this
case, x | t is all 1’s, so the comparison gives the correct result (true). On the other
hand, if the first bit of x is 0, then a 32-bit comparison is sufficient.

The code of the algorithm in Figure 9–2 executes in 321 to 385 basic RISC
instructions, depending upon how often the comparison is true. If the machine has
shift left double, the shifting operation can be done in one instruction, rather than the
four used above. This would reduce the execution time to about 225 to 289 instructions
(we are allowing two instructions per iteration for loop control).

The algorithm in Figure 9–2 can be used to do division by
supplying x = 0. The only simplification that results is that the variable t can be
omitted, as its value would always be 0.

unsigned divlu(unsigned x, unsigned y, unsigned z) {
 // Divides (x || y) by z.
 int i;
 unsigned t;

 for (i = 1; i <= 32; i++) {
 t = (int)x >> 31; // All 1’s if x(31) = 1.
 x = (x << 1) | (y >> 31); // Shift x || y left
 y = y << 1; // one bit.
 if ((x | t) >= z) {

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images8.html#p09fig02

Chapter 9. Integer Division

 x = x - z;
 y = y + 1;
 }
 }
 return y; // Remainder is x.
}

FIGURE 9–2. Divide long unsigned, shift-and-subtract algorithm.

On the next page is the nonrestoring hardware division algorithm (unsigned). The
basic idea is that, after subtracting the divisor z from the 33-bit quantity that we denote
by c || x, there is no need to add back z if the result was negative. Instead, it suffices
to add on the next iteration rather than subtract. This is because adding z (to correct
the error of having subtracted z on the previous iteration), shifting left, and subtracting
z is equivalent to adding z(2(u + z) – z = 2 u + z). The advantage to hardware is that
there is only one add or subtract operation on each loop iteration, and the adder is
likely to be the slowest circuit in the loop.4 An adjustment to the remainder is needed
at the end if it is negative. (No corresponding adjustment of the quotient is required.)

The input dividend is the doubleword quantity x || y, and the divisor is z. Upon
completion, the quotient is in register y and the remainder is in register x.

This does not seem to adapt very well to a 32-bit algorithm.
The 801 minicomputer (an early experimental RISC machine built by IBM) had a

divide step instruction that essentially performed the steps in the body of the loop
above. It used the machine’s carry status bit to hold c and the MQ (a 32-bit register) to
hold y. A 33-bit adder/subtracter is needed for its implementation. The 801’s divide
step instruction was a little more complicated than the loop above, because it

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch09fn4

Chapter 9. Integer Division

performed signed division and it had an overflow check. Using it, a division subroutine
can be written that consists essentially of 32 consecutive divide step instructions
followed by some adjustments to the quotient and remainder to make the remainder
have the desired sign.

Using Short Division

An algorithm for division can be obtained from the multiword
division algorithm of Figure 9–1 on page 185, by specializing it to the case m = 4, n =
2. Several other changes are necessary. The parameters should be fullwords passed by
value, rather than arrays of halfwords. The overflow condition is different; it occurs if
the quotient cannot be contained in a single fullword. It turns out that many
simplifications to the routine are possible. It can be shown that the guess qhat is
always exact; it is exact if the divisor consists of only two halfword digits. This means
that the “add back” steps can be omitted. If the “main loop” of Figure 9–1 and the loop
within it are unrolled, some minor simplifications become possible.

The result of these transformations is shown in Figure 9–3 . The dividend is in u1
and u0, with u1 containing the most significant word. The divisor is parameter v. The
quotient is the returned value of the function. If the caller provides a non-null pointer
in parameter r, the function will return the remainder in the word to which r points.

For an overflow indication, the program returns a remainder equal to the maximum
unsigned integer. This is an impossible remainder for a valid division operation, because
the remainder must be less than the divisor. In the overflow case, the program also
returns a quotient equal to the maximum unsigned integer, which may be an adequate
indicator in some cases in which the remainder is not wanted.

The strange expression (-s >> 31) in the assignment to un32 is supplied to make
the program work for the case s = 0 on machines that have mod 32 shifts (e.g., Intel
x86).

Experimentation with uniformly distributed random numbers suggests that the
bodies of the “again” loops are each executed about 0.38 times for each execution of
the function. This gives an execution time, if the remainder is not wanted, of about 52
instructions. Of these instructions, one is number of leading zeros, two are divide, and
6.5 are multiply (not counting the multiplications by b, which are shift’s). If the
remainder is wanted, add six instructions (counting the store of r), one of which is
multiply.

What about a signed version of divlu? It would probably be difficult to modify the
code of Figure 9–3 , step by step, to produce a signed variant. That algorithm,
however, can be used for signed division by taking the absolute value of the
arguments, running divlu, and then complementing the result if the signs of the
original arguments differ. There is no problem with extreme values such as the
maximum negative number, because the absolute value of any signed integer has a
correct representation as an unsigned integer. This algorithm is shown in Figure 9–4 .

It is hard to devise really good code to detect overflow in the signed case. The
algorithm shown in Figure 9–4 makes a preliminary determination identical to that used
by the unsigned long division routine, which ensures that |u / v| < 232. After that, it is
necessary only to ensure that the quotient has the proper sign or is 0.

unsigned divlu(unsigned u1, unsigned u0, unsigned v,
 unsigned *r) {
 const unsigned b = 65536; // Number base (16 bits).

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images8.html#p09fig03

Chapter 9. Integer Division

 unsigned un1, un0, // Norm. dividend LSD’s.
 vn1, vn0, // Norm. divisor digits.
 q1, q0, // Quotient digits.
 un32, un21, un10, // Dividend digit pairs.
 rhat; // A remainder.
 int s; // Shift amount for norm.

 if (u1 >= v) { // If overflow, set rem.
 if (r != NULL) // to an impossible value,
 *r = 0xFFFFFFFF; // and return the largest
 return 0xFFFFFFFF;} // possible quotient.

 s = nlz(v); // 0 <= s <= 31.
 v = v << s; // Normalize divisor.
 vn1 = v >> 16; // Break divisor up into
 vn0 = v & 0xFFFF; // two 16-bit digits.

 un32 = (u1 << s) | (u0 >> 32 - s) & (-s >> 31);
 un10 = u0 << s; // Shift dividend left.

 un1 = un10 >> 16; // Break right half of
 un0 = un10 & 0xFFFF; // dividend into two digits.

 q1 = un32/vn1; // Compute the first
 rhat = un32 - q1*vn1; // quotient digit, q1.
 again1:
 if (q1 >= b || q1*vn0 > b*rhat + un1) {
 q1 = q1 - 1;
 rhat = rhat + vn1;
 if (rhat < b) goto again1;}

 un21 = un32*b + un1 - q1*v; // Multiply and subtract.

 q0 = un21/vn1; // Compute the second
 rhat = un21 - q0*vn1; // quotient digit, q0.
 again2:
 if (q0 >= b || q0*vn0 > b*rhat + un0) {
 q0 = q0 - 1;
 rhat = rhat + vn1;
 if (rhat < b) goto again2;}

 if (r != NULL) // If remainder is wanted,
 *r = (un21*b + un0 - q0*v) >> s; // return it.
 return q1*b + q0;
 }

FIGURE 9–3. Divide long unsigned, using fullword division instruction.

int divls(int u1, unsigned u0, int v, int *r) {
 int q, uneg, vneg, diff, borrow;

 uneg = u1 >> 31; // -1 if u < 0.
 if (uneg) { // Compute the absolute
 u0 = -u0; // value of the dividend u.
 borrow = (u0 != 0);
 u1 = -u1 - borrow;}

 vneg = v >> 31; // -1 if v < 0.
 v = (v ^ vneg) - vneg; // Absolute value of v.

 if ((unsigned)u1 >= (unsigned)v) goto overflow;

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images8.html#p09fig04

Chapter 9. Integer Division

 q = divlu(u1, u0, v, (unsigned *)r);

 diff = uneg ^ vneg; // Negate q if signs of
 q = (q ^ diff) - diff; // u and v differed.
 if (uneg && r != NULL)
 *r = -*r;

 if ((diff ^ q) < 0 && q != 0) { // If overflow,
overflow: // set remainder
 if (r != NULL) // to an impossible value,
 *r = 0x80000000; // and return the largest
 q = 0x80000000;} // possible neg. quotient.
 return q;
}

FIGURE 9–4. Divide long signed, using divide long unsigned.

9–5 Doubleword Division from Long Division
This section considers how to do 64 ÷ 64 64 division from 64 ÷ 32 32 division, for
both the unsigned and signed cases. The algorithms that follow are most suited to a
machine that has an instruction for long division (64 ÷ 32), at least for the unsigned
case. It is also helpful if the machine has the number of leading zeros instruction. The
machine may have either 32-bit or 64-bit registers, but we will assume that if it has
32-bit registers, then the compiler implements basic operations such as adds and shifts
on 64-bit operands (the “long long” data type in C).

These functions are known as “_ _udivdi3” and “_ _divdi3” in the GNU C world, and
similar names are used here.

Unsigned Doubleword Division

A procedure for this operation is shown in Figure 9–5 .

unsigned long long udivdi3(unsigned long long u,
 unsigned long long v) {

 unsigned long long u0, u1, v1, q0, q1, k, n;

 if (v >> 32 == 0) { // If v < 2**32:
 if (u >> 32 < v) // If u/v cannot overflow,
 return DIVU(u, v) // just do one division.
 & 0xFFFFFFFF;
 else { // If u/v would overflow:
 u1 = u >> 32; // Break u up into two
 u0 = u & 0xFFFFFFFF; // halves.
 q1 = DIVU(u1, v) // First quotient digit.
 & 0xFFFFFFFF;
 k = u1 - q1*v; // First remainder, < v.
 q0 = DIVU((k << 32) + u0, v) // 2nd quot. digit.
 & 0xFFFFFFFF;
 return (q1 << 32) + q0;
 }
 }
 // Here v >= 2**32.
 n = nlz64(v); // 0 <= n <= 31.
 v1 = (v << n) >> 32; // Normalize the divisor
 // so its MSB is 1.
 u1 = u >> 1; // To ensure no overflow.
 q1 = DIVU(u1, v1) // Get quotient from

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images8.html#p09fig05

Chapter 9. Integer Division

 & 0xFFFFFFFF; // divide unsigned insn.
 q0 = (q1 << n) >> 31; // Undo normalization and
 // division of u by 2.
 if (q0 != 0) // Make q0 correct or
 q0 = q0 - 1; // too small by 1.
 if ((u - q0*v) >= v)
 q0 = q0 + 1; // Now q0 is correct.
 return q0;
}

FIGURE 9–5. Unsigned doubleword division from long division.

This code distinguishes three cases: (1) the case in which a single execution of the
machine’s unsigned long division instruction (DIVU) can be used, (2) the case in which
(1) does not apply, but the divisor is a 32-bit quantity, and (3) the cases in which the
divisor cannot be represented in 32 bits. It is not too hard to see that the above code
is correct for cases (1) and (2). For case (2), think of the grade-school method of doing
long division.

Case (3), though, deserves proof, because it is very close to not working in some
cases. Notice that in this case only a single execution of DIVU is needed, but the
number of leading zeros and multiply operations are needed.

For the proof, we need these basics (for integer variables):

From the first line in the section of the procedure of interest (we assume that v ≠
0),

0 ≤ n ≤ 31.

In computing v1, the left shift clearly cannot overflow. Therefore,

In computing q1, u1 and v1 are in range for the DIVU instruction and it cannot
overflow. Hence,

q1 = u1 / v1 .

In the first computation of q0, the left shift cannot overflow because q1 < 232

(because the maximum value of u1 is 263 – 1 and the minimum value of v1 is 231).
Therefore,

q0 = q1/231 – n .

Now, for the main part of the proof, we want to show that

u / v ≤ q ≤ u / v + 1,

Chapter 9. Integer Division

0

which is to say, the first computation of q0 is the desired result or is that plus 1.

Using Equation (2) twice gives

Using Equation (3) gives

Using algebra to get this in the form u / v + something:

This is of the form

and we will now show that δ < 1.

δ is largest when rem(v, 232 – n) is as large as possible and, given that, when v is
as small as possible. The maximum value of rem(v, 232 – n) is 232 – n – 1. Because of
the way n is defined in terms of v, v ≥ 263 – n. Thus, the smallest value of v having
that remainder is

263 – n + 232 – n – 1.

Therefore,

By inspection, for n in its range of 0 to 31,

Chapter 9. Integer Division

Since u is at most 264 – 1, δ < 1. Because and δ < 1 (and
obviously δ ≥ 0),

To correct this result by subtracting 1 when necessary, we would like to code

if (u < q0*v) q0 = q0 - 1;

(i.e., if the remainder u – q0v is negative, subtract 1 from q0). However, this doesn’t
quite work, because q0 v can overflow (e.g., for u = 264 – 1 and v = 232 + 3).
Instead, we subtract 1 from q0, so that it is either correct or too small by 1. Then q0 v
will not overflow. We must avoid subtracting 1 if q0 = 0 (if q0 = 0, it is already the
correct quotient).

Then the final correction is:

if ((u - q0*v) >= v) q0 = q0 - 1;

To see that this is a valid computation, we already noted that q0v does not overflow. It
is easy to show that

0 ≤ u – q0v < 2v.

If v is very large (≥ 263), can the subtraction overflow by trying to produce a result
greater than v? No, because u < 264 and q0v ≥ 0.

Incidentally, there are alternatives to the lines

if (q0 != 0) // Make q0 correct or
 q0 = q0 - 1 // too small by 1.

that may be preferable on some machines. One is to replace them with

if (q0 == 0) return 0;

Another is to place at the beginning of this section of the procedure, or at the
beginning of the whole procedure, the line

if (u < v) return 0; // Avoid a problem later.

These alternatives are preferable if branches are not costly. The code shown in
Figure 9–5 works well if the machine’s comparison instructions produce a 0/1 integer
result in a general register. Then, the compiler can change it to, in effect,

q0 = q0 - (q0 != 0);

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images8.html#p200pro01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images8.html#p201equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images8.html#p201equ02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images8.html#p201equ04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images8.html#p201equ03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images8.html#p201equ05

Chapter 9. Integer Division

(or you can code it that way if your compiler doesn’t do this optimization). This is just a
compare and subtract on such machines.

Signed Doubleword Division

In the signed case, there seems to be no better way to do doubleword division than to
divide the absolute values of the operands, using function udivdi3, and then negate the
sign of the quotient if the operands have different signs. If the machine has a signed
long division instruction, which we designate here as DIVS, then it may be
advantageous to single out the cases in which DIVS can be used rather than invoking
udivdi3. This presumes that these cases are common. Such a function is shown in
Figure 9–6 .

The “#define” in the code in Figure 9–6 uses the GCC facility of enclosing a
compound statement in parentheses to construct an expression, a facility that most C
compilers do not have. Some other compilers may have llabs(x) as a built-in function.

#define llabs(x) \
({unsigned long long t = (x) >> 63; ((x) ^ t) - t;})

long long divdi3(long long u, long long v) {

 unsigned long long au, av;
 long long q, t;

 au = llabs(u);
 av = llabs(v);
 if (av >> 31 == 0) { // If |v| < 2**31 and
 if (au < av << 31) { // |u|/|v| cannot
 q = DIVS(u, v); // overflow, use DIVS.
 return (q << 32) >> 32;
 }
 }
 q = au/av; // Invoke udivdi3.
 t = (u ^ v) >> 63; // If u, v have different
 return (q ^ t) - t; // signs, negate q.
}

FIGURE 9–6. Signed doubleword division from unsigned doubleword division.

The test that v is in range is not precise; it misses the case in which v = –231. If it
is important to use the DIVS instruction in that case, the test

if ((v << 32) >> 32 == v) { // If v is in range and

can be used in place of the third executable line in Figure 9–6 (at a cost of one
instruction). Similarly, the test that |u| / |v| cannot overflow is simplified and a few
“corner cases” will be missed; the code amounts to using δ = 0 in the signed division
overflow test scheme shown in “Division” on page 34.

Exercises

1. Show that for real x, x = – – x .

2. Find branch-free code for computing the quotient and remainder of modulus
division on a basic RISC that has division and remainder instructions for
truncating division.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images8.html#p09fig06
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images8.html#p202equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_34
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch09ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch09ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch09ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch09ans2

Chapter 9. Integer Division

3. Similarly, find branch-free code for computing the quotient and remainder of
floor division on a basic RISC that has division and remainder instructions for
truncating division.

4. How would you compute n / d for unsigned integers n and d, 0 ≤ n ≤ 232 –
1 and 1 ≤ d ≤ 232 – 1? Assume your machine has an unsigned divide
instruction that computes n / d .

5. Theorem D3 states that for x real and d an integer, x / d = x / d .
Show that, more generally, if a function f(x) is (a) continuous, (b)
monotonically increasing, and (c) has the property that if f(x) is an integer then
x is an integer, then f(x) = f(x) [GKP].

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch09ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch09ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch09ans4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch09ans4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch09ans5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch09ans5

Chapter 10. Integer Division By Constants

Chapter 10. Integer Division By Constants

On many computers, division is very time consuming and is to be avoided when
possible. A value of 20 or more elementary add times is not uncommon, and the
execution time is usually the same large value even when the operands are small. This
chapter gives some methods for avoiding the divide instruction when the divisor is a
constant.

10–1 Signed Division by a Known Power of 2
Apparently, many people have made the mistake of assuming that a shift right signed
of k positions divides a number by 2k, using the usual truncating form of division
[GLS2]. It’s a little more complicated than that. The code shown below computes q = n
÷ 2k, for 1 ≤ k ≤ 31 [Hop].

shrsi t,n,k-1 Form the integer
shri t,t,32-k 2**k – 1 if n < 0, else 0.
add t,n,t Add it to n,
shrsi q,t,k and shift right (signed).

It is branch free. It simplifies to three instructions in the common case of division by 2
(k = 1). It does, however, rely on the machine’s being able to shift by a large amount
in a short time. The case k = 31 does not make too much sense, because the number
231 is not representable in the machine. Nevertheless, the code does produce the
correct result in that case (which is q = –1 if n = –231and q = 0 for all other n).

To divide by –2 k, the above code can be followed by a negate instruction. There
does not seem to be any better way to do it.

The more straightforward code for dividing by 2k is

 bge n,label Branch if n >= 0.
 addi n,n,2**k-1 Add 2**k - 1 to n,
 label shrsi n,n,k and shift right (signed).

This would be preferable on a machine with slow shifts and fast branches.
PowerPC has an unusual device for speeding up division by a power of 2 [GGS]. The

shift right signed instructions set the machine’s carry bit if the number being shifted is
negative and one or more 1-bits are shifted out. That machine also has an instruction
for adding the carry bit to a register, denoted addze. This allows division by any
(positive) power of 2 to be done in two instructions:

shrsi q,n,k
addze q,q

A single shrsi of k positions does a kind of signed division by 2k that coincides with
both modulus and floor division. This suggests that one of these might be preferable to
truncating division for computers and HLL’s to use. That is, modulus and floor division
mesh with shrsi better than does truncating division, permitting a compiler to translate
the expression n / 2 to an shrsi. Furthermore, shrsi followed by neg (negate) does

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p205equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p205equ02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p206pro01

Chapter 10. Integer Division By Constants

modulus division by –2k, which is a hint that maybe modulus division is best. (This is
mainly an aesthetic issue. It is of little practical significance, because division by a
negative constant is no doubt extremely rare.)

10–2 Signed Remainder from Division by a Known Power of 2

If both the quotient and remainder of n ÷ 2k are wanted, it is simplest to compute the
remainder r from r = n – q * 2k This requires only two instructions after computing the
quotient q:

shli r,q,k
sub r,n,r

To compute only the remainder seems to require about four or five instructions.
One way to compute it is to use the four-instruction sequence above for signed division
by 2k, followed by the two instructions shown immediately above to obtain the
remainder. This results in two consecutive shift instructions that can be replaced by an
and, giving a solution in five instructions (four if k = 1):

shrsi t,n,k-1 Form the integer
shri t,t,32-k 2**k - 1 if n < 0, else 0.
add t,n,t Add it to n,
andi t,t,-2**k clear rightmost k bits,
sub r,n,t and subtract it from n.

Another method is based on

To use this, first compute , and then

r ← ((abs(n) & (2k– 1)) t) – t

(five instructions) or, for k = 1, since (– n) & 1 = n & 1,

r ← ((n & 1) t) – t

(four instructions). This method is not very good for k > 1 if the machine does not
have absolute value (computing the remainder would then require six instructions).

Still another method is based on

This leads to

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p206pro02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p206equ01

Chapter 10. Integer Division By Constants

(five instructions for k > 1, four for k = 1).
The above methods all work for 1 ≤ k ≤ 31.

Incidentally, if shift right signed is not available, the value that is 2k – 1 for n < 0
and 0 for n ≥ 0 can be constructed from

which adds only one instruction.

10–3 Signed Division and Remainder by Non-Powers of 2
The basic trick is to multiply by a sort of reciprocal of the divisor d, approximately
232/d, and then to extract the leftmost 32 bits of the product. The details, however,
are more complicated, particularly for certain divisors such as 7.

Let us first consider a few specific examples. These illustrate the code that will be
generated by the general method. We denote registers as follows:

n – the input integer (numerator)
M – loaded with a “magic number”
t - a temporary register
q - will contain the quotient
r - will contain the remainder

Division by 3

li M,0x55555556 Load magic number, (2**32+2)/3.
mulhs q,M,n q = floor(M*n/2**32).
shri t,n,31 Add 1 to q if
add q,q,t n is negative.

muli t,q,3 Compute remainder from
sub r,n,t r = n - q*3.

Proof. The multiply high signed operation (mulhs) cannot overflow, as the product of
two 32-bit integers can always be represented in 64 bits and mulhs gives the high-
order 32 bits of the 64-bit product. This is equivalent to dividing the 64-bit product by
232 and taking the floor of the result, and this is true whether the product is positive or
negative. Thus, for n ≥ 0 the above code computes

Now, n < 231, because 231 – 1 is the largest representable positive number. Hence,
the “error” term 2n / (3 · 232) is less than 1/3 (and is nonnegative), so by Theorem D4
(page 183) we have q = n / 3 , which is the desired result (Equation (1) on page

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p207equ05
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_183

Chapter 10. Integer Division By Constants

182).
For n < 0, there is an addition of 1 to the quotient. Hence the code computes

where we have used Theorem D2. Hence

For –231 ≤ n ≤ –1,

The error term is nonpositive and greater than –1 / 3, so by Theorem D4 q = n / 3 ,
which is the desired result (Equation (1) on page 182).

This establishes that the quotient is correct. That the remainder is correct follows
easily from the fact that the remainder must satisfy

n = qd + r,

the multiplication by 3 cannot overflow (because –231 / 3 ≤ q ≤ (231 – 1) / 3), and
the subtract cannot overflow because the result must be in the range –2 to +2.

The multiply immediate can be done with two add’s, or a shift and an add, if either
gives an improvement in execution time.

On many present-day RISC computers, the quotient can be computed as shown
above in nine or ten cycles, whereas the divide instruction might take 20 cycles or so.

Division by 5

For division by 5, we would like to use the same code as for division by 3, except with
a multiplier of (232 + 4) / 5. Unfortunately, the error term is then too large; the result
is off by 1 for about 1/5 of the values of n ≥ 230 in magnitude. However, we can use a
multiplier of (233 + 3) / 5 and add a shift right signed instruction. The code is

li M,0x66666667 Load magic number, (2**33+3)/5.
mulhs q,M,n q = floor(M*n/2**32).
shrsi q,q,1
shri t,n,31 Add 1 to q if
add q,q,t n is negative.

muli t,q,5 Compute remainder from
sub r,n,t r = n - q*5.

Proof. The mulhs produces the leftmost 32 bits of the 64-bit product, and then the
code shifts this right by one position, signed (or “arithmetically”). This is equivalent to
dividing the product by 233 and then taking the floor of the result. Thus, for n ≥ 0 the
code computes

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_182
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_182
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p209equ01

Chapter 10. Integer Division By Constants

For 0 ≤ n < 231, the error term 3n / 5 · 233 is nonnegative and less than 1/5, so by
Theorem D4, q = n / 5 .

For n < 0, the above code computes

The error term is nonpositive and greater than –1/5, so q = n / 5 .
That the remainder is correct follows as in the case of division by 3.
The multiply immediate can be done with a shift left of two and an add.

Division by 7

Dividing by 7 creates a new problem. Multipliers of (232 + 3) / 7 and (233 + 6) / 7
give error terms that are too large. A multiplier of (234 + 5) / 7 would work, but it’s too
large to represent in a 32-bit signed word. We can multiply by this large number by
multiplying by (234 + 5) / 7 – 232 (a negative number), and then correcting the
product by inserting an add. The code is

li M,0x92492493 Magic num, (2**34+5)/7 - 2**32.
mulhs q,M,n q = floor(M*n/2**32).
add q,q,n q = floor(M*n/2**32) + n.
shrsi q,q,2 q = floor(q/4).
shri t,n,31 Add 1 to q if
add q,q,t n is negative.

muli t,q,7 Compute remainder from
sub r,n,t r = n - q*7.

Proof. It is important to note that the instruction “add q,q,n” above cannot
overflow. This is because q and n have opposite signs, due to the multiplication by a
negative number. Therefore, this “computer arithmetic” addition is the same as real
number addition. Hence for n ≥ 0 the above code computes

where we have used the corollary of Theorem D3.

For 0 ≤ n ≤ 231, the error term 5n/ 7 · 234 is nonnegative and less than 1/7, so q
= n / 7 .

For n < 0, the above code computes

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p210equ01

Chapter 10. Integer Division By Constants

The error term is nonpositive and greater than –1/7, so q = n / 7

The multiply immediate can be done with a shift left of three and a subtract.

10–4 Signed Division by Divisors ≥ 2
At this point you may wonder if other divisors present other problems. We see in this
section that they do not; the three examples given illustrate the only cases that arise
(for d ≥ 2).

Some of the proofs are a bit complicated, so to be cautious, the work is done in
terms of a general word size W.

Given a word size W ≥ 3 and a divisor d, 2 ≤ d ≤ 2W – 1 we wish to find the least
integer m and integer p such that

with 0 ≤ m< 2W and p ≥ W.
The reason we want the least integer m is that a smaller multiplier may give a

smaller shift amount (possibly zero) or may yield code similar to the “divide by 5”
example, rather than the “divide by 7” example. We must have m ≤ 2W– 1 so the code
has no more instructions than that of the “divide by 7” example (that is, we can handle
a multiplier in the range 2W –1 to 2W– 1 by means of the add that was inserted in the
“divide by 7” example, but we would rather not deal with larger multipliers). We must
have p ≥ W, because the generated code extracts the left half of the product mn,
which is equivalent to shifting right W positions. Thus, the total right shift is W or more
positions.

There is a distinction between the multiplier m and the “magic number,” denoted M.
The magic number is the value used in the multiply instruction. It is given by

Because (1b) must hold for n = –d, – md/ 2p + 1 = –1, which implies

Let nc be the largest (positive) value of n such that rem(nc, d) = d – 1. nc exists
W – 1

Chapter 10. Integer Division By Constants

because one possibility is nc = d – 1. It can be calculated from nc = 2 / d d
– 1 = 2W – 1 – rem(2W –1 , d) – 1. nc is one of the highest d admissible values of n, so

and, clearly

Because (1a) must hold for n = nc

or

Combining this with (2) gives

Because m is to be the least integer satisfying (4), it is the next integer greater than
2p / d; that is,

Combining this with the right half of (4) and simplifying gives

The Algorithm

Thus, the algorithm to find the magic number M and the shift amount s from d is to
first compute nc, and then solve (6) for p by trying successively larger values. If p <
W, set p = W (the theorem below shows that this value of p also satisfies (6)). When
the smallest p ≥ W satisfying (6) is found, m is calculated from (5). This is the smallest
possible value of m, because we found the smallest acceptable p, and from (4) clearly
smaller values of p yield smaller values of m. Finally, s = p– W and M is simply a
reinterpretation of m as a signed integer (which is how the mulhs instruction interprets
it).

Forcing p to be at least W is justified by the following:

Chapter 10. Integer Division By Constants

THEOREM DC1. If(6) is true for some value of p, then it is true for all larger values of
p.

Proof. Suppose (6) is true for p = p0. Multiplying (6) by 2 gives

2p0 +1 > nc(2 d – 2rem(2p0, d)).

From Theorem D5, rem(2p0 +1, d) ≥ 2rem(2p0, d) – d. Combining gives

2p00 +1 > nc((2d – (rem(2p0 + 1, d) + d)), or
2p 0 +1 > nc(d – rem(2p0 +1, d)).

Therefore, (6) is true for p = p0 + 1, and hence for all larger values.

Thus, one could solve (6) by a binary search, although a simple linear search
(starting with p = W) is probably preferable, because usually d is small, and small
values of d give small values of p.

Proof That the Algorithm Is Feasible

We must show that (6) always has a solution and that 0 ≤ m < 2W. (It is not necessary
to show that p ≥ W, because that is forced.)

We show that (6) always has a solution by getting an upper bound on p. As a
matter of general interest, we also derive a lower bound under the assumption that p is
not forced to be at least W. To get these bounds on p, observe that for any positive
integer x, there is a power of 2 greater than x and less than or equal to 2x. Hence,
from (6),

nc(d – rem(2p, d)) < 2p ≤ 2nc((d – rem(2p, d)).

Because 0 ≤ rem(2p, d) ≤ d – 1,

From (3a) and (3b), nc ≥ max(2W – 1 – d, d – 1). The lines f1(d) = 2W –1 – d and
f2(d) = d – 1 cross at d = (2W –1 + 1) / 2. Hence nc ≥ (2W –1 – 1) / 2. Because nc is
an integer, nc ≥ 2W –2 . Because nc, d ≤ 2W – 1 – 1, (7) becomes

2w –2 + 1 ≤ 2p ≤ 2(2w – 1 – 1)2

or

The lower bound p = W – 1 can occur (e.g., for W = 32, d = 3), but in that case
we set p = W.

If p is not forced to equal W, then from (4) and (7),

Chapter 10. Integer Division By Constants

Using (3b) gives

Because nc ≤ 2W –1 – 1 (3a),

2 ≤ m ≤ 2w – 1.

If p is forced to equal W, then from (4),

Because 2 ≤ d ≤ 2W –1 – 1 and nc ≥ 2W –2 ,

Hence in either case m is within limits for the code schema illustrated by the “divide
by 7” example.

Proof That the Product Is Correct

We must show that if p and m are calculated from (6) and (5), then Equations (1a) and
(1b) are satisfied.

Equation (5) and inequality (6) are easily seen to imply (4). (In the case that p is
forced to be equal to W, (6) still holds, as shown by Theorem DC1.) In what follows,
we consider separately the following five ranges of values of n:

From (4), because m is an integer,

Multiplying by n / 2p, for n ≥ 0 this becomes

Chapter 10. Integer Division By Constants

For 0 ≤ n ≤ nc, 0 ≤ (2p – 1) n / (2pdnc) < 1 / d, so by Theorem D4,

Hence (1a) is satisfied in this case (0 ≤ n ≤ nc).

For n > nc, n is limited to the range

because n ≥ nc + d contradicts the choice of nc as the largest value of n such that
rem(nc, d) = d – 1 (alternatively, from (3a), n ≥ nc + d implies n ≥ 2W – 1). From (4),
for n ≥ 0,

By elementary algebra, this can be written

From (9), 1 ≤ n – nc ≤ d – 1, so

Because nc ≥ d – 1 (by (3b)) and (nc + 1) / nc has its maximum when nc has its
minimum,

In (10), the term (nc + 1) / d is an integer. The term (n – nc)(nc + 1) / dnc is less
than or equal to 1. Therefore, (10) becomes

Chapter 10. Integer Division By Constants

For all n in the range (9), n/ d = (nc + 1) / d. Hence, (1a) is satisfied in this case
(nc + 1 ≤ n ≤ nc + d – 1).

For n < 0, from (4) we have, because m is an integer,

Multiplying by n / 2p, for n < 0 this becomes

or

Using Theorem D2 gives

Because n + 1 ≤ 0, the right inequality can be weakened, giving

For –nc ≤ n ≤ –1,

Hence, by Theorem D4,

Chapter 10. Integer Division By Constants

so that (1b) is satisfied in this case (–nc ≤ n ≤ –1).

For n < –nc, n is limited to the range

(From (3a), n < – nc – d implies that n < –2W – 1, which is impossible.) Performing
elementary algebraic manipulation of the left comparand of (11) gives

For – nc – d + 1 ≤ n ≤ – nc – 1,

The ratio (nc + 1) / nc is a maximum when nc is a minimum; that is, nc = d – 1.

Therefore,

From (13), because (– nc – 1) / d is an integer and the quantity added to it is between
0 and –1,

For n in the range – nc – d + 1 ≤ n ≤ – nc – 1,

Hence, mn/ 2p + 1 = n / d —that is, (1b) is satisfied.

The last case, n = – nc – d, can occur only for certain values of d. From (3a), – nc
– d ≤ –2W – 1, so if n takes on this value, we must have n = – nc – d = –2W –1 , and
hence nc = 2W –1 – d. Therefore, rem(2W – 1, d) = rem(nc + d, d) = d – 1 (that is, d

Chapter 10. Integer Division By Constants

divides 2W –1 + 1).
For this case (n = – nc – d), (6) has the solution p = W – 1 (the smallest possible

value of p), because for p = W – 1,

Then from (5),

Therefore,

so that (1b) is satisfied.
This completes the proof that if m and p are calculated from (5) and (6), then

Equations (1a) and (1b) hold for all admissible values of n.

10–5 Signed Division by Divisors ≤ –2
Because signed integer division satisfies n ÷ (–d) = –(n ÷ d), it is adequate to
generate code for n ÷ |d| and follow it with an instruction to negate the quotient. (This
does not give the correct result for d = –2W –1 , but for this and other negative powers
of 2, you can use the code in Section 10–1, “Signed Division by a Known Power of 2,”
on page 205, followed by a negating instruction.) It will not do to negate the dividend,
because of the possibility that it is the maximum negative number.

It is possible to avoid the negating instruction. The scheme is to compute

Adding 1 if n > 0 is awkward (because one cannot simply use the sign bit of n), so the
code will instead add 1 if q < 0. This is equivalent, because the multiplier m is negative
(as will be seen).

The code to be generated is illustrated below for the case W = 32, d = –7.

li M,0x6DB6DB6D Magic num, -(2**34+5)/7 + 2**32.
mulhs q,M,n q = floor(M*n/2**32).

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p218equ03

Chapter 10. Integer Division By Constants

sub q,q,n q = floor(M*n/2**32) - n.
shrsi q,q,2 q = floor(q/4).
shri t,q,31 Add 1 to q if
add q,q,t q is negative (n is positive).

muli t,q,-7 Compute remainder from
sub r,n,t r = n - q*(-7).

This code is the same as that for division by +7, except that it uses the negative of
the multiplier for +7, and a sub rather than an add after the multiply, and the shri of
31 must use q rather than n, as discussed above. (The case of d = +7 could also use q
here, but there would be less parallelism in the code.) The subtract will not overflow,
because the operands have the same sign. This scheme, however, does not always
work! Although the code above for W = 32, d = –7 is correct, the analogous alteration
of the “divide by 3” code to produce code to divide by –3 does not give the correct
result for W = 32, n = –231.

Let us look at the situation more closely.

Given a word size W ≥ 3 and a divisor d, –2W –1 ≤ d ≤ –2, we wish to find the
least (in absolute value) integer m and integer p such that

with –2W ≤ m ≤ 0 and p ≥ W.
Proceeding similarly to the case of division by a positive divisor, let nc be the most

negative value of n such that nc = kd + 1 for some integer k. nc exists, because one
possibility is nc = d + 1. It can be calculated from nc = (– 2W –1 – 1) / d d + 1 =
– 2W – 1 + rem(2W –1 + 1, d). nc is one of the least |d| admissible values of n, so

and, clearly

Because (14b) must hold for n = – d, and (14a) must hold for n = nc, we obtain,
analogous to (4),

Because m is to be the greatest integer satisfying (16), it is the next integer less than
2p / d—that is,

Chapter 10. Integer Division By Constants

Combining this with the left half of (16) and simplifying gives

The proof that the algorithm suggested by (17) and (18) is feasible, and that the
product is correct, is similar to that for a positive divisor, and will not be repeated. A
difficulty arises in trying to prove that – 2W ≤ m ≤ 0. To prove this, consider separately
the cases in which d is the negative of a power of 2, or some other number. For d = –
2k, it is easy to show that nc = –2w – 1 + 1, p = W + k – 1, and m = – 2w –1 –1
(which is within range). For d not of the form –2k, it is straightforward to alter the
earlier proof.

For Which Divisors Is m (–d) ≠ – m (d)?

By m(d) we mean the multiplier corresponding to a divisor d. If m(–d) = –m(d), code
for division by a negative divisor can be generated by calculating the multiplier for |d|,
negating it, and then generating code similar to that of the “divide by –7” case
illustrated above.

By comparing (18) with (6) and (17) with (5), it can be seen that if the value of nc
for –d is the negative of that for d, then m(–d) = –m(d). Hence, m(–d) ≠ m(d) can
occur only when the value of nc calculated for the negative divisor is the maximum
negative number, –2W – 1. Such divisors are the negatives of the factors of 2W –1 + 1.
These numbers are fairly rare, as illustrated by the factorings below (obtained from
Scratchpad).

215 + 1 = 3 · 11 · 331

231 + 1 = 3 · 715,827,883

263 + 1 = 33 · 19 · 43 · 5419 · 77,158,673,929

For all these factors, m(–d) ≠ m(d). Proof sketch: For d > 0 we have nc = 2w – 1 – d.
Because rem(2w – 1, d) = d – 1, (6) is satisfied by p = W – 1 and hence also by p =
W. For d < 0, however, we have nc = –2W – 1 and rem(2w – 1, d) = |d| –1. Hence,
(18) is not satisfied for p = W – 1 or for p = W, so p > W.

10–6 Incorporation into a Compiler
For a compiler to change division by a constant into a multiplication, it must compute
the magic number M and the shift amount s, given a divisor d. The straightforward
computation is to evaluate (6) or (18) for p = W, W +1, ... until it is satisfied. Then, m
is calculated from (5) or (17). M is simply a reinterpretation of m as a signed integer,
and s = p − W.

The scheme described below handles positive and negative d with only a little extra

Chapter 10. Integer Division By Constants

code, and it avoids doubleword arithmetic.
Recall that nc is given by

Hence, |nc| can be computed from

The remainder must be evaluated using unsigned division, because of the magnitude of
the arguments. We have written rem(t, |d|) rather than the equivalent rem(t, d), to
emphasize that the program must deal with two positive (and unsigned) arguments.

From (6) and (18), p can be calculated from

and then |m| can be calculated from (c.f. (5) and (17)):

Direct evaluation of rem(2p, |d|) in (19) requires “long division” (dividing a 2W-bit
dividend by a W-bit divisor, giving a W-bit quotient and remainder), and, in fact, it
must be unsigned long division. There is a way to solve (19), and to do all the
calculations, that avoids long division and can easily be implemented in a conventional
HLL using only W-bit arithmetic. We do, however, need unsigned division and unsigned
comparisons.

We can calculate rem(2p, |d|) incrementally, by initializing two variables q and r to
the quotient and remainder of 2p divided by |d| with p = W – 1, and then updating q
and r as p increases.

As the search progresses—that is, when p is incremented by 1—q and r are updated
from (see Theorem D5(a))

q = 2*q;
r = 2*r;
if (r>= abs(d)) {
 q = q + 1;
 r = r - abs(d);}

The left half of inequality (4) and the right half of (16), together with the bounds
proved for m, imply that q = 2p /|d| < 2W, so q is representable as a W-bit
unsigned integer. Also, 0 ≤ r < |d|, so r is representable as a W-bit signed or unsigned

W –1

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_184
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p221equ03

Chapter 10. Integer Division By Constants

integer. (Caution: The intermediate result 2r can exceed 2 – 1, so r should be
unsigned and the comparison above should also be unsigned.)

Next, calculate δ = |d| – r. Both terms of the subtraction are representable as W-
bit unsigned integers, and the result is also (1 ≤ δ ≤ |d|), so there is no difficulty here.

To avoid the long multiplication of (19), rewrite it as

The quantity 2p / |nc| is representable as a W-bit unsigned integer (similar to (7),
from (19) it can be shown that 2p ≤ 2|nc| · |d| and, for d = –2W – 1, nc = –2w – 1

+ 1 and p = 2W – 2, so that 2p / |nc| = 22W – 2 / (2w – 1 − 1) < 2W for W ≥ 3).
Also, it is easily calculated incrementally (as p increases) in the same manner as for
rem(2p, |d|). The comparison should be unsigned, for the case 2p / |nc| ≥ 2W – 1

(which can occur, for large d).
To compute m, we need not evaluate (20) directly (which would require long

division). Observe that

The loop closure test 2p / |nc| > δ is awkward to evaluate. The quantity 2p/ |nc| is
available only in the form of a quotient q1 and a remainder r1. 2p / |nc| may or may
not be an integer (it is an integer only for d = 2W – 2 + 1 and a few negative values of
d). The test 2p / |nc| ≤ δ can be coded as

q1 < δ | (q1 = δ & r1 = 0).

The complete procedure for computing M and s from d is shown in Figure 10–1,
coded in C, for W = 32. There are a few places where overflow can occur, but the
correct result is obtained if overflow is ignored.

To use the results of this program, the compiler should generate the li and mulhs
instructions, generate the add if d > 0 and M < 0, or the sub if d < 0 and M > 0, and
generate the shrsi if s > 0. Then, the shri and final add must be generated.

For W = 32, handling a negative divisor can be avoided by simply returning a
precomputed result for d = 3 and d = 715,827,883, and using m(– d) = – m(d) for
other negative divisors. However, that program would not be significantly shorter, if at
all, than the one given in Figure 10–1.

struct ms {int M; // Magic number
 int s;}; // and shift amount.

struct ms magic(int d) { // Must have 2 <= d <= 2**31-1
 // or -2**31 <= d <= -2.
 int p;
 unsigned ad, anc, delta, q1, r1, q2, r2, t;
 const unsigned two31 = 0x80000000; // 2**31.
 struct ms mag;

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig01

Chapter 10. Integer Division By Constants

 ad = abs(d);
 t = two31 + ((unsigned)d >> 31);
 anc = t - 1 - t%ad; // Absolute value of nc.
 p = 31; // Init. p.
 q1 = two31/anc; // Init. q1 = 2**p/|nc|.
 r1 = two31 - q1*anc; // Init. r1 = rem(2**p, |nc|).
 q2 = two31/ad; // Init. q2 = 2**p/|d|.
 r2 = two31 - q2*ad; // Init. r2 = rem(2**p, |d|).
 do {
 p = p + 1;
 q1 = 2*q1; // Update q1 = 2**p/|nc|.
 r1 = 2*r1; // Update r1 = rem(2**p, |nc|).
 if (r1 >= anc) { // (Must be an unsigned
 q1 = q1 + 1; // comparison here.)
 r1 = r1 - anc;}
 q2 = 2*q2; // Update q2 = 2**p/|d|.
 r2 = 2*r2; // Update r2 = rem(2**p, |d|).
 if (r2 >= ad) { // (Must be an unsigned
 q2 = q2 + 1; // comparison here.)
 r2 = r2 - ad;}
 delta = ad - r2;
 } while (q1 < delta || (q1 == delta && r1 == 0));

 mag.M = q2 + 1;
 if (d < 0) mag.M = -mag.M; // Magic number and
 mag.s = p - 32; // shift amount to return.
 return mag;
}

FIGURE 10–1. Computing the magic number for signed division.

10–7 Miscellaneous Topics
THEOREM DC2. The least multiplier m is odd if p is not forced to equal W.
Proof. Assume that Equations (1a) and (1b) are satisfied with least (not forced)

integer p, and m even. Then clearly m could be divided by 2 and p could be decreased
by 1, and (1a) and (1b) would still be satisfied. This contradicts the assumption that p
is minimal.

Uniqueness

The magic number for a given divisor is sometimes unique (e.g., for W = 32, d = 7),
but often it is not. In fact, experimentation suggests that it is usually not unique. For
example, for W = 32, d = 6, there are four magic numbers:

Nevertheless, there is the following uniqueness property:
THEOREM DC3. For a given divisor d, there is only one multiplier m having the

minimal value of p, if p is not forced to equal W.
Proof. First consider the case d > 0. The difference between the upper and lower

Chapter 10. Integer Division By Constants

limits of inequality (4) is 2p/ dnc. We have already proved (7) that if p is minimal, then
2p/dnc ≤ 2. Therefore, there can be at most two values of m satisfying (4). Let m be
the smaller of these values, given by (5); then m + 1 is the other.

Let p0 be the least value of p for which m + 1 satisfies the right half of (4) (p0 is
not forced to equal W). Then

This simplifies to

2p0 > nc (2 d – rem(2p0, d)).

Dividing by 2 gives

Because rem(2p0, d) ≤ 2rem(2p0 – 1, d) (by Theorem D5 on page 184),

2p0 – 1 > nc (d – rem(2p0 –1 , d)),

contradicting the assumption that p0 is minimal.

The proof for d < 0 is similar and will not be given.

The Divisors with the Best Programs

The program for d = 3, W = 32 is particularly short, because there is no add or shrsi
after the mulhs. What other divisors have this short program?

We consider only positive divisors. We wish to find integers m and p that satisfy
Equations (1a) and (1b), and for which p = W and 0 ≤ m < 2W –1 . Because any
integers m and p that satisfy equations (1a) and (1b) must also satisfy (4), it suffices to
find those divisors d for which (4) has a solution with p = W and 0 ≤ m < 2W –1 . All
solutions of (4) with p = W are given by

Combining this with the right half of (4) and simplifying gives

The weakest restriction on rem(2W, d) is with k = 1 and nc at its minimal value of 2W –

2. Hence, we must have

rem(2W, d) > d – 4;

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_184

Chapter 10. Integer Division By Constants

that is, d divides 2W+ 1, 2W+ 2, or 2W+ 3.
Now let us see which of these factors actually have optimal programs.

If d divides 2W+ 1, then rem(2W, d) = d – 1. Then a solution of (6) is p = W,
because the inequality becomes

2W > nc (d – (d – 1)) = nc,

which is obviously true, because nc < 2W –1 . Then in the calculation of m we have

which is less than 2W –1 for d ≥ 3 (d ≠ 2 because d divides 2W + 1). Hence, all the
factors of 2W+ 1 have optimal programs.

Similarly, if d divides 2W + 2, then rem(2W, d) = d – 2. Again, a solution of (6) is p
= W, because the inequality becomes

2W > nc (d – (d – 2)) = 2nc,

which is obviously true. Then in the calculation of m we have

which exceeds 2W –1 – 1 for d = 2, but which is less than or equal to 2W – 1 – 1 for W
≥ 3, d ≥ 3 (the case W = 3 and d = 3 does not occur, because 3 is not a factor of 23

+ 2 = 10). Hence all factors of 2W + 2, except for 2 and the cofactor of 2, have
optimal programs. (The cofactor of 2 is (2W+ 2) / 2, which is not representable as a
W-bit signed integer).

If d divides 2W + 3, the following argument shows that d does not have an optimal
program. Because rem(2W, d) = d – 3, inequality (21) implies that we must have

for some k = 1, 2, 3, The weakest restriction is with k = 1, so we must have nc <
2W / 3.

From (3a), nc ≥ 2W –1 – d, or d ≥ 2W – 1 – nc. Hence, it is necessary that

Also, because 2, 3, and 4 do not divide 2W + 3, the smallest possible factor of 2W + 3
is 5. Therefore, the largest possible factor is (2W + 3) / 5. Thus, if d divides 2W + 3
and d has an optimal program, it is necessary that

Chapter 10. Integer Division By Constants

Taking reciprocals of this with respect to 2W + 3 shows that the cofactor of d, (2W +
3) / d, has the limits

For W ≥ 5, this implies that the only possible cofactors are 5 and 6. For W < 5, it is
easily verified that there are no factors of 2W + 3. Because 6 cannot be a factor of 2W

+ 3, the only possibility is 5. Therefore, the only possible factor of 2W + 3 that might
have an optimal program is (2W + 3) / 5.

For d = (2W + 3) / 5,

For W ≥ 4,

so

This exceeds (2W / 3), so d = (2W + 3) / 5 does not have an optimal program.
Because for W < 4 there are no factors of 2W + 3, we conclude that no factors of 2W

+ 3 have optimal programs.

In summary, all the factors of 2W + 1 and of 2W + 2, except for 2 and (2W + 2) /
2, have optimal programs, and no other numbers do. Furthermore, the above proof
shows that algorithm magic (Figure 10–1 on page 223) always produces the optimal
program when it exists.

Let us consider the specific cases W = 16, 32, and 64. The relevant factorizations
are shown below.

The result for W = 16 is that there are 20 divisors that have optimal programs. The

Chapter 10. Integer Division By Constants

ones less than 100 are 3, 6, 9, 11, 18, 22, 33, 66, and 99.
For W = 32, there are six such divisors: 3, 6, 641, 6,700,417, 715,827,883, and

1,431,655,766.
For W = 64, there are 126 such divisors. The ones less than 100 are 3, 6, 9, 18,

19, 27, 38, 43, 54, 57, and 86.

10–8 Unsigned Division
Unsigned division by a power of 2 is, of course, implemented by a single shift right
logical instruction, and remainder by and immediate.

It might seem that handling other divisors will be simple: Just use the results for
signed division with d > 0, omitting the two instructions that add 1 if the quotient is
negative. We will see, however, that some of the details are actually more complicated
in the case of unsigned division.

Unsigned Division by 3

For a non-power of 2, let us first consider unsigned division by 3 on a 32-bit machine.
Because the dividend n can now be as large as 232 – 1, the multiplier (232 + 2) / 3 is
inadequate, because the error term 2 n / 3 · 232 (see “divide by 3” example above)
can exceed 1/3. However, the multiplier (233 + 1) / 3 is adequate. The code is

li M,0xAAAAAAAB Load magic number, (2**33+1)/3.
mulhu q,M,n q = floor(M*n/2**32).
shri q,q,1

muli t,q,3 Compute remainder from
sub r,n,t r = n - q*3.

An instruction that gives the high-order 32 bits of a 64-bit unsigned product is required,
which we show above as mulhu.

To see that the code is correct, observe that it computes

For 0 ≤ n < 232, 0 ≤ n / (3 · 233) < 1 / 3, so by Theorem D4, q = n/ 3 .

In computing the remainder, the multiply immediate can overflow if we regard the
operands as signed integers, but it does not overflow if we regard them and the result
as unsigned. Also, the subtract cannot overflow, because the result is in the range 0 to
2, so the remainder is correct.

Unsigned Division by 7

For unsigned division by 7 on a 32-bit machine, the multipliers (232 + 3) / 7, (233 + 6)
/ 7, and (234 + 5) / 7 are all inadequate, because they give too large an error term.
The multiplier (235 + 3) / 7 is acceptable, but it’s too large to represent in a 32-bit
unsigned word. We can multiply by this large number by multiplying by (235 + 3) / 7 –
232 and then correcting the product by inserting an add. The code is

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p228equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p228equ03

Chapter 10. Integer Division By Constants

li M,0x24924925 Magic num, (2**35+3)/7 - 2**32.
mulhu q,M,n q = floor(M*n/2**32).
add q,q,n Can overflow (sets carry).
shrxi q,q,3 Shift right with carry bit.

muli t,q,7 Compute remainder from
sub r,n,t r = n - q*7.

Here we have a problem: The add can overflow. To allow for this, we have invented
the new instruction shift right extended immediate (shrxi), which treats the carry from
the add and the 32 bits of register q as a single 33-bit quantity, and shifts it right with
0-fill. On the Motorola 68000 family, this can be done with two instructions: rotate with
extend right one position, followed by a logical right shift of three (roxr actually uses
the X bit, but the add sets the X bit the same as the carry bit). On most machines, it
will take more. For example, on PowerPC it takes three instructions: clear rightmost
three bits of q, add carry to q, and rotate right three positions.

With shrxi implemented somehow, the code above computes

For 0 ≤ n < 232, 0 ≤ 3 n /(7 · 235) < 1/7, so by Theorem D4, q = n / 7 .

Granlund and Montgomery [GM] have a clever scheme for avoiding the shrxi
instruction. It requires the same number of instructions as the above three-instruction
sequence for shrxi, but it employs only elementary instructions that almost any
machine would have, and it does not cause overflow at all. It uses the identity

Applying this to our problem, with q = Mn / 232 where 0 ≤ M <232, the
subtraction will not overflow, because

so that, clearly, 0 ≤ n – q < 232. Also, the addition will not overflow, because

and 0 ≤ n,q < 232.
Using this idea gives the following code for unsigned division by 7:

li M,0x24924925 Magic num, (2**35+3)/7 - 2**32.
mulhu q,M,n q = floor(M*n/2**32).
sub t,n,q t = n - q.
shri t,t,1 t = (n - q)/2.
add t,t,q t = (n - q)/2 + q = (n + q)/2.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p229equ05

Chapter 10. Integer Division By Constants

shri q,t,2 q = (n+Mn/2**32)/8 = floor(n/7).

muli t,q,7 Compute remainder from
sub r,n,t r = n - q*7.

For this to work, the shift amount for the hypothetical shrxi instruction must be
greater than 0. It can be shown that if d > 1 and the multiplier m ≥ 232 (so that the
shrxi instruction is needed), then the shift amount is greater than 0.

10–9 Unsigned Division by Divisors ≥ 1

Given a word size W ≥ 1 and a divisor d, 1 ≤ d < 2W, we wish to find the least integer
m and integer p such that

with 0 ≤ m < 2W+1 and p ≥ W.
In the unsigned case, the magic number M is given by

Because (22) must hold for n = d, md/ 2p = 1, or

As in the signed case, let nc be the largest value of n such that rem(nc, d) = d – 1.
It can be calculated from nc = 2W / d d – 1 = 2W – rem(2W, d) – 1. Then

and

These imply that nc ≥ 2W – 1.

Because (22) must hold for n = nc

or

Chapter 10. Integer Division By Constants

Combining this with (23) gives

Because m is to be the least integer satisfying (25), it is the next integer greater
than or equal to 2p / d—that is,

Combining this with the right half of (25) and simplifying gives

The Algorithm (Unsigned)

Thus, the algorithm is to find by trial and error the least p ≥ W satisfying (27). Then, m
is calculated from (26). This is the smallest possible value of m satisfying (22) with p ≥
W. As in the signed case, if (27) is true for some value of p, then it is true for all larger
values of p. The proof is essentially the same as that of Theorem DC1, except Theorem
D5(b) is used instead of Theorem D5(a).

Proof That the Algorithm Is Feasible (Unsigned)

We must show that (27) always has a solution and that 0 ≤ m < 2W +1.
Because for any nonnegative integer x there is a power of 2 greater than x and less

than or equal to 2 x + 1, from (27),

nc(d – 1 – rem(2p – 1, d)) < 2p ≤ 2nc(d – 1 – rem(2p – 1, d)) + 1.

Because 0 ≤ rem(2p– 1, d) ≤ d – 1,

Because nc, d ≤ 2W – 1, this becomes

1 ≤ 2p ≤ 2(2W – 1)(2W – 2) + 1,

or

Thus, (27) always has a solution.
If p is not forced to equal W, then from (25) and (28),

Chapter 10. Integer Division By Constants

If p is forced to equal W, then from (25),

Because 1 ≤ d ≤ 2W– 1 and nc ≥ 2W – 1,

In either case m is within limits for the code schema illustrated by the “unsigned divide
by 7” example.

Proof That the Product Is Correct (Unsigned)

We must show that if p and m are calculated from (27) and (26), then (22) is satisfied.
Equation (26) and inequality (27) are easily seen to imply (25). Inequality (25) is

nearly the same as (4), and the remainder of the proof is nearly identical to that for
signed division with n ≥ 0.

10–10 Incorporation into a Compiler (Unsigned)
There is a difficulty in implementing an algorithm based on direct evaluation of the
expressions used in this proof. Although p ≤ 2 W, which is proved above, the case p =
2 W can occur (e.g., for d = 2W – 2 with W ≥ 4). When p = 2 W, it is difficult to
calculate m, because the dividend in (26) does not fit in a 2W-bit word.

However, it can be implemented by the “incremental division and remainder”
technique of algorithm magic. The algorithm is given in Figure 10–2 for W = 32. It
passes back an indicator a, which tells whether or not to generate an add instruction.
(In the case of signed division, the caller recognizes this by M and d having opposite
signs.)

Some key points in understanding this algorithm are as follows:
• Unsigned overflow can occur at several places and should be ignored.

• nc = 2w – rem (2w,d) – 1 = (2W – 1) – rem(2W – d, d).

• The quotient and remainder of dividing 2p by nc cannot be updated in the
same way as is done in algorithm magic, because here the quantity 2*r1 can
overflow. Hence, the algorithm has the test “if (r1 > = nc – r l),” whereas
“if (2*rl >= nc

Chapter 10. Integer Division By Constants

)” would be more natural. A similar remark applies to
computing the quotient and remainder of 2P –1 divided by d.

• 0 ≤ δ ≤ d – 1, so δ is representable as a 32-bit unsigned integer.

struct mu {unsigned M; // Magic number,
 int a; // "add" indicator,
 int s;}; // and shift amount.

struct mu magicu(unsigned d) {
 // Must have 1 <= d <= 2**32-1.
 int p;
 unsigned nc, delta, q1, r1, q2, r2;
 struct mu magu;

 magu.a = 0; // Initialize "add" indicator.
 nc = -1 - (-d)%d; // Unsigned arithmetic here.
 p = 31; // Init. p.
 q1 = 0x80000000/nc; // Init. q1 = 2**p/nc.
 r1 = 0x80000000 - q1*nc;// Init. r1 = rem(2**p, nc).
 q2 = 0x7FFFFFFF/d; // Init. q2 = (2**p - 1)/d.
 r2 = 0x7FFFFFFF - q2*d; // Init. r2 = rem(2**p - 1, d).
 do {
 p = p + 1;
 if (r1 >= nc - r1) {
 q1 = 2*q1 + 1; // Update q1.
 r1 = 2*r1 - nc;} // Update r1.
 else {
 q1 = 2*q1;
 r1 = 2*r1;}
 if (r2 + 1 >= d - r2) {
 if (q2 >= 0x7FFFFFFF) magu.a = 1;
 q2 = 2*q2 + 1; // Update q2.
 r2 = 2*r2 + 1 - d;} // Update r2.
 else {
 if (q2 >= 0x80000000) magu.a = 1;
 q2 = 2*q2;
 r2 = 2*r2 + 1;}
 delta = d - 1 - r2;
 } while (p < 64 &&
 (q1 < delta || (q1 == delta && r1 == 0)));

 magu.M = q2 + 1; // Magic number
 magu.s = p - 32; // and shift amount to return
 return magu; // (magu.a was set above).
}

FIGURE 10–2. Computing the magic number for unsigned division.

• m = (2p +d – 1 – rem(2p – 1, d)) / d = (2p – 1) / d +1 = q2 + 1.

• The subtraction of 2W when the magic number M exceeds 2W – 1 is not explicit
in the program; it occurs if the computation of q2 overflows.

• The “add” indicator, magu.a, cannot be set by a straightforward comparison of M
to 232, or of q2 to 232 – 1, because of overflow. Instead, the program tests q2
before overflow can occur. If q2 ever gets as large as 232 – 1, so that M will be
greater than or equal to 232, then magu.a is set equal to 1. If q2 stays below
232 – 1, then magu.a is left at its initial value of 0.

p

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig02

Chapter 10. Integer Division By Constants

• Inequality (27) is equivalent to 2 / nc > δ.

• The loop test needs the condition p < 64, because without it, overflow of q1
would cause the program to loop too many times, giving incorrect results.

To use the results of this program, the compiler should generate the li and mulhu
instructions and, if the “add” indicator a = 0, generate the shri of s (if s > 0), as
illustrated by the example of “Unsigned Division by 3,” on page 227. If a = 1 and the
machine has the shrxi instruction, the compiler should generate the add and shrxi of s
as illustrated by the example of “Unsigned Division by 7,” on page 228. If a = 1 and
the machine does not have the shrxi instruction, use the example on page 229:
generate the sub, the shri of 1, the add, and finally the shri of s – 1 (if s – 1 > 0; s
will not be 0 at this point except in the trivial case of division by 1, which we assume
the compiler deletes).

10–11 Miscellaneous Topics (Unsigned)
THEOREM DC2U. The least multiplier m is odd if p is not forced to equal W.
THEOREM DC3U. For a given divisor d, there is only one multiplier m having the

minimal value of p, if p is not forced to equal W.
The proofs of these theorems follow very closely the corresponding proofs for

signed division.

The Divisors with the Best Programs (Unsigned)

For unsigned division, to find the divisors (if any) with optimal programs of two
instructions to obtain the quotient (li, mulhu), we can do an analysis similar to that of
the signed case (see “The Divisors with the Best Programs” on page 225). The result is
that such divisors are the factors of 2W or 2W + 1, except for d = 1. For the common
word sizes, this leaves very few nontrivial divisors that have optimal programs for
unsigned division. For W = 16, there are none. For W = 32, there are only two: 641
and 6,700,417. For W = 64, again there are only two: 274,177 and
67,280,421,310,721.

The case d = 2k, k = 1, 2, ..., deserves special mention. In this case, algorithm
magicu produces p = W (forced), m = 232 – k. This is the minimal value of m, but it is
not the minimal value of M. Better code results if p = W + k is used, if sufficient
simplifications are done. Then, m = 2W, M = 0, a = 1, and s = k. The generated code
involves a multiplication by 0 and can be simplified to a single shift right k instruction.
As a practical matter, divisors that are a power of 2 would probably be special-cased
without using magicu. (This phenomenon does not occur for signed division, because
for signed division m cannot be a power of 2. Proof: For d > 0, inequality (4) combined
with (3b) implies that d – 1 < 2p / m < d. Therefore, 2p / m cannot be an integer. For
d < 0, the result follows similarly from (16) combined with (15b).)

For unsigned division, the code for the case m ≥ 2W is considerably worse than the
code for the case m < 2W if the machine does not have shrxi. It is of interest to have
some idea of how often the large multipliers arise. For W = 32, among the integers less
than or equal to 100, there are 31 “bad” divisors: 1, 7, 14, 19, 21, 27, 28, 31, 35, 37,
38, 39, 42, 45, 53, 54, 55, 56, 57, 62, 63, 70, 73, 74, 76, 78, 84, 90, 91, 95, and 97.

Using Signed in Place of Unsigned Multiply, and the Reverse

If your machine does not have mulhu, but it does have mulhs (or signed long
multiplication), the trick given in “High-Order Product Signed from/to Unsigned,” on

Chapter 10. Integer Division By Constants

page 174, might make our method of doing unsigned division by a constant still useful.
That section gives a seven-instruction sequence for getting mulhu from mulhs.

However, for this application it simplifies, because the magic number M is known. Thus,
the compiler can test the most significant bit of the magic number, and generate code
such as the following for the operation “mulhu q,M,n.” Here t denotes a temporary
register.

 M31 = 0 M31 = 1
 mulhs q,M,n mulhs q,M,n
 shrsi t,n,31 shrsi t,n,31
 and t,t,M and t,t,M
 add q,q,t add t,t,n
 add q,q,t

Accounting for the other instructions used with mulhu, this uses a total of six to
eight instructions to obtain the quotient of unsigned division by a constant on a
machine that does not have unsigned multiply.

This trick can be inverted, to get mulhs in terms of mulhu. The code is the same as
that above, except the mulhs is changed to mulhu and the final add in each column is
changed to sub.

A Simpler Algorithm (Unsigned)

Dropping the requirement that the magic number be minimal yields a simpler algorithm.
In place of (27) we can use

and then use (26) to compute m, as before.
It should be clear that this algorithm is formally correct (that is, that the value of m

computed does satisfy Equation (22)), because its only difference from the previous
algorithm is that it computes a value of p that, for some values of d, is unnecessarily
large. It can be proved that the value of m computed from (30) and (26) is less than
2W +1. We omit the proof and simply give the algorithm (Figure 10–3).

struct mu {unsigned M; // Magic number,
 int a; // "add" indicator,
 int s;}; // and shift amount.

struct mu magicu2(unsigned d) {
 // Must have 1 <= d <= 2**32-1.
 int p;
 unsigned p32, q, r, delta;
 struct mu magu;
 magu.a = 0; // Initialize "add" indicator.
 p = 31; // Initialize p.
 q = 0x7FFFFFFF/d; // Initialize q = (2**p - 1)/d.
 r = 0x7FFFFFFF - q*d; // Init. r = rem(2**p - 1, d).
 do {
 p = p + 1;
 if (p == 32) p32 = 1; // Set p32 = 2**(p-32).
 else p32 = 2*p32;
 if (r + 1 >= d - r) {
 if (q >= 0x7FFFFFFF) magu.a = 1;
 q = 2*q + 1; // Update q.
 r = 2*r + 1 - d; // Update r.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_174
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p235equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig03

Chapter 10. Integer Division By Constants

 }
 else {
 if (q >= 0x80000000) magu.a = 1;
 q = 2*q;
 r = 2*r + 1;
 }
 delta = d - 1 - r;
 } while (p < 64 && p32 < delta);
 magu.M = q + 1; // Magic number and
 magu.s = p - 32; // shift amount to return
 return magu; // (magu.a was set above).
}

FIGURE 10–3. Simplified algorithm for computing the magic number,
unsigned division.

Alverson [Alv] gives a much simpler algorithm, discussed in the next section, but it
gives somewhat large values for m. The point of algorithm magicu2 is that it nearly
always gives the minimal value for m when d ≤ 2W –1 . For W = 32, the smallest divisor
for which magicu2 does not give the minimal multiplier is d = 102,807, for which
magicu calculates m = 2,737,896,999 and magicu2 calculates m = 5,475,793,997.

There is an analog of magicu2 for signed division by positive divisors, but it does
not work out very well for signed division by arbitrary divisors.

10–12 Applicability to Modulus and Floor Division
It might seem that turning modulus or floor division by a constant into multiplication
would be simpler, in that the “add 1 if the dividend is negative” step could be omitted.
This is not the case. The methods given above do not apply in any obvious way to
modulus and floor division. Perhaps something could be worked out; it might involve
altering the multiplier m slightly, depending upon the sign of the dividend.

10–13 Similar Methods
Rather than coding algorithm magic, we can provide a table that gives the magic
numbers and shift amounts for a few small divisors. Divisors equal to the tabulated
ones multiplied by a power of 2 are easily handled as follows:

1. Count the number of trailing 0’s in d, and let this be denoted by k.

2. Use as the lookup argument d / 2k (shift right k).
3. Use the magic number found in the table.
4. Use the shift amount found in the table, increased by k.

Thus, if the table contains the divisors 3, 5, 25, and so on, divisors of 6, 10, 100, and
so forth can be handled.

This procedure usually gives the smallest magic number, but not always. The
smallest positive divisor for which it fails in this respect for W = 32 is d = 334,972, for
which it computes m = 3,361,176,179 and s = 18. However, the minimal magic
number for d = 334,972 is m = 840,294,045, with s = 16. The procedure also fails to
give the minimal magic number for d = –6. In both these cases, output code quality is
affected.

Alverson [Alv] is the first known to the author to state that the method described
here works with complete accuracy for all divisors. Using our notation, his method for
unsigned integer division by d is to set the shift amount p = W + log2 d , and the

p p

Chapter 10. Integer Division By Constants

multiplier m = 2 / d and then do the division by n ÷ d = mn / 2 (that is,
multiply and shift right). He proves that the multiplier m is less than, 2W+1 and that
the method gets the exact quotient for all n expressible in W bits.

Alverson’s method is a simpler variation of ours in that it doesn’t require trial and
error to determine p, and is therefore more suitable for building in hardware, which is
his primary interest. His multiplier m is always greater than or equal to 2W, and hence
for the software application always gives the code illustrated by the “unsigned divide by
7” example (that is, always has the add and shrxi, or the alternative four instructions).
Because most small divisors can be handled with a multiplier less than 2W, it seems
worthwhile to look for these cases.

For signed division, Alverson suggests finding the multiplier for |d| and a word
length of W – 1 (then 2W –1 ≤ m < 2W), multiplying the dividend by it, and negating
the result if the operands have opposite signs. (The multiplier must be such that it
gives the correct result when the dividend is 2W –1 , the absolute value of the maximum
negative number.) It seems possible that this suggestion might give better code than
what has been given here in the case that the multiplier m ≥ 2W. Applying it to signed
division by 7 gives the following code, where we have used the relation –x = +1 to
avoid a branch:

abs an,n
li M,0x92492493 Magic number, (2**34+5)/7.
mulhu q,M,an q = floor(M*an/2**32).
shri q,q,2
shrsi t,n,31 These three instructions
xor q,q,t negate q if n is
sub q,q,t negative.

This is not quite as good as the code we gave for signed division by 7 (six versus
seven instructions), but it would be useful on a machine that has abs and mulhu, but
not mulhs.

The next section gives some representative magic numbers.

10–14 Sample Magic Numbers

TABLE10–1. SOME MAGIC NUMBERS FOR W = 32

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p238equ01

Chapter 10. Integer Division By Constants

TABLE 10–2. SOME MAGIC NUMBERS FOR W = 64

Chapter 10. Integer Division By Constants

10–15 Simple Code in Python
Computing a magic number is greatly simplified if one is not limited to doing the
calculations in the same word size as that of the environment in which the magic
number will be used. For the unsigned case, for example, in Python it is straightforward
to compute nc and then evaluate Equations (27) and (26), as described in Section 10–
9. Figure 10–4 shows such a function.

def magicgu(nmax, d):
 nc = (nmax//d)*d - 1
 nbits = int(log(nmax, 2)) + 1
 for p in range(0, 2*nbits + 1):
 if 2**p > nc*(d - 1 - (2**p - 1)%d):
 m = (2**p + d - 1 - (2**p - 1)%d)//d
 return (m, p)
 print "Can't find p, something is wrong."
 sys.exit(1)

FIGURE 10–4. Python code for computing the magic number for unsigned
division.

The function is given the maximum value of the dividend nmax and the divisor d. It

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig04

Chapter 10. Integer Division By Constants

returns a pair of integers: the magic number m and a shift amount p. To divide a
dividend x by d, one multiplies x by m and then shifts the (full length) product right p
bits.

This program is more general than the others in this chapter in two ways: (1) one
specifies the maximum value of the dividend (nmax), rather than the number of bits
required for the dividend, and (2) the program can be used for arbitrarily large
dividends and divisors (“bignums”). The advantage of specifying the maximum value of
the dividend is that one sometimes gets a smaller magic number than would be
obtained if the next power of two less 1 were used for the maximum value. For
example, suppose the maximum value of the dividend is 90, and the divisor is 7. Then
function magicgu returns (37, 8), meaning that the magic number is 37 (a 6-bit
number) and the shift amount is 8. But if we asked for a magic number that can
handle divisors up to 127, then the result is (147, 10), and 147 is an 8-bit number.

10–16 Exact Division by Constants
By “exact division,” we mean division in which it is known beforehand, somehow, that
the remainder is 0. Although this situation is not common, it does arise, for example,
when subtracting two pointers in the C language. In C, the result of p – q, where p
and q are pointers, is well defined and portable only if p and q point to objects in the
same array [H&S, sec. 7.6.2]. If the array element size is s, the object code for the
difference p – q computes (p – q) / s.

The material in this section was motivated by [GM, sec. 9].
The method to be given applies to both signed and unsigned exact division, and is

based on the following theorem.
THEOREM MI. If a and m are relatively prime integers, then there exists an integer ā,

1 ≤ ā < m, such that

aā ≡ 1 (mod m).

That is, ā is a multiplicative inverse of a, modulo m. There are several ways to prove
this theorem; three proofs are given in [NZM, p. 52]. The proof below requires only a
very basic familiarity with congruences.

Proof. We will prove something a little more general than the theorem. If a and m
are relatively prime (therefore nonzero), then as x ranges over all m distinct values
modulo m, ax takes on all m distinct values modulo m. For example, if a = 3 and m =
8, then as x ranges from 0 to 7, ax = 0, 3, 6, 9, 12, 15, 18, 21 or, reduced modulo 8,
ax = 0, 3, 6, 1, 4, 7, 2, 5. Observe that all values from 0 to 7 are present in the last
sequence.

To see this in general, assume that it is not true. Then there exist distinct integers
that map to the same value when multiplied by a; that is, there exist x and y, with x
y(mod m), such that

ax ≡ ay (mod m).

Then there exists an integer k such that

ax – ay = km, or

a (x – y) = km.

Chapter 10. Integer Division By Constants

Because a has no factor in common with m, it must be that x – y is a multiple of m;
that is,

x ≡ y (mod m).

This contradicts the hypothesis.
Now, because ax takes on all m distinct values modulo m, as x ranges over the m

values, it must take on the value 1 for some x.
The proof shows that there is only one value (modulo m) of x such that ax ≡ 1

(mod m)—that is, the multiplicative inverse is unique, apart from additive multiples of
m. It also shows that there is a unique (modulo m) integer x such that ax ≡ b (mod m),
where b is any integer.

As an example, consider the case m = 16. Then , because 3 · 11 = 33 ≡ 1

(mod 16). We could just as well take , because 3 · (–5) = –15 ≡ 1 (mod 16).

Similarly , because (–3) · 5 = –15 ≡ 1 (mod 16).

These observations are important because they show that the concepts apply to
both signed and unsigned numbers. If we are working in the domain of unsigned
integers on a 4-bit machine, we take . In the domain of signed integers, we

take . But 11 and –5 have the same representation in two’s-complement
(because they differ by 16), so the same computer word contents can serve in both
domains as the multiplicative inverse.

The theorem applies directly to the problem of division (signed and unsigned) by an
odd integer d on a W-bit computer. Because any odd integer is relatively prime to 2W,
the theorem says that if d is odd, there exists an integer (unique in the range 0 to
2W– 1 or in the range –2W – 1 to 2W –1 – 1) such that

Hence, for any integer n that is a multiple of d,

In other words, n/d can be calculated by multiplying n by and retaining only the
rightmost W bits of the product.

If the divisor d is even, let d = do · 2k, where do is odd and k ≥ 1. Then, simply

shift n right k positions (shifting out 0’s), and then multiply by (the shift could be
done after the multiplication as well).

Below is the code for division of n by 7, where n is a multiple of 7. This code gives
the correct result whether it is considered to be signed or unsigned division.

li M,0xB6DB6DB7 Mult. inverse, (5*2**32 + 1)/7.
mul q,M,n q = n/7.

Computing the Multiplicative Inverse by the Euclidean Algorithm

How can we compute the multiplicative inverse? The standard method is by means of

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p242equ03

Chapter 10. Integer Division By Constants

the “extended Euclidean algorithm.” This is briefly discussed below as it applies to our
problem, and the interested reader is referred to [NZM, p. 13] and to [Knu2, 4.5.2] for
a more complete discussion.

Given an odd divisor d, we wish to solve for x

dx ≡ 1(mod/m),

where, in our application, m = 2W and W is the word size of the machine. This will be
accomplished if we can solve for integers x and y (positive, negative, or 0) the equation

dx + my = 1.

Toward this end, first make d positive by adding a sufficient number of multiples of
m to it. (d and d + km have the same multiplicative inverse.) Second, write the
following equations (in which d, m > 0):

If d = 1, we are done, because (ii) shows that x = 1. Otherwise, compute

Third, multiply Equation (ii) by q and subtract it from (i). This gives

d (– 1 – q) + m(1) = m – d – qd = rem(m – d, d).

This equation holds because we have simply multiplied one equation by a constant and
subtracted it from another. If rem(m – d, d) = 1, we are done; this last equation is the
solution and x = – 1 – q.

Repeat this process on the last two equations, obtaining a fourth, and continue until
the right-hand side of the equation is 1. The multiplier of d, reduced modulo m, is then
the desired inverse of d.

Incidentally, if m – d < d, so that the first quotient is 0, then the third row will be a
copy of the first, so that the second quotient will be nonzero. Furthermore, most texts
start with the first row being

d(0) + m(1) = m,

but in our application m = 2W is not representable in the machine.
The process is best illustrated by an example: Let m = 256 and d = 7. Then the

calculation proceeds as follows. To get the third row, note that q = 249 / 7 = 35.

 7(-1) + 256(1) = 249
 7(1) + 256(0) = 7
7(-36) + 256(1) = 4
7(37) + 256(-1) = 3
7(-73) + 256(2) = 1

Thus, the multiplicative inverse of 7, modulo 256, is –73 or, expressed in the range 0

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p243equ03

Chapter 10. Integer Division By Constants

to 255, is 183. Check: 7 · 183 = 1281 ≡ 1 (mod 256).

From the third row on, the integers in the right-hand column are all remainders of
dividing the number above it into the number two rows above it, so they form a
sequence of strictly decreasing nonnegative integers. Therefore, the sequence must
end in 0 (as the above would if carried one more step). Furthermore, the value just
before the 0 must be 1, for the following reason. Suppose the sequence ends in b
followed by 0, with b ≠ 1. Then, the integer preceding the b must be a multiple of b,
let’s say k1b, for the next remainder to be 0. The integer preceding k1 b must be of
the form k1k2 b+ b, for the next remainder to be b. Continuing up the sequence, every
number must be a multiple of b, including the first two (in the positions of the 249 and
the 7 in the above example). This is impossible, because the first two integers are m –
d and d, which are relatively prime.

This constitutes an informal proof that the above process terminates, with a value
of 1 in the right-hand column, and hence it finds the multiplicative inverse of d.

To carry this out on a computer, first note that if d < 0, we should add 2W to it.
With two’s-complement arithmetic it is not necessary to actually do anything here;
simply interpret d as an unsigned number, regardless of how the application interprets
it.

The computation of q must use unsigned division.
Observe that the calculations can be done modulo m, because this does not change

the right-hand column (these values are in the range 0 to m – 1 anyway). This is
important, because it enables the calculations to be done in “single precision,” using
the computer’s modulo-2W unsigned arithmetic.

Most of the quantities in the table need not be represented. The column of
multiples of 256 need not be represented, because in solving dx + my = 1, we do not
need the value of y. There is no need to represent d in the first column. Reduced to its
bare essentials, then, the calculation of the above example is carried out as follows:

255 249
 1 7
220 4
 37 3
183 1

A C program for performing this computation is shown in Figure 10–5.

unsigned mulinv(unsigned d) { // d must be odd.
 unsigned x1, v1, x2, v2, x3, v3, q;

 x1 = 0xFFFFFFFF; v1 = -d;
 x2 = 1; v2 = d;
 while (v2 > 1) {
 q = v1/v2;
 x3 = x1 - q*x2; v3 = v1 - q*v2;
 x1 = x2; v1 = v2;
 x2 = x3; v2 = v3;
 }
 return x2;
}

FIGURE 10–5. Multiplicative inverse modulo 232 by the Euclidean algorithm.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p244equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig05

Chapter 10. Integer Division By Constants

The reason the loop continuation condition is (v2 > 1), rather than the more
natural (v2 != 1), is that if the latter condition were used, the loop would never
terminate if the program were invoked with an even argument. It is best that programs
not loop forever even if misused. (If the argument d is even, v2 never takes on the
value 1, but it does become 0.)

What does the program compute if given an even argument? As written, it
computes a number x such that dx ≡ 0 (mod 232), which is probably not useful.
However, with the minor modification of changing the loop continuation condition to
(v2 != 0) and returning x1 rather than x2, it computes a number x such that dx ≡ g
(mod 232), where g is the greatest common divisor of d and 232—that is, the greatest
power of 2 that divides d. The modified program still computes the multiplicative
inverse of d for d odd, but it requires one more iteration than the unmodified program.

As for the number of iterations (divisions) required by the above program, for d odd
and less than 20, it requires a maximum of 3 and an average of 1.7. For d in the
neighborhood of 1000, it requires a maximum of 11 and an average of about 6.

Computing the Multiplicative Inverse by Newton’s Method

It is well known that, over the real numbers, 1 / d, for d ≠ 0, can be calculated to
ever-increasing accuracy by iteratively evaluating

provided the initial estimate x0 is sufficiently close to 1/d. The number of digits of
accuracy approximately doubles with each iteration.

It is not so well known that this same formula can be used to find the multiplicative
inverse modulo any power of 2!. For example, to find the multiplicative inverse of 3,
modulo 256, start with x0 = 1 (any odd number will do). Then,

The iteration has reached a fixed point modulo 256, so –85, or 171, is the multiplicative
inverse of 3 (modulo 256). All calculations can be done modulo 256.

Why does this work? Because if xn satisfies

dxn ≡ 1 (mod m)

and if xn + 1 is defined by (31), then

dxn +1 ≡ 1 (mod m2).

To see this, let dxn = 1 + km. Then

Chapter 10. Integer Division By Constants

In our application, m is a power of 2, say 2N. In this case, if

In a sense, if xn is regarded as a sort of approximation to , then each iteration of
(31) doubles the number of bits of “accuracy” of the approximation.

It happens that modulo 8, the multiplicative inverse of any (odd) number d is d
itself. Thus, taking x0 = d is a reasonable and simple initial guess at . Then, (31) will
give values of x1, x2, ..., such that

Thus, four iterations suffice to find the multiplicative inverse modulo 232 (if x ≡ 1
(mod 248), then x ≡ 1 (mod 2n) for n ≤ 48). This leads to the C program in Figure 10–
6, in which all computations are done modulo 232.

For about half the values of d, this program takes 4.5 iterations, or nine
multiplications. For the other half (those for which the initial value of xn is “correct to 4
bits”—that is, d2 ≡ 1 (mod 16)), it takes seven or fewer, usually seven, multiplications.
Thus, it takes about eight multiplications on average.

unsigned mulinv(unsigned d) { // d must be odd.
 unsigned xn, t;

 xn = d;
loop: t = d*xn;
 if (t == 1) return xn;
 xn = xn*(2 - t);
 goto loop;
}

IGURE 32

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig06

Chapter 10. Integer Division By Constants

F 10–6. Multiplicative inverse modulo 2 by Newton’s method.

A variation is to simply execute the loop four times, regardless of d, perhaps “strung
out” to eliminate the loop control (eight multiplications). Another variation is to
somehow make the initial estimate x0 “correct to 4 bits” (that is, find x0 that satisfies
dx0 ≡ 1 (mod 16)). Then, only three loop iterations are required. Some ways to set the
initial estimate are

Here, the multiplication by 2 is a left shift, and the computations are done modulo 232

(ignoring overflow). Because the second formula uses a multiplication, it saves only
one.

This concern about execution time is, of course, totally unimportant for the compiler
application. For that application, the routine would be so seldom used that it should be
coded for minimum space. But there may be applications in which it is desirable to
compute the multiplicative inverse quickly.

The “Newton method” described here applies only when (1) the modulus is an
integral power of some number a, and (2) the multiplicative inverse of d modulo a is
known. It works particularly well for a = 2, because then the multiplicative inverse of
any (odd) number d modulo 2 is known immediately—it is 1.

Sample Multiplicative Inverses

We conclude this section with a listing of some multiplicative inverses in Table 10–3.

TABLE 10–3. SAMPLE MULTIPLICATIVE INVERSES

Chapter 10. Integer Division By Constants

You may notice that in several cases (d = 3, 5, 9, 11), the multiplicative inverse of
d is the same as the magic number for unsigned division by d (see Section 10–14,
“Sample Magic Numbers,” on page 238). This is more or less a coincidence. It happens
that for these numbers, the magic number M is equal to the multiplier m, and these are
of the form (2p + 1) / d, with p ≥ 32. In this case, notice that

so that M ≡ (mod 232).

10–17 Test for Zero Remainder after Division by a Constant
The multiplicative inverse of a divisor d can be used to test for a zero remainder after
division by d[GM].

Unsigned

First, consider unsigned division with the divisor d odd. Denote by the multiplicative

Chapter 10. Integer Division By Constants

inverse of d. Then, because , where W is the machine’s word size
in bits, is also odd. Thus, is relatively prime to 2W, and as shown in the proof of
theorem MI in the preceding section, as n ranges over all 2W distinct values modulo
2W, takes on all 2W distinct values modulo 2W.

It was shown in the preceding section that if n is a multiple of d,

That is, for n = 0, d, 2d, ..., (2W – 1) / d d, ≡ 0, 1, 2, ..., (2W – 1) / d

(mod 2W). Therefore, for n not a multiple of d, the value of , reduced modulo 2W

to the range 0 to 2W – 1, must exceed (2W – 1) / d .

This can be used to test for a zero remainder. For example, to test if an integer n is
a multiple of 25, multiply n by and compare the rightmost W bits to (2W– 1) / 25

. On our basic RISC:

li M,0xC28F5C29 Load mult. inverse of 25.
mul q,M,n q = right half of M*n.
li c,0x0A3D70A3 c = floor((2**32-1)/25).
cmpleu t,q,c Compare q and c, and branch
bt t,is_mult if n is a multiple of 25.

To extend this to even divisors, let d = do · 2k, where do is odd and k ≥ 1. Then,
because an integer is divisible by d if and only if it is divisible by do and by 2k, and

because n and have the same number of trailing zeros (is odd), the test that n
is a multiple of d is

where the mod function is understood to reduce to the interval [0, 2W –1].
Direct implementation of this requires two tests and conditional branches, but it can

be reduced to one compare-branch quite efficiently if the machine has the rotate-shift
instruction. This follows from the following theorem, in which denotes the
computer word a rotated right k positions (0 ≤ k ≤ 32).

THEOREM ZRU. and x ends in k 0-bits if and only if

Proof. (Assume a 32-bit machine.) Suppose and x ends in k 0-bits. Then,

because , But Therefore,

 If x does not end in k 0-bits, then does not begin with k 0-

bits, whereas a /2k does, so Lastly, if and x ends in k 0-
bits, then the integer formed from the first 32 – k bits of x must exceed that formed

from the first 32 - k bits of a, so that

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p249pro01

Chapter 10. Integer Division By Constants

Using this theorem, the test that n is a multiple of d, where n and d > 1 are
unsigned integers and d = do · 2k with do odd, is

Here we used (2W– 1) / do / 2k = (2W– 1) / (do · 2k) = (2W– 1) / d .

As an example, the following code tests an unsigned integer n to see if it is a
multiple of 100:

li M,0xC28F5C29 Load mult. inverse of 25.
mul q,M,n q = right half of M*n.
shrri q,q,2 Rotate right two positions.
li c,0x028F5C28 c = floor((2**32-1)/100).
cmpleu t,q,c Compare q and c, and branch
bt t,is_mult if n is a multiple of 100.

Signed, Divisor ≥ 2

For signed division, it was shown in the preceding section that if n is a multiple of d
and d is odd, then

Thus, for n = –2W – 1 /d · d, ...,–d,0, d, ..., (2W – 1 – 1) / d · d, we have
≡ – 2W – 1 / d,...,–1,0, 1, ..., (2W –1 – 1) / d (mod 2W). Furthermore, because d

is relatively prime to 2W, as n ranges over all 2W distinct values modulo 2W, takes
on all 2W distinct values modulo 2W. Therefore, n is a multiple of d if and only if

where the mod function is understood to reduce to the interval [–2W – 1 2W – 1 –1]
This can be simplified a little by observing that because d is odd and, as we are

assuming, positive and not equal to 1, it does not divide 2W–1. Therefore,

 – 2W – 1 / d = (–2W – 1 + 1) d = - (2W–1 –1)/d .

Thus, for signed numbers, the test that n is a multiple of d, where d = do · 2k and do
is odd, is

Set q = mod(, 2W);

- (2W –1 – 1) / do ≤ q ≤ (2W – 1 – 1)/do and q ends in k or more 0-bits.

On the surface, this would seem to require three tests and branches. However, as in
the unsigned case, it can be reduced to one compare-branch by use of the following
theorem:

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p249equ05

Chapter 10. Integer Division By Constants

THEOREM ZRS. If a ≥ 0, the following assertions are equivalent:

where a′ is a with its rightmost k bits set to 0 (that is, a ′ = a & –2k).
Proof. (Assume a 32-bit machine). To see that (1) is equivalent to (2), clearly the

assertion – a ≤ x ≤ a is equivalent to abs(x) ≤ a. Then, Theorem ZRU applies, because
both sides of this inequality are nonnegative.

To see that (1) is equivalent to (3), note that assertion (1) is equivalent to itself
with a replaced with a′. Then, by the theorem on bounds checking on page 68, this in
turn is equivalent to

Because x + a′ ends in k 0-bits if and only if x does, Theorem ZRU applies, giving the
result.

Using part (3) of this theorem, the test that n is a multiple of d, where n and d ≥ 2
are signed integers and d = do · 2k with do odd, is

(a′ can be computed at compile time, because d is a constant.)
As an example, the following code tests a signed integer n to see if it is a multiple

of 100. Notice that the constant 2a′ / 2k can always be derived from the constant a′
by a shift of k – 1 bits, saving an instruction or a load from memory to develop the
comparand.

li M,0xC28F5C29 Load mult. inverse of 25.
mul q,M,n q = right half of M*n.
li c,0x051EB850 c = floor((2**31 – 1)/25) & –4.
add q,q,c Add c.
shrri q,q,2 Rotate right two positions.
shri c,c,1 Compute const. for comparison.
cmpleu t,q,c Compare q and c, and
bt t,is_mult branch if n is a mult. of 100.

10–18 Methods Not Using Multiply High
In this section we consider some methods for dividing by constants that do not use the
multiply high instruction, or a multiplication instruction that gives a double-word result.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_68
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p251equ03

Chapter 10. Integer Division By Constants

We show how to change division by a constant into a sequence of shift and add
instructions, or shift, add, and multiply for more compact code.

Unsigned Division

For these methods, unsigned division is simpler than signed division, so we deal with
unsigned division first. One method is to use the techniques given that use the multiply
high instruction, but use the code shown in Figure 8–2 on page 174 to do the multiply
high operation. Figure 10–7 shows how this works out for the case of (unsigned)
division by 3. This is a combination of the code on page 228 and Figure 8–2 with “int”
changed to “unsigned.” The code is 15 instructions, including four multiplications. The
multiplications are by large constants and would take quite a few instructions if
converted to shift’s and add’s. Very similar code can be devised for the signed case.
This method is not particularly good and won’t be discussed further.

Another method [GLS1] is to compute in advance the reciprocal of the divisor, and
multiply the dividend by that with a series of shift right and add instructions. This gives
an approximation to the quotient. It is merely an approximation, because the reciprocal
of the divisor (which we assume is not an exact power of two) is not expressed exactly
in 32 bits, and also because each shift right discards bits of the dividend. Next, the
remainder with respect to the approximate quotient is computed, and that is divided by
the divisor to form a correction, which is added to the approximate quotient, giving the
exact quotient. The remainder is generally small compared to the divisor (a few
multiples thereof), so there is often a simple way to compute the correction without
using a divide instruction.

To illustrate this method, consider dividing by 3, that is, computing n / 3 where
0 ≤ n < 232. The reciprocal of 3, in binary, is approximately

0.0101 0101 0101 0101 0101 0101 0101 0101.

To compute the approximate product of that and n, we could use

unsigned divu3(unsigned n) {
 unsigned n0, n1, w0, w1, w2, t, q;

 n0 = n & 0xFFFF;
 n1 = n >> 16;
 w0 = n0*0xAAAB;
 t = n1*0xAAAB + (w0 >> 16);
 w1 = t & 0xFFFF;
 w2 = t >> 16;
 w1 = n0*0xAAAA + w1;
 q = n1*0xAAAA + w2 + (w1 >> 16);
 return q >> 1;
}

FIGURE 10–7. Unsigned divide by 3 using simulated multiply high unsigned.

(29 instructions; the last 1 in the reciprocal is ignored because it would add the term
 which is obviously 0). However, the simple repeating pattern of 1’s and 0’s in

the reciprocal permits a method that is both faster (nine instructions) and more
accurate:

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#ch08fig2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_174
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#ch08fig2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig07

Chapter 10. Integer Division By Constants

To compare these methods for their accuracy, consider the bits that are shifted out
by each term of (32), if n is all 1-bits. The first term shifts out two 1-bits, the next four
1-bits, and so on. Each of these contributes an error of almost 1 in the least significant
bit. Since there are 16 terms (counting the term we ignored), the shifts contribute an
error of almost 16. There is an additional error due to the fact that the reciprocal is
truncated to 32 bits; it turns out that the maximum total error is 16.

For procedure (1), each right shift also contributes an error of almost 1 in the least
significant bit. But there are only five shift operations. They contribute an error of
almost 5, and there is a further error due to the fact that the reciprocal is truncated to
32 bits; it turns out that the maximum total error is 5.

After computing the estimated quotient q, the remainder r is computed from

r ← n – q * 3.

The remainder cannot be negative, because q is never larger than the exact quotient.
We need to know how large r can be to devise the simplest possible method for
computing In general, for a divisor d and an estimated quotient q too low by k,
the remainder will range from k*d to k*d + d – 1. (The upper limit is conservative; it
may not actually be attained.) Thus, using (1), for which q is too low by at most 5, we
expect the remainder to be at most 5*3 + 2 = 17. Experimentation reveals that it is
actually at most 15. Thus, for the correction we must compute (exactly)

Since r is small compared to the largest value that a register can hold, this can be
approximated by multiplying r by some approximation to 1/3 of the form a/b where b is
a power of 2. This is easy to compute, because the division is simply a shift. The value
of a/ b must be slightly larger than 1/3, so that after shifting the result will agree with
truncated division. A sequence of such approximations is:

1/2, 2/4, 3/8, 6/16, 11/32, 22/64, 43/128, 86/256, 171/512, 342/1024,

Usually, the smaller fractions in the sequence are easier to compute, so we choose
the smallest one that works; in the case at hand this is 11/32. Therefore, the final,
exact, quotient is given by

The solution involves two multiplications by small numbers (3 and 11); these can be
changed to shift’s and add’s.

Figure 10–8 shows the entire solution in C. As shown, it consists of 14 instructions,
including two multiplications. If the multiplications are changed to shift’s and add’s, it

Chapter 10. Integer Division By Constants

amounts to 18 elementary instructions. However, if it is desired to avoid the
multiplications, then either alternative return statement shown gives a solution in 17
elementary instructions. Alternative 2 has just a little instruction-level parallelism, but in
truth this method generally has very little of that.

A more accurate estimate of the quotient can be obtained by changing the first
executable line to

q = (n >> 1) + (n >> 3);

(which makes q too large by a factor of 2, but it has one more bit of accuracy), and
then inserting just before the assignment to r,

q = q >> 1;

With this variation, the remainder is at most 9. However, there does not seem to be
any better code for calculating with r limited to 9 than there is for r limited to 15
(four elementary instructions in either case). Thus, using the idea would cost one
instruction. This possibility is mentioned because it does give a code improvement for
most divisors.

unsigned divu3(unsigned n) {
 unsigned q, r;

 q = (n >> 2) + (n >> 4); // q = n*0.0101 (approx).
 q = q + (q >> 4); // q = n*0.01010101.
 q = q + (q >> 8);
 q = q + (q >> 16);
 r = n - q*3; // 0 <= r <= 15.
 return q + (11*r >> 5); // Returning q + r/3.
// return q + (5*(r + 1) >> 4); // Alternative 1.
// return q + ((r + 5 + (r << 2)) >> 4);// Alternative 2.
}

FIGURE 10–8. Unsigned divide by 3.

Figure 10–9 shows two variations of this method for dividing by 5. The reciprocal of
5, in binary, is

0.0011 0011 0011 0011 0011 0011 0011 0011.

As in the case of division by 3, the simple repeating pattern of 1’s and 0’s allows a
fairly efficient and accurate computing of the quotient estimate. The estimate of the
quotient computed by the code on the left can be off by at most 5, and it turns out
that the remainder is at most 25. The code on the right retains two additional bits of
accuracy in computing the quotient estimate, which is off by at most 2. The remainder
in this case is at most 10. The smaller maximum remainder permits approximating 1/5
by 7/32 rather than 13/64, which gives a slightly more efficient program if the
multiplications are done by shift’s and add’s. The instruction counts are, for the code on
the left: 14 instructions including two multiplications, or 18 elementary instructions; for
the code on the right: 15 instructions including two multiplications, or 17 elementary
instructions. The alternative code in the return statement is useful only if your machine
has comparison predicate instructions. It doesn’t reduce the instruction count, but
merely has a little instruction-level parallelism.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p254equ02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p254pro03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig08

Chapter 10. Integer Division By Constants

For division by 6, the divide-by-3 code can be used, followed by a shift right of 1.
However, the extra instruction can be saved by doing the computation directly, using
the binary approximation

4/6 ≈ 0.1010 1010 1010 1010 1010 1010 1010 1010.

FIGURE 10–9. Unsigned divide by 5.

The code is shown in Figure 10–10. The version on the left multiplies by an
approximation to 1/6 and then corrects with a multiplication by 11/64. The version on
the right takes advantage of the fact that by multiplying by an approximation to 4/6,
the quotient estimate is off by only 1 at most. This permits simpler code for the
correction; it simply adds 1 to q if r ≥ 6. The code in the second return statement is
appropriate if the machine has the comparison predicate instructions. Function divu6b is
15 instructions, including one multiply, as shown, or 17 elementary instructions if the
multiplication by 6 is changed to shift’s and add’s.

FIGURE 10–10. Unsigned divide by 6.

For larger divisors, usually it seems to be best to use an approximation to 1/ d that
is shifted left so that its most significant bit is 1. It seems that the quotient is then off
by at most 1 usually (possibly always, this writer does not know), which permits
efficient code for the correction step. Figure 10–11 shows code for dividing by 7 and 9,
using the binary approximations

Chapter 10. Integer Division By Constants

If the multiplications by 7 and 9 are expanded into shift’s and add’s, these functions
take 16 and 15 elementary instructions, respectively.

FIGURE 10–11. Unsigned divide by 7 and 9.

Figures 10–12 and 10–13 show code for dividing by 10, 11, 12, and 13. These are
based on the binary approximations:

If the multiplications are expanded into shift’s and add’s, these functions take 17, 20,
17, and 20 elementary instructions, respectively.

FIGURE 10–12. Unsigned divide by 10 and 11.

Chapter 10. Integer Division By Constants

FIGURE 10–13. Unsigned divide by 12 and 13.

The case of dividing by 13 is instructive because it shows how you must look for
repeating strings in the binary expansion of the reciprocal of the divisor. The first
assignment sets q equal to n*0.1001. The second assignment to q adds n*0.00001001
and n*0.000001001. At this point, q is (approximately) equal to n*0.100111011. The
third assignment to q adds in repetitions of this pattern. It sometimes helps to use
subtraction, as in the case of divu9 above. However, you must use care with
subtraction, because it may cause the quotient estimate to be too large, in which case
the remainder is negative and the method breaks down. It is quite complicated to get
optimal code, and we don’t have a general cookbook method that you can put in a
compiler to handle any divisor.

The examples above are able to economize on instructions, because the reciprocals
have simple repeating patterns, and because the multiplication in the computation of
the remainder r is by a small constant, which can be done with only a few shift’s and
add’s. One might wonder how successful this method is for larger divisors. To roughly
assess this, Figures 10–14 and 10–15 show code for dividing by 100 and by 1000
(decimal). The relevant reciprocals are

If the multiplications are expanded into shift’s and add’s, these functions take 25 and
23 elementary instructions, respectively.

unsigned divu100(unsigned n) {
 unsigned q, r;

 q = (n >> 1) + (n >> 3) + (n >> 6) - (n >> 10) +
 (n >> 12) + (n >> 13) - (n >> 16);
 q = q + (q >> 20);
 q = q >> 6;
 r = n - q*100;
 return q + ((r + 28) >> 7);
// return q + (r > 99);
}

FIGURE 10–14. Unsigned divide by 100.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig14

Chapter 10. Integer Division By Constants

unsigned divu1000(unsigned n) {
 unsigned q, r, t;

 t = (n >> 7) + (n >> 8) + (n >> 12);
 q = (n >> 1) + t + (n >> 15) + (t >> 11) + (t >> 14);
 q = q >> 9;
 r = n - q*1000;
 return q + ((r + 24) >> 10);
// return q + (r > 999);
}

FIGURE 10–15. Unsigned divide by 1000.

In the case of dividing by 1000, the least significant eight bits of the reciprocal
estimate are nearly ignored. The code of Figure 10–15 replaces the binary 1001 0111
with 0100 0000, and still the quotient estimate is within one of the true quotient. Thus,
it appears that although large divisors might have very little repetition in the binary
representation of the reciprocal estimate, at least some bits can be ignored, which
helps hold down the number of shift’s and add’s required to compute the quotient
estimate.

This section has shown, in a somewhat imprecise way, how unsigned division by a
constant can be reduced to a sequence of, typically, about 20 elementary instructions.
It is nontrivial to get an algorithm that generates these code sequences that is suitable
for incorporation into a compiler, because of three difficulties in getting optimal code.

1. It is necessary to search the reciprocal estimate bit string for repeating patterns.
2. Negative terms (as in divu10 and divu100) can be used sometimes, but the error

analysis required to determine just when they can be used is difficult.
3. Sometimes some of the least significant bits of the reciprocal estimate can be

ignored (how many?).
Another difficulty for some target machines is that there are many variations on the
code examples given that have more instructions, but that would execute faster on a
machine with multiple shift and add units.

The code of Figures 10–7 through 10–15 has been tested for all 232 values of the
dividends.

Signed Division

The methods given above can be made to apply to signed division. The right shift
instructions in computing the quotient estimate become signed right shift instructions,
which compute floor division by powers of 2. Thus, the quotient estimate is too low
(algebraically), so the remainder is nonnegative, as in the unsigned case.

The code most naturally computes the floor division result, so we need a correction
to make it compute the conventional truncated-toward-0 result. This can be done with
three computational instructions by adding d – 1 to the dividend if the dividend is
negative. For example, if the divisor is 6, the code begins with (the shift here is a
signed shift)

n = n + (n >> 31 & 5);

Other than this, the code is very similar to that of the unsigned case. The number
of elementary operations required is usually three more than in the corresponding

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig15
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p259pro01

Chapter 10. Integer Division By Constants

unsigned division function. Several examples are given in Figures 10–16 through 10–
22. All have been exhaustively tested.

int divs3(int n) {
 int q, r;

 n = n + (n>>31 & 2); // Add 2 if n < 0.
 q = (n >> 2) + (n >> 4); // q = n*0.0101 (approx).
 q = q + (q >> 4); // q = n*0.01010101.
 q = q + (q >> 8);
 q = q + (q >> 16);
 r = n - q*3; // 0 <= r <= 14.
 return q + (11*r >> 5); // Returning q + r/3.
// return q + (5*(r + 1) >> 4); // Alternative 1.
// return q + ((r + 5 + (r << 2)) >> 4);// Alternative 2.
}

FIGURE 10–16. Signed divide by 3.

FIGURE 10–17. Signed divide by 5 and 6.

FIGURE 10–18. Signed divide by 7 and 9.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig16

Chapter 10. Integer Division By Constants

FIGURE 10–19. Signed divide by 10 and 11.

FIGURE 10–20. Signed divide by 12 and 13.

FIGURE 10–21. Signed divide by 100.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig22

Chapter 10. Integer Division By Constants

int divs1000(int n) {
 int q, r, t;

 n = n + (n >> 31 & 999);
 t = (n >> 7) + (n >> 8) + (n >> 12);
 q = (n >> 1) + t + (n >> 15) + (t >> 11) + (t >> 14) +
 (n >> 26) + (t >> 21);
 q = q >> 9;
 r = n - q*1000;
 return q + ((r + 24) >> 10);
// return q + (r > 999);
}

FIGURE 10-22. Signed divide by 1000.

10-19 Remainder by Summing Digits
This section addresses the problem of computing the remainder of division by a
constant without computing the quotient. The methods of this section apply only to
divisors of the form 2k ± 1, for k an integer greater than or equal to 2, and in most
cases the code resorts to a table lookup (an indexed load instruction) after a fairly
short calculation.

We will make frequent use of the following elementary property of congruences:
THEOREM C. If a ≡ b (mod m) and c ≡ d (mod m), then

The unsigned case is simpler and is dealt with first.

Unsigned Remainder

For a divisor of 3, multiplying the trivial congruence 1 ≡ 1 (mod 3) repeatedly by the
congruence 2 ≡ –1 (mod 3), we conclude by Theorem C that

Therefore, a number n written in binary as ...b3 b2 b1 b0 satisfies

n = ... + b3 · 23 + b2 · 22 + b1 · 2 + b0 ≡ ...– b3 + b2 – b1 + b0 (mod 3),

which is derived by using Theorem C repeatedly. Thus, we can alternately add and
subtract the bits in the binary representation of the number to obtain a smaller number
that has the same remainder upon division by 3. If the sum is negative, you must add a
multiple of 3 to make it nonnegative. The process can then be repeated until the result
is in the range 0 to 2.

The same trick works for finding the remainder after dividing a decimal number by
11.

Thus, if the machine has the population count instruction, a function that computes

Chapter 10. Integer Division By Constants

the remainder modulo 3 of an unsigned number n might begin with

n = pop(n & 0x55555555) - pop(n & 0xAAAAAAAA);

This can be simplified by using the following surprising identity discovered by Paolo
Bonzini [Bonz]:

Since the references to 32 (the word size) cancel out, the result holds for any word
size. Another way to prove (2) is to observe that it holds for x = 0, and if a 0-bit in x is
changed to a 1 where m is 1, then both sides of (2) decrease by 1, and if a 0-bit of x
is changed to a 1 where m is 0, then both sides of (2) increase by 1.

Applying (2) to the line of C code above gives

n = pop(n ^ 0xAAAAAAAA) - 16;

We want to apply this transformation again, until n is in the range 0 to 2, if possible. It
is best to avoid producing a negative value of n, because the sign bit would not be
treated properly on the next round. A negative value can be avoided by adding a
sufficiently large multiple of 3 to n. Bonzini’s code, shown in Figure 10–23, increases
the constant by 39. This is larger than necessary to make n nonnegative, but it causes
n to range from –3 to 2 (rather than –3 to 3) after the second round of reduction. This
simplifies the code on the return statement, which is adding 3 if n is negative. The
function executes in 11 instructions, counting two to load the large constant.

Figure 10–24 shows a variation that executes in four instructions, plus a simple
table lookup operation (e.g., an indexed load byte instruction).

int remu3(unsigned n) {
 n = pop(n ^ 0xAAAAAAAA) + 23; // Now 23 <= n <= 55.
 n = pop(n ^ 0x2A) - 3; // Now -3 <= n <= 2.
 return n + (((int)n >> 31) & 3);
}

IGURE

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p263equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p263pro04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig23

Chapter 10. Integer Division By Constants

F 10–23. Unsigned remainder modulo 3, using population count.

int remu3(unsigned n) {

 static char table[33] = {2, 0,1,2, 0,1,2, 0,1,2,
 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2,
 0,1,2, 0,1};

 n = pop(n ^ 0xAAAAAAAA);
 return table[n];
}

FIGURE 10–24. Unsigned remainder modulo 3, using population count and a
table lookup.

To avoid the population count instruction, notice that because 4 ≡ 1 (mod 3), 4k ≡
1 (mod 3). A binary number can be viewed as a base 4 number by taking its bits in
pairs and interpreting the bits 00 to 11 as a base 4 digit ranging from 0 to 3. The pairs
of bits can be summed using the code of Figure 5–2 on page 82, omitting the first
executable line (overflow does not occur in the additions). The final sum ranges from 0
to 48, and a table lookup can be used to reduce this to the range 0 to 2. The resulting
function is 16 elementary instructions, plus an indexed load.

There is a similar, but slightly better, way. As a first step, n can be reduced to a
smaller number that is in the same congruence class modulo 3 with

n = (n >> 16) + (n & 0xFFFF);

This splits the number into two 16-bit portions, which are added together. The
contribution modulo 3 of the left 16 bits of n is not altered by shifting them right 16
positions, because the shifted number, multiplied by 216, is the original number, and
216 ≡ 1 (mod 3). More generally, 2k ≡ 1 (mod 3) if k is even. This is used repeatedly
(five times) in the code shown in Figure 10–25. This code is 19 instructions. The
instruction count can be reduced by cutting off the digit summing earlier and using an
in-memory table lookup, as illustrated in Figure 10–26 (nine instructions, plus an
indexed load). The instruction count can be reduced to six (plus an indexed load) by
using a table of size 0x2FE = 766 bytes.

To compute the unsigned remainder modulo 5, the code of Figure 10–27 uses the
relations 16k ≡ 1 (mod 5) and 4 ≡ –1 (mod 5). It is 21 elementary instructions,
assuming the multiplication by 3 is expanded into a shift and add.

int remu3(unsigned n) {
 n = (n >> 16) + (n & 0xFFFF); // Max 0x1FFFE.
 n = (n >> 8) + (n & 0x00FF); // Max 0x2FD.
 n = (n >> 4) + (n & 0x000F); // Max 0x3D.
 n = (n >> 2) + (n & 0x0003); // Max 0x11.
 n = (n >> 2) + (n & 0x0003); // Max 0x6.
 return (0x0924 >> (n << 1)) & 3;
}

FIGURE 10–25. Unsigned remainder modulo 3, digit summing and an in-
register lookup.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig24
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#ch05fig2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_82
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p264pro01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig25

Chapter 10. Integer Division By Constants

int remu3(unsigned n) {
 static char table[62] = {0,1,2, 0,1,2, 0,1,2, 0,1,2,
 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2,
 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2,
 0,1,2, 0,1,2, 0,1};

 n = (n >> 16) + (n & 0xFFFF); // Max 0x1FFFE.
 n = (n >> 8) + (n & 0x00FF); // Max 0x2FD.
 n = (n >> 4) + (n & 0x000F); // Max 0x3D.
 return table[n];
}

FIGURE 10–26. Unsigned remainder modulo 3, digit summing and an in-
memory lookup.

int remu5(unsigned n) {
 n = (n >> 16) + (n & 0xFFFF); // Max 0x1FFFE.
 n = (n >> 8) + (n & 0x00FF); // Max 0x2FD.
 n = (n >> 4) + (n & 0x000F); // Max 0x3D.
 n = (n>>4) - ((n>>2) & 3) + (n & 3); // -3 to 6.
 return (01043210432 >> 3*(n + 3)) & 7; // Octal const.
}

FIGURE 10–27. Unsigned remainder modulo 5, digit summing method.

The instruction count can be reduced by using a table, similar to what is done in
Figure 10–26. In fact, the code is identical, except the table is:

static char table[62] = {0,1,2,3,4, 0,1,2,3,4,
 0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4,
 0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4,
 0,1,2,3,4, 0,1,2,3,4, 0,1};

For the unsigned remainder modulo 7, the code of Figure 10–28 uses the relation
8k ≡ 1 (mod 7) (nine elementary instructions, plus an indexed load).

As a final example, the code of Figure 10–29 computes the remainder of unsigned
division by 9. It is based on the relation 8 ≡ –1 (mod 9). As shown, it is nine
elementary instructions, plus an indexed load. The elementary instruction count can be
reduced to six by using a table of size 831 (decimal).

int remu7(unsigned n) {

 static char table[75] = {0,1,2,3,4,5,6, 0,1,2,3,4,5,6,
 0,1,2,3,4,5,6, 0,1,2,3,4,5,6, 0,1,2,3,4,5,6,
 0,1,2,3,4,5,6, 0,1,2,3,4,5,6, 0,1,2,3,4,5,6,
 0,1,2,3,4,5,6, 0,1,2,3,4,5,6, 0,1,2,3,4};

 n = (n >> 15) + (n & 0x7FFF); // Max 0x27FFE.
 n = (n >> 9) + (n & 0x001FF); // Max 0x33D.
 n = (n >> 6) + (n & 0x0003F); // Max 0x4A.
 return table[n];
}

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig26
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig27
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p265equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig28

Chapter 10. Integer Division By Constants

FIGURE 10–28. Unsigned remainder modulo 7, digit summing method.

int remu9(unsigned n) {

 int r;
 static char table[75] = {0,1,2,3,4,5,6,7,8,
 0,1,2,3,4,5,6,7,8, 0,1,2,3,4,5,6,7,8,
 0,1,2,3,4,5,6,7,8, 0,1,2,3,4,5,6,7,8,
 0,1,2,3,4,5,6,7,8, 0,1,2,3,4,5,6,7,8,
 0,1,2,3,4,5,6,7,8, 0,1,2};

 r = (n & 0x7FFF) - (n >> 15); // FFFE0001 to 7FFF.
 r = (r & 0x01FF) - (r >> 9); // FFFFFFC1 to 2FF.
 r = (r & 0x003F) + (r >> 6); // 0 to 4A.
 return table[r];
}

FIGURE 10–29. Unsigned remainder modulo 9, digit summing method.

Signed Remainder

The digit summing method can be adapted to compute the remainder resulting from
signed division. There seems to be no better way than to add a few steps to correct
the result of the method as applied to unsigned division. Two corrections are
necessary: (1) correct for a different interpretation of the sign bit, and (2) add or
subtract a multiple of the divisor d to get the result in the range 0 to – (d – 1).

For division by 3, the unsigned remainder code interprets the sign bit of the
dividend n as contributing 2 to the remainder (because 231 mod 3 = 2). For the
remainder of signed division, the sign bit contributes only 1 (because (–231) mod 3 =
1). Therefore, we can use the code for an unsigned remainder and correct its result by
subtracting 1. Then, the result must be put in the range 0 to –2. That is, the result of
the unsigned remainder code must be mapped as follows:

(0, 1, 2) (–1, 0, 1) (–1, 0, –2).

This adjustment can be done fairly efficiently by subtracting 1 from the unsigned
remainder if it is 0 or 1, and subtracting 4 if it is 2 (when the dividend is negative). The
code must not alter the dividend n, because it is needed in this last step.

This procedure can easily be applied to any of the functions given for the unsigned
remainder modulo 3. For example, applying it to Figure 10–26 on page 265 gives the
function shown in Figure 10–30. It is 13 elementary instructions, plus an indexed load.
The instruction count can be reduced by using a larger table.

int rems3(int n) {
 unsigned r;
 static char table[62] = {0,1,2, 0,1,2, 0,1,2, 0,1,2,
 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2,
 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2,
 0,1,2, 0,1,2, 0,1};

 r = n;
 r = (r >> 16) + (r & 0xFFFF); // Max 0x1FFFE.
 r = (r >> 8) + (r & 0x00FF); // Max 0x2FD.
 r = (r >> 4) + (r & 0x000F); // Max 0x3D.
 r = table[r];

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig29
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig30

Chapter 10. Integer Division By Constants

 return r - (((unsigned)n >> 31) << (r & 2));
}

FIGURE 10–30. Signed remainder modulo 3, digit summing method.

Figures 10–31 to 10–33 show similar code for computing the signed remainder of
division by 5, 7, and 9. All the functions consist of 15 elementary operations, plus an
indexed load. They use signed right shifts, and the final adjustment consists of
subtracting the modulus if the dividend is negative and the remainder is nonzero. The
number of instructions can be reduced by using larger tables.

int rems5(int n) {
 int r;
 static char table[62] = {2,3,4, 0,1,2,3,4, 0,1,2,3,4,
 0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4,
 0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4,
 0,1,2,3,4, 0,1,2,3};

 r = (n >> 16) + (n & 0xFFFF); // FFFF8000 to 17FFE.
 r = (r >> 8) + (r & 0x00FF); // FFFFFF80 to 27D.
 r = (r >> 4) + (r & 0x000F); // -8 to 53 (decimal).
 r = table[r + 8];
 return r - (((int)(n & -r) >> 31) & 5);
}

FIGURE 10–31. Signed remainder modulo 5, digit summing method.

int rems7(int n) {
 int r;
 static char table[75] = {5,6, 0,1,2,3,4,5,6,
 0,1,2,3,4,5,6, 0,1,2,3,4,5,6, 0,1,2,3,4,5,6,
 0,1,2,3,4,5,6, 0,1,2,3,4,5,6, 0,1,2,3,4,5,6,
 0,1,2,3,4,5,6, 0,1,2,3,4,5,6, 0,1,2,3,4,5,6, 0,1,2};

 r = (n >> 15) + (n & 0x7FFF); // FFFF0000 to 17FFE.
 r = (r >> 9) + (r & 0x001FF); // FFFFFF80 to 2BD.
 r = (r >> 6) + (r & 0x0003F); // -2 to 72 (decimal).
 r = table[r + 2];
 return r - (((int)(n & -r) >> 31) & 7);
}

FIGURE 10–32. Signed remainder modulo 7, digit summing method.

int rems9(int n) {
 int r;
 static char table[75] = {7,8, 0,1,2,3,4,5,6,7,8,
 0,1,2,3,4,5,6,7,8, 0,1,2,3,4,5,6,7,8,
 0,1,2,3,4,5,6,7,8, 0,1,2,3,4,5,6,7,8,
 0,1,2,3,4,5,6,7,8, 0,1,2,3,4,5,6,7,8,
 0,1,2,3,4,5,6,7,8, 0};

 r = (n & 0x7FFF) - (n >> 15); // FFFF7001 to 17FFF.
 r = (r & 0x01FF) - (r >> 9); // FFFFFF41 to 0x27F.
 r = (r & 0x003F) + (r >> 6); // -2 to 72 (decimal).
 r = table[r + 2];
 return r - (((int)(n & -r) >> 31) & 9);

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig31
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig32
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig33

Chapter 10. Integer Division By Constants

}

FIGURE 10–33. Signed remainder modulo 9, digit summing method.

10–20 Remainder by Multiplication and Shifting Right
The method described in this section applies, in principle, to all integer divisors greater
than 2, but as a practical matter only to fairly small divisors and to divisors of the form
2k – 1. As in the preceding section, in most cases the code resorts to a table lookup
after a fairly short calculation.

Unsigned Remainder

This section uses the mathematical (not computer algebra) notation a mod b, where a
and b are integers and b > 0, to denote the integer x, 0 ≤ x < b, that satisfies x ≡ a
(mod b).

To compute n mod 3, observe that

Proof: Let n = 3 k + δ, where δ and k are integers and 0 ≤ δ ≤ 2. Then

Clearly, the value of the last expression is 0, 1, or 2 for δ = 0, 1, or 2 respectively. This
allows changing the problem of computing the remainder modulo 3 to one of
computing the remainder modulo 4, which is of course much easier on a binary
computer.

Relations like (3) do not hold for all moduli, but similar relations do hold if the
modulus is of the form 2k – 1, for k an integer greater than 1. For example, it is easy
to show that

For numbers not of the form 2k – 1, there is no such simple relation, but there is a
certain uniqueness property that can be used to compute the remainder for other
divisors. For example, if the divisor is 10 (decimal), consider the expression

Let n = 10 k + δ where 0 ≤ δ ≤ 9. Then

Chapter 10. Integer Division By Constants

For δ = 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, the last expression takes on the values 0, 1, 3,
4, 6, 8, 9, 11, 12, and 14 respectively. The latter numbers are all distinct. Therefore, if
we can find a reasonably easy way to compute (4), we can translate 0 to 0, 1 to 1, 3
to 2, 4 to 3, and so on, to obtain the remainder of division by 10. This will generally
require a translation table of size equal to the next power of 2 greater than the divisor,
so the method is practical only for fairly small divisors (and for divisors of the form 2k –
1, for which table lookup is not required).

The code to be shown was derived by using a little of the above theory and a lot of
trial and error.

Consider the remainder of unsigned division by 3. Following (3), we wish to
compute the rightmost two bits of the integer part of 4n/ 3. This can be done
approximately by multiplying by 232 / 3 and then dividing by 230 using a shift right
instruction. When the multiplication by 232 / 3 is done (using the multiply
instruction that gives the low-order 32 bits of the product), high-order bits will be lost.
But that doesn’t matter, and, in fact, it’s helpful, because we want the result modulo 4.
Therefore, because 232 / 3 = 0x55555555, a possible plan is to compute

Experiment indicates that this works for n in the range 0 to 230 + 2. It almost
works, I should say; if n is nonzero and a multiple of 3, it gives the result 3. Therefore,
it must be followed by a translation step that translates (0, 1, 2, 3) to (0, 1, 2, 0)
respectively.

To extend the range of applicability, the multiplication must be done more
accurately. Two more bits of accuracy suffice (that is, multiplying by 0x55555555.4).
The following calculation, followed by the translation step, works for all n representable
as an unsigned 32-bit integer:

It is, of course, possible to give a formal proof of this, but the algebra is quite lengthy
and error prone.

The translation step can be done in three or four instructions on most machines,
but there is a way to avoid it at a cost of two instructions. The above expression for
computing r estimates low. If you estimate slightly high, the result is always 0, 1, or 2.
This gives the C function shown in Figure 10–34 (eight instructions, including a
multiply).

int remu3(unsigned n) {
 return (0x55555555*n + (n >> 1) - (n >> 3)) >> 30;
}

FIGURE 10–34. Unsigned remainder modulo 3, multiplication method.

The multiplication can be expanded, giving the 13-instruction function shown in
Figure 10–35 that uses only shift’s and add’s.

int remu3(unsigned n) {

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig34
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig35

Chapter 10. Integer Division By Constants

 unsigned r;

 r = n + (n << 2);
 r = r + (r << 4);
 r = r + (r << 8);
 r = r + (r << 16);
 r = r + (n >> 1);
 r = r - (n >> 3);
 return r >> 30;
}

FIGURE 10–35. Unsigned remainder modulo 3, multiplication (expanded)
method.

The remainder of unsigned division by 5 can be computed very similarly to the
remainder of division by 3. Let n = 5 k + r with 0 ≤ r ≤ 4. Then (8 / 5)n mod 8 = (8 /
5)(5 k+ r) mod 8 = (8 / 5)r mod 8. For r = 0, 1, 2, 3, and 4, this takes on the values
0, 1, 3, 4, and 6 respectively. Since 232 / 5 = 0x33333333, this leads to the
function shown in Figure 10–36 (11 instructions, including a multiply). The last step
(code on the return statement) is mapping (0, 1, 3, 4, 6, 7) to (0, 1, 2, 3, 4, 0)
respectively, using an in-register method rather than an indexed load from memory. By
also mapping 2 to 2 and 5 to 4, the precision required in the multiplication by 232 / 5
is reduced to using just the term n >> 3 to approximate the missing part of the
multiplier (hexadecimal 0.333...). If the “accuracy” term n >> 3 is omitted, the code still
works for n ranging from 0 to 0x60000004.

int remu5(unsigned n) {
 n = (0x33333333*n + (n >> 3)) >> 29;
 return (0x04432210 >> (n << 2)) & 7;
}

FIGURE 10–36. Unsigned remainder modulo 5, multiplication method.

The code for computing the unsigned remainder modulo 7 is similar, but the
mapping step is simpler; it is necessary only to convert 7 to 0. One way to code it is
shown in Figure 10–37 (11 instructions, including a multiply). If the accuracy term n >>
4 is omitted, the code still works for n up to 0x40000006. With both accuracy terms
omitted, it works for n up to 0x08000006.

int remu7(unsigned n) {
 n = (0x24924924*n + (n >> 1) + (n >> 4)) >> 29;
 return n & ((int)(n - 7) >> 31);
}

FIGURE 10–37. Unsigned remainder modulo 7, multiplication method.

Code for computing the unsigned remainder modulo 9 is shown in Figure 10–38. It
is six instructions, including a multiply, plus an indexed load. If the accuracy term n >>
1 is omitted and the multiplier is changed to 0x1C71C71D, the function works for n up
to 0x1999999E.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig36
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig37
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig38

Chapter 10. Integer Division By Constants

int remu9(unsigned n) {
 static char table[16] = {0, 1, 1, 2, 2, 3, 3, 4,
 5, 5, 6, 6, 7, 7, 8, 8};

 n = (0x1C71C71C*n + (n >> 1)) >> 28;
 return table[n];
}

FIGURE 10–38. Unsigned remainder modulo 9, multiplication method.

Figure 10–39 shows a way to compute the unsigned remainder modulo 10. It is
eight instructions, including a multiply, plus an indexed load instruction. If the accuracy
term n >> 3 is omitted, the code works for n up to 0x40000004. If both accuracy terms
are omitted, it works for n up to 0x0AAAAAAD.

int remu10(unsigned n) {
 static char table[16] = {0, 1, 2, 2, 3, 3, 4, 5,
 5, 6, 7, 7, 8, 8, 9, 0};

 n = (0x19999999*n + (n >> 1) + (n >> 3)) >> 28;
 return table[n];
}

FIGURE 10–39. Unsigned remainder modulo 10, multiplication method.

As a final example, consider the computation of the remainder modulo 63. This
function is used by the population count program at the top of page 84. Joe Keane
[Keane] has come up with the rather mysterious code shown in Figure 10–40. It is 12
elementary instructions on the basic RISC.

int remu63(unsigned n) {
 unsigned t;

 t = (((n >> 12) + n) >> 10) + (n << 2);
 t = ((t >> 6) + t + 3) & 0xFF;
 return (t - (t >> 6)) >> 2;
}

FIGURE 10–40. Unsigned remainder modulo 63, Keane’s method.

The “multiply and shift right” method leads to the code shown in Figure 10–41. This
is 11 instructions on the basic RISC, one being a multiply. This would not be as fast as
Keane’s method, unless the machine has a very fast multiply and the load of the
constant 0x04104104 can move out of a loop.

int remu63(unsigned n) {
 n = (0x04104104*n + (n >> 4) + (n >> 10)) >> 26;
 return n & ((n - 63) >> 6); // Change 63 to 0.
}

FIGURE 10–41. Unsigned remainder modulo 63, multiplication method.

On some machines, an improvement can result from expanding the multiplication

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig39
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_84
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig40
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig41

Chapter 10. Integer Division By Constants

into shifts and adds as follows (15 elementary instructions for the whole function):

r = (n << 2) + (n << 8); // r = 0x104*n.
r = r + (r << 12); // r = 0x104104*n.
r = r + (n << 26); // r = 0x04104104*n.

Signed Remainder

As in the case of the digit summing method, the “multiply and shift right” method can
be adapted to compute the remainder resulting from signed division. Again, there
seems to be no better way than to add a few steps to correct the result of the method
as applied to unsigned division. For example, the code shown in Figure 10–42 is
derived from Figure 10–34 on page 270 (12 instructions, including a multiply).

int rems3(int n) {
 unsigned r;

 r = n;
 r = (0x55555555*r + (r >> 1) - (r >> 3)) >> 30;
 return r - (((unsigned)n >> 31) << (r & 2));
}

FIGURE 10–42. Signed remainder modulo 3, multiplication method.

Some plausible ways to compute the remainder of signed division by 5, 7, 9, and
10 are shown in Figures 10–43 to 10–46. The code for a divisor of 7 uses quite a few
extra instructions (19 in all, including a multiply); it might be preferable to use a table
similar to that shown for the cases in which the divisor is 5, 9, or 10. In the latter
cases, the table used for unsigned division is doubled in size, with the sign bit of the
divisor factored in to index the table. Entries shown as u are unused.

int rems5(int n) {
 unsigned r;
 static signed char table[16] = {0, 1, 2, 2, 3, u, 4, 0,
 u, 0,-4, u,-3,-2,-2,-1};
 r = n;
 r = ((0x33333333*r) + (r >> 3)) >> 29;
 return table[r + (((unsigned)n >> 31) << 3)];
}

FIGURE 10–43. Signed remainder modulo 5, multiplication method.

int rems7(int n) {
 unsigned r;

 r = n - (((unsigned)n >> 31) << 2); // Fix for sign.
 r = ((0x24924924*r) + (r >> 1) + (r >> 4)) >> 29;
 r = r & ((int)(r - 7) >> 31); // Change 7 to 0.
 return r - (((int)(n&-r) >> 31) & 7);// Fix n<0 case.
}

FIGURE 10–44. Signed remainder modulo 7, multiplication method.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p272equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig42
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig43
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig44

Chapter 10. Integer Division By Constants

int rems9(int n) {
 unsigned r;
 static signed char table[32] = {0, 1, 1, 2, u, 3, u, 4,
 5, 5, 6, 6, 7, u, 8, u,
 -4, u,-3, u,-2,-1,-1, 0,
 u,-8, u,-7,-6,-6,-5,-5};
 r = n;
 r = (0x1C71C71C*r + (r >> 1)) >> 28;
 return table[r + (((unsigned)n >> 31) << 4)];
}

FIGURE 10–45. Signed remainder modulo 9, multiplication method.

int rems10(int n) {
 unsigned r;
 static signed char table[32] = {0, 1, u, 2, 3, u, 4, 5,
 5, 6, u, 7, 8, u, 9, u,
 -6,-5, u,-4,-3,-3,-2, u,
 -1, 0, u,-9, u,-8,-7, u};
 r = n;
 r = (0x19999999*r + (r >> 1) + (r >> 3)) >> 28;
 return table[r + (((unsigned)n >> 31) << 4)];
}

FIGURE 10–46. Signed remainder modulo 10, multiplication method.

10–21 Converting to Exact Division
Since the remainder can be computed without computing the quotient, the possibility
arises of computing the quotient q = n/d by first computing the remainder,
subtracting this from the dividend n, and then dividing the difference by the divisor d.
This last division is an exact division, and it can be done by multiplying by the
multiplicative inverse of d (see Section 10–16, “Exact Division by Constants,” on page
240). This method would be particularly attractive if both the quotient and remainder
are wanted.

Let us try this for the case of unsigned division by 3. Computing the remainder by
the multiplication method (Figure 10–34 on page 270) leads to the function shown in
Figure 10–47.

unsigned divu3(unsigned n) {
 unsigned r;

 r = (0x55555555*n + (n >> 1) - (n >> 3)) >> 30;
 return (n - r)*0xAAAAAAAB;
}

FIGURE 10–47. Unsigned remainder and quotient with divisor = 3, using
exact division.

This is 11 instructions, including two multiplications by large numbers. (The constant
0x55555555 can be generated by shifting the constant 0xAAAAAAAB right one position.) In
contrast, the more straightforward method of computing the quotient q using (for

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig45
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig46
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig47

Chapter 10. Integer Division By Constants

example) the code of Figure 10–8 on page 254, requires 14 instructions, including two
multiplications by small numbers, or 17 elementary operations if the multiplications are
expanded into shift’s and add’s. If the remainder is also wanted, and it is computed
from r = n - q*3, the more straightforward method requires 16 instructions, including
three multiplications by small numbers, or 20 elementary instructions if the
multiplications are expanded into shift’s and add’s.

The code of Figure 10–47 is not attractive if the multiplications are expanded into
shift’s and add’s; the result is 24 elementary instructions. Thus, the exact division
method might be a good one on a machine that does not have multiply high but does
have a fast modulo 232 multiply and slow divide, particularly if it can easily deal with
the large constants.

For signed division by 3, the exact division method might be coded as shown in
Figure 10–48. It is 15 instructions, including two multiplications by large constants.

int divs3(int n) {
 unsigned r;

 r = n;
 r = (0x55555555*r + (r >> 1) - (r >> 3)) >> 30;
 r = r - (((unsigned)n >> 31) << (r & 2));
 return (n - r)*0xAAAAAAAB;
}

FIGURE 10–48. Signed remainder and quotient with divisor = 3, using exact
division.

As a final example, Figure 10–49 shows code for computing the quotient and
remainder for unsigned division by 10. It is 12 instructions, including two multiplications
by large constants, plus an indexed load instruction.

unsigned divu10(unsigned n) {
 unsigned r;
 static char table[16] = {0, 1, 2, 2, 3, 3, 4, 5,
 5, 6, 7, 7, 8, 8, 9, 0};

 r = (0x19999999*n + (n >> 1) + (n >> 3)) >> 28;
 r = table[r];
 return ((n - r) >> 1)*0xCCCCCCCD;
}

FIGURE 10–49. Signed remainder and quotient with divisor = 10, using exact
division.

10–22 A Timing Test
Many machines have a 32×32 64 multiply instruction, so one would expect that to
divide by a constant such as 3, the code shown on page 228 would be fastest. If that
multiply instruction is not present, but the machine has a fast 32×32 32 multiply
instruction, then the exact division method might be a good one if the machine has a
slow divide and a fast multiply. To test this conjecture, an assembly language program
was constructed to compare four methods of dividing by 3. The results are shown in
Table 10–4. The machine used was a 667 MHz Pentium III (ca. 2000), and one would

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig48
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images9.html#p10fig49

Chapter 10. Integer Division By Constants

expect similar results on many other machines.

TABLE 10–4. UNSIGNED DIVIDE BY 3 ON A PENTIUM III

The first row gives the time in cycles for just two instructions: an xorl to clear the
left half of the 64-bit source register, and the divl instruction, which evidently takes 40
cycles. The second row also gives the time for just two instructions: multiply and shift
right 1 (mull and shrl). The third row gives the time for a sequence of 21 elementary
instructions. It is the code of Figure 10–8 on page 254 using alternative 2, and with
the multiplication by 3 done with a single instruction (leal). Several move instructions
are necessary because the machine is (basically) two-address. The last row gives the
time for a sequence of 10 instructions: two multiplications (imull) and the rest
elementary. The two imull instructions use 4-byte immediate fields for the large
constants. (The signed multiply instruction imull is used rather than its unsigned
counterpart mull, because they give the same result in the low-order 32 bits, and imull
has more addressing modes available.)

The exact division method would be even more favorable compared to the second
and third methods if both the quotient and remainder were wanted, because they
would require additional code for the computation r ← n – q*3. (The divl instruction
produces the remainder as well as the quotient.)

10–23 A Circuit for Dividing by 3
There is a simple circuit for dividing by 3 that is about as complex as an adder. It can
be constructed very similarly to the elementary way one constructs an n-bit adder from
n 1-bit “full adder” circuits. However, in the divider signals flow from most significant to
least significant bit.

Consider dividing by 3 the way it is taught in grade school, but in binary. To
produce each bit of the quotient, you divide 3 into the next bit, but the bit is preceded
by a remainder of 0, 1, or 2 from the previous stage. The logic is shown in Table 10–5.
Here the remainder is represented by two bits ri and si, with ri being the most
significant bit. The remainder is never 3, so the last two rows of the table represent
“don’t care” cases.

A circuit for 32-bit division by 3 is shown in Figure 10–50. The quotient is the word
consisting of bits y31 through y0, and the remainder is 2r0 + s0.

Another way to implement the divide-by-3 operation in hardware is to use the
multiplier to multiply the dividend by the reciprocal of 3 (binary 0.010101...), with
appropriate rounding and scaling. This is the technique shown on pages 207 and 228.

TABLE 10–5. LOGIC FOR DIVIDING BY 3

Chapter 10. Integer Division By Constants

FIGURE 10–50. Logic circuit for dividing by 3.

Exercises

1. Show that for unsigned division by an even number, the shrxi instruction (or
equivalent code) can be avoided by first (a) turning off the low-order bit of the
dividend (and operation) [CavWer] or (b) dividing the dividend by 2 (shift right
1 instruction) and then dividing by half the divisor.

2. Code a function in Python similar to that of Figure 10–4 on page 240, but for
computing the magic number for signed division. Consider only positive divisors.

3. Show how you would use Newton’s method to calculate the multiplicative
inverse of an integer d modulo 81. Show the calculations for d = 146.

I think that I shall never envision
An op unlovely as division.

An op whose answer must be guessed

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch10ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch10ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch10ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch10ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch10ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch10ans3

Chapter 10. Integer Division By Constants

And then, through multiply, assessed;

An op for which we dearly pay,
In cycles wasted every day.

Division code is often hairy;
Long division’s downright scary.

The proofs can overtax your brain,
The ceiling and floor may drive you insane.

Good code to divide takes a Knuthian hero,
But even God can’t divide by zero!

Chapter 11. Some Elementary Functions

Chapter 11. Some Elementary Functions

11–1 Integer Square Root

By the “integer square root” function, we mean the function . To extend its
range of application and to avoid deciding what to do with a negative argument, we
assume x is unsigned. Thus, 0 ≤ x ≤ 232 – 1.

Newton’s Method

For floating-point numbers, the square root is almost universally computed by Newton’s
method. This method begins by somehow obtaining a starting estimate g0 of . Then,
a series of more accurate estimates is obtained from

The iteration converges quadratically—that is, if at some point gn is accurate to n bits,
then gn + 1 is accurate to 2n bits. The program must have some means of knowing
when it has iterated enough so it can terminate.

It is a pleasant surprise that Newton’s method works fine in the domain of integers.
To see this, we need the following theorem:

THEOREM. Let gn + 1 = (gn + a / gn)/2 , with gn, a integers greater than 0.
Then

That is, if we have an integral guess gn to that is too high, then the next

guess gn + 1 will be strictly less than the preceding one, but not less than .
Therefore, if we start with a guess that’s too high, the sequence converges
monotonically. If the guess gn = , then the next guess is either equal to gn or is
1 larger. This provides an easy way to determine when the sequence has converged: If
we start with g0 ≥ , convergence has occurred when gn + 1 ≥ gn, and then the
result is precisely gn.

The case a = 0 must be treated specially, because this procedure would lead to
dividing 0 by 0.

Proof. (a) Because gn is an integer,

Because gn > and gn is an integer, gn > . Define ε by gn = (1 + ε) .
Then ε > 0 and

Chapter 11. Some Elementary Functions

(b) Because gn = , – 1 < gn ≤ , so that . Hence,
we have

The difficult part of using Newton’s method to calculate is getting the first
guess. The procedure of Figure 11–1 sets the first guess g0 equal to the least power of

2 that is greater than or equal to For example, for x = 4, g0 = 2, and for x = 5, g0
= 4.

int isqrt(unsigned x) {
 unsigned x1;
 int s, g0, g1;

 if (x <= 1) return x;
 s = 1;
 x1 = x - 1;
 if (x1 > 65535) {s = s + 8; x1 = x1 >> 16;}
 if (x1 > 255) {s = s + 4; x1 = x1 >> 8;}
 if (x1 > 15) {s = s + 2; x1 = x1 >> 4;}
 if (x1 > 3) {s = s + 1;}

 g0 = 1 << s; // g0 = 2**s.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images10.html#p011fig01

Chapter 11. Some Elementary Functions

 g1 = (g0 + (x >> s)) >> 1; // g1 = (g0 + x/g0)/2.

 while (g1 < g0) { // Do while approximations
 g0 = g1; // strictly decrease.
 g1 = (g0 + (x/g0)) >> 1;
 }
 return g0;
}

FIGURE 11–1. Integer square root, Newton’s method.

Because the first guess g0 is a power of 2, it is not necessary to do a real division
to get g1; instead, a shift right suffices.

Because the first guess is accurate to about one bit, and Newton’s method
converges quadratically (the number of bits of accuracy doubles with each iteration),
one would expect the procedure to converge within about five iterations (on a 32-bit
machine), which requires four divisions (because the first iteration substitutes a shift
right). An exhaustive experiment reveals that the maximum number of divisions is five,
or four for arguments up to 16,785,407.

If number of leading zeros is available, then getting the first guess is very simple:
Replace the first seven executable lines in the procedure above with

if (x <= 1) return x;
s = 16 - nlz(x - 1)/2;

Another alternative, if number of leading zeros is not available, is to compute s by
means of a binary search tree. This method permits getting a slightly better value of
g0: the least power of 2 that is greater than or equal to . For some values of x,
this gives a smaller value of g0, but a value large enough so that the convergence
criterion of the theorem still holds. The difference in these schemes is illustrated in the
following table.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images10.html#p281equ01

Chapter 11. Some Elementary Functions

This procedure is shown in Figure 11–2. It is convenient there to treat small values
of x(0 ≤ x ≤ 24) specially, so that no divisions are done for them.

int isqrt(unsigned x) {
 int s, g0, g1;

 if (x <= 4224)
 if (x <= 24)
 if (x <= 3) return (x + 3) >> 2;
 else if (x <= 8) return 2;
 else return (x >> 4) + 3;
 else if (x <= 288)
 if (x <= 80) s = 3; else s = 4;
 else if (x <= 1088) s = 5; else s = 6;
 else if (x <= 1025*1025 - 1)
 if (x <= 257*257 - 1)
 if (x <= 129*129 - 1) s = 7; else s = 8;
 else if (x <= 513*513 - 1) s = 9; else s = 10;
 else if (x <= 4097*4097 - 1)
 if (x <= 2049*2049 - 1) s = 11; else s = 12;
 else if (x <= 16385*16385 - 1)
 if (x <= 8193*8193 - 1) s = 13; else s = 14;
 else if (x <= 32769*32769 - 1) s = 15; else s = 16;
 g0 = 1 << s; // g0 = 2**s.

 // Continue as in Figure 11–1.

FIGURE 11–2. Integer square root, binary search for first guess.

The worst-case execution time of the algorithm of Figure 11–1, on the basic RISC,
is about 26 + (D + 6) n cycles, where D is the divide time in cycles and n is the
number of times the while-loop is executed. The worst-case execution time of Figure
11–2 is about 27 + (D + 6) n cycles, assuming (in both cases) that the branch
instructions take one cycle. The table that follows gives the average number of times
the loop is executed by the two algorithms, for x uniformly distributed in the indicated
range.

If we assume a divide time of 20 cycles and x ranging uniformly from 0 to 9999,
then both algorithms execute in about 81 cycles.

Binary Search

Because the algorithms based on Newton’s method start out with a sort of binary

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images10.html#p011fig02

Chapter 11. Some Elementary Functions

search to obtain the first guess, why not do the whole computation with a binary
search? This method would start out with two bounds, perhaps initialized to 0 and 216.
It would make a guess at the midpoint of the bounds. If the square of the midpoint is
greater than the argument x, then the upper bound is changed to be equal to the
midpoint. If the square of the midpoint is less than the argument x, then the lower
bound is changed to be equal to the midpoint. The process ends when the upper and
lower bounds differ by 1, and the result is the lower bound.

This avoids division, but requires quite a few multiplications—16 if 0 and 2 16 are
used as the initial bounds. (The method gets one more bit of precision with each
iteration.) Figure 11–3 illustrates a variation of this procedure, which uses initial values
for the bounds that are slight improvements over 0 and 216. The procedure shown in
Figure 11–3 also saves a cycle in the loop, for most RISC machines, by altering a and b
in such a way that the comparison is b ≥ a rather than b – a ≥ 1.

The predicates that must be maintained at the beginning of each iteration are a ≤
 + 1 and b ≥ . The initial value of b should be something that’s easy to

compute and close to . Reasonable initial values are x, x ÷ 4 + 1, x ÷ 8 + 2, x
÷ 16 + 4, x ÷ 32 + 8, x ÷ 64 + 16, and so on. Expressions near the beginning of this
list are better initial bounds for small x, and those near the end are better for larger x.
(The value x ÷ 2 + 1 is acceptable, but probably not useful, because x ÷ 4 + 1 is
everywhere a better or equal bound.)

int isqrt(unsigned x) {
 unsigned a, b, m; // Limits and midpoint.

 a = 1;
 b = (x >> 5) + 8; // See text.
 if (b > 65535) b = 65535;
 do {
 m = (a + b) >> 1;
 if (m*m > x) b = m - 1;
 else a = m + 1;
 } while (b >= a);
 return a - 1;
}

FIGURE 11–3. Integer square root, simple binary search.

Seven variations on the procedure shown in Figure 11–3 can be more or less
mechanically generated by substituting a + 1 for a, or b – 1 for b, or by changing m =
(a + b) ÷ 2 to m = (a + b + 1) ÷ 2, or some combination of these substitutions.

The execution time of the procedure shown in Figure 11–3 is about 6 + (M +
7.5)n, where M is the multiplication time in cycles and n is the number of times the
loop is executed. The following table gives the average number of times the loop is
executed, for x uniformly distributed in the indicated range.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images10.html#p011fig03

Chapter 11. Some Elementary Functions

If we assume a multiplication time of 5 cycles and x ranging uniformly from 0 to
9999, the algorithm runs in about 94 cycles. The maximum execution time (n = 16) is
about 206 cycles.

If number of leading zeros is available, the initial bounds can be set from

b = (1 << (33 - nlz(x))/2) - 1;
a = (b + 3)/2;

That is, . These are very good bounds for small values of x
(one loop iteration for 0 ≤ x ≤ 15), but only a moderate improvement, for large x, over
the bounds calculated in Figure 11–3. For x in the range 0 to 9999, the average
number of iterations is about 5.45, which gives an execution time of about 74 cycles,
using the same assumptions as above.

A Hardware Algorithm

There is a shift-and-subtract algorithm for computing the square root that is quite
similar to the hardware division algorithm described in Figure 9–2 on page 193.
Embodied in hardware on a 32-bit machine, this algorithm employs a 64-bit register
that is initialized to 32 0-bits followed by the argument x. On each iteration, the 64-bit
register is shifted left two positions, and the current result y (initially 0) is shifted left
one position. Then 2y + 1 is subtracted from the left half of the 64-bit register. If the
result of the subtraction is nonnegative, it replaces the left half of the 64-bit register,
and 1 is added to y (this does not require an adder, because y ends in 0 at this point).
If the result of the subtraction is negative, then the 64-bit register and y are left
unaltered. The iteration is done 16 times.

This algorithm was described in 1945 [JVN].
Perhaps surprisingly, this process runs in about half the time of that of the 64 ÷ 32

 32 hardware division algorithm cited, because it does half as many iterations and
each iteration is about equally complex in the two algorithms.

To code this algorithm in software, it is probably best to avoid the use of a
doubleword shift register, which requires about four instructions to shift. The algorithm
in Figure 11–4 [GLS1] accomplishes this by shifting y and a mask bit m to the right. It
executes in about 149 basic RISC instructions (average). The two expressions y | m
could also be y + m.

The operation of this algorithm is similar to the grade-school method. It is

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images10.html#p284equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09fig2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_193

Chapter 11. Some Elementary Functions

illustrated here, for finding on an 8-bit machine.

 1011 0011 x0 Initially, x = 179 (0xB3).
 - 1 b1

 0111 0011 x1 0100 0000 y1
 - 101 b2 0010 0000 y2

 0010 0011 x2 0011 0000 y2
 - 11 01 b3 0001 1000 y3

 0010 0011 x3 0001 1000 y3 (Can’t subtract).
 - 1 1001 b4 0000 1100 y4

 0000 1010 x4 0000 1101 y4

The result is 13 with a remainder of 10 left in register x.

int isqrt(unsigned x) {
 unsigned m, y, b;

 m = 0x40000000;
 y = 0;
 while(m != 0) { // Do 16 times.
 b = y | m;
 y = y >> 1;
 if (x >= b) {
 x = x - b;
 y = y | m;
 }
 m = m >> 2;
 }
 return y;
}

FIGURE 11–4. Integer square root, hardware algorithm.

It is possible to eliminate the if x >= b test by the usual trickery involving shift
right signed 31. It can be proved that the high-order bit of b is always zero (in fact, b
≤ 5 · 228), which simplifies the x >= b predicate (see page 23). The result is that the if
statement group can be replaced with

t = (int)(x | ~(x - b)) >> 31; // -1 if x >= b, else 0.
x = x - (b & t);
y = y | (m & t);

This replaces an average of three cycles with seven, assuming the machine has or not,
but it might be worthwhile if a conditional branch in this context takes more than five
cycles.

Somehow it seems that it should be easier than some hundred cycles to compute
an integer square root in software. Toward this end, we offer the expressions that
follow to compute it for very small values of the argument. These can be useful to
speed up some of the algorithms given above, if the argument is expected to be small.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images10.html#p285equ01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images10.html#p011fig04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_23
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images10.html#p286equ01

Chapter 11. Some Elementary Functions

Ah, the elusive square root,
It should be a cinch to compute.

But the best we can do
Is use powers of two

And iterate the method of Newt!

11–2 Integer Cube Root
For cube roots, Newton’s method does not work out very well. The iterative formula is a
bit complex:

and there is of course the problem of getting a good starting value x0.

However, there is a hardware algorithm, similar to the hardware algorithm for
square root, that is not too bad for software. It is shown in Figure 11–5.

The three add’s of 1 can be replaced by or’s of 1, because the value being
incremented is even. Even with this change, the algorithm is of questionable value for
implementation in hardware, mainly because of the multiplication y * (y + 1).

This multiplication is easily avoided by applying the compiler optimization of strength
reduction to the y-squared term. Introduce another unsigned variable y2 that will have
the value of y-squared, by updating y2 appropriately wherever y receives a new value.

Chapter 11. Some Elementary Functions

Just before y = 0 insert y2 = 0. Just before y = 2*y insert y2 = 4*y2. Change the
assignment to b to b = (3*y2 + 3*y + 1) << s (and factor out the 3). Just before y =
y + 1, insert y2 = y2 + 2*y + 1. The resulting program has no multiplications except by
small constants, which can be changed to shift’s and add’s. This program has three
add’s of 1, which can all be changed to or’s of 1. It is faster unless your machine’s
multiply instruction takes only two or fewer cycles.

int icbrt(unsigned x) {
 int s;
 unsigned y, b;

 y = 0;
 for (s = 30; s >= 0; s = s - 3) {
 y = 2*y;
 b = (3*y*(y + 1) + 1) << s;
 if (x >= b) {
 x = x - b;
 y = y + 1;
 }
 }
 return y;
}

FIGURE 11–5. Integer cube root, hardware algorithm.

Caution: [GLS1] points out that the code of Figure 11–5, and its strength-reduced
derivative, do not work if adapted in the obvious way to a 64-bit machine. The
assignment to b can then overflow. This problem can be avoided by dropping the shift
left of s from the assignment to b, inserting after the assignment to b the assignment
bs = b << s, and changing the two lines if (x >= b) {x = x – b ... to if (x >= bs
&& b == (bs >> s)) {x = x – bs

11–3 Integer Exponentiation

Computing xn by Binary Decomposition of n

A well-known technique for computing xn, when n is a nonnegative integer, involves
the binary representation of n. The technique applies to the evaluation of an expression
of the form x · x · x · ... · x where · is any associative operation, such as addition,
multiplication including matrix multiplication, and string concatenation (as suggested by
the notation (‘ab’)3 = ‘ababab’). As an example, suppose we wish to compute y = x13.
Because 13 expressed in binary is 1101 (that is, 13 = 8 + 4 + 1),

x13 = x8 + 4 + 1 = x8 · x4 · x1.

Thus, x13 can be computed as follows:

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images10.html#p011fig05

Chapter 11. Some Elementary Functions

This requires five multiplications, considerably fewer than the 12 that would be required
by repeated multiplication by x.

If the exponent is a variable, known to be a nonnegative integer, the technique can
be employed in a subroutine, as shown in Figure 11–6.

The number of multiplications done by this method is, for exponent n ≥ 1,

This is not always the minimal number of multiplications. For example, for n = 27, the
binary decomposition method computes

x16 · x8 · x2 · x1,

which requires seven multiplications. However, the scheme illustrated by

((x3)3)3

requires only six. The smallest number for which the binary decomposition method is
not optimal is n = 15 (Hint: x15 = (x3)5).

Perhaps surprisingly, there is no known simple method that, for all n, finds an
optimal sequence of multiplications to compute xn. The only known methods involve an
extensive search. The problem is discussed at some length in [Knu2, 4.6.3].

The binary decomposition method has a variant that scans the binary representation
of the exponent in left-to-right order [Rib, 32], which is analogous to the left-to-right
method of converting binary to decimal. Initialize the result y to 1, and scan the
exponent from left to right. When a 0 is encountered, square y. When a 1 is
encountered, square y and multiply it by x. This computes as

(((12 · x)2 · x)2)2 · x.

int iexp(int x, unsigned n) {
 int p, y;

 y = 1; // Initialize result
 p = x; // and p.
 while(1) {
 if (n & 1) y = p*y; // If n is odd, mult by p.
 n = n >> 1; // Position next bit of n.
 if (n == 0) return y; // If no more bits in n.
 p = p*p; // Power for next bit of n.
 }
}

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images10.html#p011fig06

Chapter 11. Some Elementary Functions

FIGURE 11–6. Computing xn by binary decomposition of n.

It always requires the same number of (nontrivial) multiplications as the right-to-left
method of Figure 11–6.

2n in Fortran

The IBM XL Fortran compiler takes the definition of this function to be

It is assumed that n and the result are interpreted as signed integers. The ANSI/ISO
Fortran standard requires that the result be 0 if n < 0. The definition above for n ≥ 31
seems reasonable in that it is the correct result modulo 232, and it agrees with what
repeated multiplication would give.

The standard way to compute 2n is to put the integer 1 in a register and shift it left
n places. This does not satisfy the Fortran definition, because shift amounts are usually
treated modulo 64 or modulo 32 (on a 32-bit machine), which gives incorrect results
for large or negative shift amounts.

If your machine has number of leading zeros, pow2(n) can be computed in four
instructions as follows [Shep]:

The shift right operations are “logical” (not sign-propagating), even though n is a
signed quantity.

If the machine does not have the nlz instruction, its use above can be replaced with
one of the x = 0 tests given in “Comparison Predicates” on page 23, changing the

expression . A possibly better method is to realize that the

predicate 0 ≤ x ≤ 31 is equivalent to and then simplify the expression for

 given in the cited section; it becomes ¬x & (x – 32). This gives a solution in
five instructions (four if the machine has and not):

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_23

Chapter 11. Some Elementary Functions

11–4 Integer Logarithm
By the “integer logarithm” function we mean the function logb x , where x is a
positive integer and b is an integer greater than or equal to 2. Usually, b = 2 or 10,
and we denote these functions by “ilog2” and “ilog10,” respectively. We use “ilog” when
the base is unspecified.

It is convenient to extend the definition to x = 0 by defining ilog(0) = –1 [CJS].
There are several reasons for this definition:

• The function ilog2(x) is then related very simply to the number of leading zeros
function, nlz(x), by the formula shown below, including the case x = 0. Thus, if
one of these functions is implemented in hardware or software, the other is
easily obtained.

ilog2(x) = 31 – nlz(x)

• It is easy to compute log(x) using the formula below. For x = 1, this
formula implies that ilog(0) = –1.

log(x) = ilog(x – 1) + 1

• It makes the following identity hold for x = 1 (but it doesn’t hold for x = 0).

ilog2(x ÷ 2) = ilog2(x) – 1

• It makes the result of ilog(x) a small dense set of integers (–1 to 31 for
ilog2(x) on a 32-bit machine, with x unsigned), making it directly useful for
indexing a table.

• It falls naturally out of several algorithms for computing ilog2(x) and ilog10(x).
Unfortunately, it isn’t the right definition for “number of digits of x,” which is ilog(x)

+ 1 for all x except x = 0. It seems best to consider that anomalous.
For x < 0, ilog(x) is left undefined. To extend its range of utility, we define the function
as mapping unsigned numbers to signed numbers. Thus, a negative argument cannot
occur.

Integer Log Base 2

Computing ilog2(x) is essentially the same as computing the number of leading zeros,
which is discussed in “Counting Leading 0’s” on page 99. All the algorithms in that
section can be easily modified to compute ilog2(x) directly, rather than by computing
nlz(x) and subtracting the result from 31. (For the algorithm of Figure 5–16 on page
102, change the line return pop(~x) to return pop(x) – 1.)

Integer Log Base 10

This function has application in converting a number to decimal for inclusion into a line
with leading zeros suppressed. The conversion process successively divides by 10,
producing the least significant digit first. It would be useful to know ahead of time
where the least significant digit should be placed, to avoid putting the converted
number in a temporary area and then moving it.

To compute ilog10(x), a table search is quite reasonable. This could be a binary
search, but because the table is small and in many applications x is usually small, a
simple linear search is probably best. This rather straightforward program is shown in

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_99
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#ch05fig16
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_102

Chapter 11. Some Elementary Functions

Figure 11–7.
On the basic RISC, this program can be implemented to execute in about 9 + 4

log10x instructions. Thus, it executes in five to 45 instructions, with perhaps 13 (for
10 ≤ x ≤ 99) being typical.

The program in Figure 11–7 can easily be changed into an “in register” version (not
using a table). The executable part of such a program is shown in Figure 11–8. This
might be useful if the machine has a fast way to multiply by 10.

int ilog10(unsigned x) {
 int i;
 static unsigned table[11] = {0, 9, 99, 999, 9999,
 99999, 999999, 9999999, 99999999, 999999999,
 0xFFFFFFFF};

 for (i = -1; ; i++) {
 if (x <= table[i+1]) return i;
 }
}

FIGURE 11–7. Integer log base 10, simple table search.

 p = 1;
 for (i = -1; i <= 8; i++) {
 if (x < p) return i;
 p = 10*p;
 }
 return i;

FIGURE 11–8. Integer log base 10, repeated multiplication by 10.

This program can be implemented to execute in about 10 + 6 log10x
instructions on the basic RISC (counting the multiply as one instruction). This amounts
to 16 instructions for 10 ≤ x ≤ 99.

A binary search can be used, giving an algorithm that is loop-free and does not use
a table. Such an algorithm might compare x to 104, then to either 102 or to 106, and
so on, until the exponent n is found such that 10n ≤ x < 10n + 1. The paths execute in
ten to 18 instructions, four or five of which are branches (counting the final
unconditional branch).

The program shown in Figure 11–9 is a modification of the binary search that has a
maximum of four branches on any path and is written in a way that favors small x. It
executes in six basic RISC instructions for 10 ≤ x ≤ 99, and in 11 to 16 instructions for
x ≥ 100.

The shift instructions in this program are signed shifts (which is the reason for the
(int) casts). If your machine does not have this instruction, one of the alternatives
below, which use unsigned shifts, may be preferable. These are illustrated for the case
of the first return statement. Unfortunately, the first two require subtract from
immediate for efficient implementation, which most machines don’t have. The last
involves adding a large constant (two instructions), but this does not matter for the
second and third return statements, which require adding a large constant anyway. The
large constant is 231 – 1000.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images10.html#p011fig07
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images10.html#p011fig08

Chapter 11. Some Elementary Functions

return 3 - ((x - 1000) >> 31);
return 2 + ((999 - x) >> 31);
return 2 + ((x + 2147482648) >> 31);

An alternative for the fourth return statement is

return 8 + ((x + 1147483648) | x) >> 31;

where the large constant is 231 – 109. This avoids both the and not and the signed
shift.

Alternatives for the last if-else construction are

return ((int)(x - 1) >> 31) | ((unsigned)(9 - x) >> 31);
return (x > 9) + (x > 0) - 1;

either of which saves a branch.

int ilog10(unsigned x) {
 if (x > 99)
 if (x < 1000000)
 if (x < 10000)
 return 3 + ((int)(x - 1000) >> 31);
 else
 return 5 + ((int)(x - 100000) >> 31);
 else
 if (x < 100000000)
 return 7 + ((int)(x - 10000000) >> 31);
 else
 return 9 + ((int)((x-1000000000)&~x) >> 31);
 else
 if (x > 9) return 1;
 else return ((int)(x - 1) >> 31);
}

FIGURE 11–9. Integer log base 10, modified binary search.

If nlz(x) or ilog2(x) is available as an instruction, there are better and more
interesting ways to compute ilog10(x). For example, the program in Figure 11–10 does
it in two table lookups [CJS].

From table1 an approximation to ilog10(x) is obtained. The approximation is usually
the correct value, but it is too high by 1 for x = 0 and for x in the range 8 to 9, 64 to
99, 512 to 999, 8192 to 9999, and so on. The second table gives the value below
which the estimate must be corrected by subtracting 1.

This scheme uses a total of 73 bytes for tables and can be coded in only six
instructions on the IBM System/370 [CJS] (to achieve this, the values in table1 must be
four times the values shown). It executes in about ten instructions on a RISC that has
number of leading zeros, but no other uncommon instructions. The other methods to
be discussed are variants of this.

The first variation eliminates the conditional branch that results from the if
statement. Actually, the program in Figure 11–10 can be coded free of branches if the
machine has the set less than unsigned instruction, but the method to be described can
be used on machines that have no unusual instructions (other than number of leading
zeros).

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images10.html#p293equ02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images10.html#p293equ03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images10.html#p11fig09

Chapter 11. Some Elementary Functions

The method is to replace the if statement with a subtraction followed by a shift right
of 31, so that the sign bit can be subtracted from y. A difficulty occurs for large x(x ≥
231 + 109), which can be fixed by adding an entry to table2, as shown in Figure 11–
11.

This executes in about 11 instructions on a RISC that has number of leading zeros
but is otherwise quite “basic.” It can be modified to return the value 0, rather than –1,
for x = 0 (which is preferable for the decimal conversion problem) by changing the last
entry in table1 to 1 (that is, by changing “0, 0, 0, 0” to “0, 0, 0, 1”).

int ilog10(unsigned x) {
 int y;
 static unsigned char table1[33] = {9, 9, 9, 8, 8, 8,
 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3,
 2, 2, 2, 1, 1, 1, 0, 0, 0, 0};
 static unsigned table2[10] = { 1, 10, 100, 1000, 10000,
 100000, 1000000, 10000000, 100000000, 1000000000};

 y = table1[nlz(x)];
 if (x < table2[y]) y = y - 1;
 return y;
}

FIGURE 11–10. Integer log base 10 from log base 2, double table lookup.

The next variation replaces the first table lookup with a subtraction, a multiplication,
and a shift. This seems likely to be possible because log10x and log2x are related by a
multiplicative constant, namely log102 = 0.30103.... Thus, it may be possible to
compute ilog10(x) by computing c ilog2(x) for some suitable c ≈ 0.30103, and
correcting the result by using a table such as table2 in Figure 11–11.

int ilog10(unsigned x) {
 int y;
 static unsigned char table1[33] = {10, 9, 9, 8, 8, 8,
 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3,
 2, 2, 2, 1, 1, 1, 0, 0, 0, 0};
 static unsigned table2[11] = {1, 10, 100, 1000, 10000,
 100000, 1000000, 10000000, 100000000, 1000000000,
 0};

 y = table1[nlz(x)];
 y = y - ((x - table2[y]) >> 31);
 return y;
}

FIGURE 11–11. Integer log base 10 from log base 2, double table lookup,
branch free.

To pursue this, let log102 = c + ε, where c > 0 is a rational approximation to
log102 that is a convenient multiplier, and ε > 0. Then, for x ≥ 1,

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images10.html#p11fig10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images10.html#p11fig11

Chapter 11. Some Elementary Functions

Thus, if we choose c so that c + εlog2x < 1, then c ilog2(x) approximates
ilog10(x) with an error of 0 or +1. Furthermore, if we take ilog2(0) = ilog10(0) = – 1,
then c ilog2(0) = ilog10(0) (because 0 < c ≤ 1), so we need not be concerned
about this case. (There are other definitions that would work here, such as ilog2(0) =
ilog10(0) = 0.)

Because ε = log102 – c, we must choose c so that

This is satisfied for x = 1 (because c < 1) and 2. For larger x, we must have

The most stringent requirement on c occurs when x is large. For a 32-bit machine, x <
232, so choosing

suffices. Because c < 0.30103 (because ε > 0), c = 9/32 = 0.28125 is a convenient
value. Experimentation reveals that coarser values such as 5/16 and 1/4 are not
adequate.

This leads to the scheme illustrated in Figure 11–12, which estimates low and then
corrects by adding 1. It executes in about 11 instructions on a RISC that has number of
leading zeros, counting the multiply as one instruction.

This can be made into a branch-free version, but again there is a difficulty with
large x(x > 231 + 109), which can be fixed in either of two ways. One way is to use a
different multiplier (19/64) and a slightly expanded table. The program is shown in
Figure 11–13 (about 11 instructions on a RISC that has number of leading zeros,
counting the multiply as one instruction).

The other “fix” is to or x into the result of the subtraction to force the sign bit to be
on for x ≥ 231; that is, change the second executable line of Figure 11–12 to

y = y + (((table2[y+1] - x) | x) >> 31);

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images10.html#p296equ02

Chapter 11. Some Elementary Functions

This is the preferable program if multiplication by 19 is substantially more difficult than
multiplication by 9 (as it is for a shift-and-add sequence).

 static unsigned table2[10] = {0, 9, 99, 999, 9999, 99999,
 999999, 9999999, 99999999, 999999999};

 y = (9*(31 - nlz(x))) >> 5;
 if (x > table2[y+1]) y = y + 1;
 return y;

FIGURE 11–12. Integer log base 10 from log base 2, one table lookup.

int ilog10(unsigned x) {
 int y;
 static unsigned table2[11] = {0, 9, 99, 999, 9999,
 99999, 999999, 9999999, 99999999, 999999999,
 0xFFFFFFFF};

 y = (19*(31 - nlz(x))) >> 6;
 y = y + ((table2[y + 1] - x) >> 31);
 return y;
}

FIGURE 11–13. Integer log base 10 from log base 2, one table lookup,
branch free.

For a 64-bit machine, choosing

suffices. The value 19/64 = 0.296875 is convenient, and experimentation reveals that
no coarser value is adequate. The program is (branch-free version)

unsigned table2[20] = {0, 9, 99, 999, 9999, ...,
 9999999999999999999};
y = ((19*(63 - nlz(x)) >> 6;
y = y + ((table2[y + 1] - x) >> 63;
return y;

Exercises

1. Is the correct integer fourth root of an integer x obtained by computing the
integer square root of the integer square root of x? That is, does

2. Code the 64-bit version of the cube root routine that is mentioned at the end of
Section 11–2. Use the “long long” C data type. Do you see an alternative
method for handling the overflow of b that probably results in a faster routine?

3. How many multiplications does it take to compute x23 (modulo 2W, where W is
the computer’s word size)?

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images10.html#p11fig12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images10.html#p11fig13
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images10.html#p297equ02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch11ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch11ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch11ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch11ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch11ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch11ans3

Chapter 11. Some Elementary Functions

4. Describe in simple terms the functions (a) 2ilog2(x) and (b) 2ilog2(x – 1) + 1 for x
an integer greater than 0.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch11ans4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch11ans4

Chapter 12. Unusual Bases for Number Systems

Chapter 12. Unusual Bases for Number Systems

This section discusses a few unusual positional number systems. They are just
interesting curiosities and are probably not practical for anything. We limit the
discussion to integers, but they can all be extended to include digits after the radix
point—which usually, but not always, denotes non-integers.

12–1 Base –2
By using –2 as the base, both positive and negative integers can be expressed without
an explicit sign or other irregularity, such as having a negative weight for the most
significant bit (Knu3). The digits used are 0 and 1, as in base +2; that is, the value
represented by a string of 1’s and 0’s is understood to be

(an...a3a2a1a0) = an(–2) n + ... + a3(–2) 3 + a2(–2) 2 + a1(–2) + a0.

From this, it can be seen that a procedure for finding the base −2, or “negabinary,”
representation of an integer is to successively divide the number by −2, recording the
remainders. The division must be such that it always gives a remainder of 0 or 1 (the
digits to be used); that is, it must be modulus division. As an example, the plan below
shows how to find the base −2 representation of –3.

Because we have reached a 0 quotient, the process terminates (if continued, the
remaining quotients and remainders would all be 0). Thus, reading the remainders
upward, we see that –3 is written 1101 in base –2.

Table 12–1 shows, on the left, how each bit pattern from 0000 to 1111 is
interpreted in base –2, and on the right, how integers in the range –15 to +15 are
represented.

TABLE 12–1. CONVERSIONS BETWEEN DECIMAL AND BASE–2

Chapter 12. Unusual Bases for Number Systems

It is not obvious that the 2n possible bit patterns in an n-bit word uniquely
represent all integers in a certain range, but this can be shown by induction. The
inductive hypothesis is that an n-bit word represents all integers in the range

Assume first that n is even. For n = 2, the representable integers are 10, 11, 00,
and 01 in base –2, or

–2, –1, 0, 1.

This agrees with (1a), and each integer in the range is represented once and only
once.

A word of n + 1 bits can, with a leading bit of 0, represent all the integers given by

Chapter 12. Unusual Bases for Number Systems

(1a). In addition, with a leading bit of 1, it can represent all these integers biased by (–
2)n = 2n. The new range is

2n − (2n + 1 – 2) / 3 to 2n + (2n– 1)/3,

or

(2n−1)/3 + 1 to (2n +2 − 1)/3.

This is contiguous to the range given by (1a), so for a word size of n + 1 bits, all
integers in the range

−(2n + 1 − 2)/3 to (2n + 2 − 1)/3

are represented once and only once. This agrees with (1b), with n replaced by n + 1.
The proof that (1a) follows from (1b), for n odd, and that all integers in the range

are uniquely represented, is similar.
To add and subtract, the usual rules, such as 0 + 1 = 1 and 1 – 1 = 0, of course

apply. Because 2 is written 110, and –1 is written 11, and so on, the following
additional rules apply. These, together with the obvious ones, suffice.

When adding or subtracting, there are sometimes two carry bits. The carry bits are
to be added to their column, even when subtracting. It is convenient to place them
both over the next bit to the left and simplify (when possible) using 11 + 1 = 0. If 11
is carried to a column that contains two 0’s, bring down a 1 and carry a 1. Below are
examples.

 Addition Subtraction
 11 1 11 11 1 11 1 1
 1 0 1 1 1 19 1 0 1 0 1 21
 + 1 1 0 1 0 1 +(-11) -1 0 1 1 1 0 -(-38)
 ----------------- ------ ---------------- -----
 0 1 1 0 0 0 8 1 0 0 1 1 1 1 59

The only carries possible are 0, 1, and 11. Overflow occurs if there is a carry (either
1 or 11) out of the high-order position. These remarks apply to both addition and
subtraction.

Because there are three possibilities for the carry, a base –2 adder would be more
complex than a two’s-complement adder.

There are two ways to negate an integer. It can be added to itself shifted left one
position (that is, multiply by –1), or it can be subtracted from 0. There is no rule as
simple and convenient as the “complement and add 1” rule of two’s-complement
arithmetic. In two’s-complement, this rule is used to build a subtracter from an adder
(to compute A – B, form).

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images11.html#p301fig02

Chapter 12. Unusual Bases for Number Systems

For base –2, there is no device quite that simple, but a method that is nearly as
simple is to complement the minuend (meaning to invert each bit), add the
complemented minuend to the subtrahend, and then complement the sum [Lang]. Here
is an example showing the subtraction of 13 from 6 using this scheme on an eight-bit
machine.

00011010 6
00011101 13
11100101 6 complemented

11110110 (6 complemented) + 13
00001001 Complement of the sum (-7)

This method is using

A − B = I − ((I−A)+B)

in base –2 arithmetic, with I a word of all 1’s.
Multiplication of base –2 integers is straightforward. Just use the rule that 1 × 1 =

1 and 0 times either 0 or 1 is 0, and add the columns using base –2 addition.
Division, however, is quite complicated. It is a real challenge to devise a reasonable

hardware division algorithm—that is, one based on repeated subtraction and shifting.
Figure 12–1 shows an algorithm that is expressed, for definiteness, for an 8-bit
machine. It does modulus division (nonnegative remainder).

Although this program is written in C and was tested on a binary two’s-complement
machine, that is immaterial—it should be viewed somewhat abstractly. The input
quantities n and d, and all internal variables except for q, are simply numbers without
any particular representation. The output q is a string of bits to be interpreted in base –
2.

This requires a little explanation. If the input quantities were in base –2, the
algorithm would be very awkward to express in an executable form. For example, the
test “if (d > 0)” would have to test that the most significant bit of d is in an even
position. The addition in “c = c + d” would have to be a base –2 addition. The code
would be very hard to read. The way the algorithm is coded, you should think of n and
d as numbers without any particular representation. The code shows the arithmetic
operations to be performed, whatever encoding is used. If the numbers are encoded in
base –2, as they would be in hardware that implements this algorithm, the
multiplication by –128 is a left shift of seven positions, and the divisions by –2 are right
shifts of one position.

As examples, the code computes values as follows:
divbm2(6, 2) = 7 (six divided by two is 111–2)
divbm2(– 4, 3) = 2 (minus four divided by three is 10–2)
divbm2(–4, –3) = 6 (minus four divided by minus 3 is 110 –2)

int divbm2(int n, int d) { // q = n/d in base -2.
 int r, dw, c, q, i;

 r = n; // Init. remainder.
 dw = (-128)*d; // Position d.
 c = (-43)*d; // Init. comparand.
 if (d > 0) c = c + d;

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images11.html#p302fig01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images11.html#p12fig01

Chapter 12. Unusual Bases for Number Systems

 q = 0; // Init. quotient.
 for (i = 7; i >= 0; i--) {
 if (d > 0 ^ (i&1) == 0 ^ r >= c {
 q = q | (1 << i); // Set a quotient bit.
 r = r - dw; // Subtract d shifted.
 }
 dw = dw/(-2); // Position d.
 if (d > 0) c = c -2*d; // Set comparand for
 else c = c + d; // next iteration.
 c = c/(-2);
 }
 return q; // Return quotient in
 // base -2.
 // Remainder is r,
} // 0 <= r < |d|.

FIGURE 12-1. Division in base –2.

The step q = q | (1 << i); represents simply setting bit i of q. The next line—r = r -

dw—represents reducing the remainder by the divisor d shifted left.
The algorithm is difficult to describe in detail, but we will try to give the general

idea.
Consider determining the value of the first bit of the quotient, bit 7 of q. In base

−2, 8-bit numbers that have their most significant bit “on” range in value from −170 to
−43. Therefore, ignoring the possibility of overflow, the first (most significant) quotient
bit will be 1 if (and only if) the quotient will be algebraically less than or equal to –43.

Because n = qd + r and for a positive divisor r ≤ d − 1, for a positive divisor the
first quotient bit will be 1 iff n ≤ − 43d + (d − 1), or n < − 43d + d. For a negative
divisor, the first quotient bit will be 1 iff n ≥ −43d (r ≥ 0 for modulus division).

Thus, the first quotient bit is 1 iff

(d > 0 & ¬(n ≥ −43d + d)) | (d < 0 & n ≥ −43d).

Ignoring the possibility that d = 0, this can be written as

d>0 n ≥ c,

where c = −43d + d if d ≥ 0, and c = −43d if d < 0.
This is the logic for determining a quotient bit for an odd-numbered bit position. For

an even-numbered position, the logic is reversed. Hence, the test includes the term
(i&1) == 0. (The ^ character in the program denotes exclusive or.)

At each iteration, c is set equal to the smallest (closest to zero) integer that must
have a 1-bit at position i after dividing by d. If the current remainder r exceeds that,
then bit i of q is set to 1 and r is adjusted by subtracting the value of a 1 at that
position, multiplied by the divisor d. No real multiplication is required here; d is simply
positioned properly and subtracted.

The algorithm is not elegant. It is awkward to implement because there are several
additions, subtractions, and comparisons, and there is even a multiplication (by a
constant) that must be done at the beginning. One might hope for a “uniform”
algorithm—one that does not test the signs of the arguments and do different things
depending on the outcome. Such a uniform algorithm, however, probably does not exist
for base –2 (or for two’s-complement arithmetic). The reason for this is that division is
inherently a non-uniform process. Consider the simplest algorithm of the shift-

Chapter 12. Unusual Bases for Number Systems

and-subtract type. This algorithm would not shift at all, but for positive arguments
would simply subtract the divisor from the dividend repeatedly, counting the number of
subtractions performed until the remainder is less than the divisor. On the other hand,
if the dividend is negative (and the divisor is positive), the process is to add the divisor
repeatedly until the remainder is 0 or positive, and the quotient is the negative of the
count obtained. The process is still different if the divisor is negative.

In spite of this, division is a uniform process for the signed-magnitude
representation of numbers. With such a representation, the magnitudes are positive, so
the algorithm can simply subtract magnitudes and count until the remainder is
negative, and then set the sign bit of the quotient to the exclusive or of the arguments,
and the sign bit of the remainder equal to the sign of the dividend (this gives ordinary
truncating division).

The algorithm given above could be made more uniform, in a sense, by first
complementing the divisor, if it is negative, and then performing the steps given as
simplified by having d > 0. Then a correction would be performed at the end. For
modulus division, the correction is to negate the quotient and leave the remainder
unchanged. This moves some of the tests out of the loop, but the algorithm as a whole
is still not pretty.

It is interesting to contrast the commonly used number representations and base –2
regarding the question of whether or not the computer hardware treats numbers
uniformly in carrying out the four fundamental arithmetic operations. We don’t have a
precise definition of “uniformly,” but basically it means free of operations that might or
might not be done, depending on the signs of the arguments. We consider setting the
sign bit of the result equal to the exclusive or of the signs of the arguments to be a
uniform operation. Table 12–2 shows which operations treat their operands uniformly
with various number representations.

One’s-complement addition and subtraction are done uniformly by means of the
“end around carry” trick. For addition, all bits, including the sign bit, are added in the
usual binary way, and the carry out of the leftmost bit (the sign bit) is added to the
least significant position. This process always terminates right away (that is, the
addition of the carry cannot generate another carry out of the sign bit position).

TABLE 12–2. UNIFORM OPERATIONS IN VARIOUS NUMBER ENCODINGS

In the case of two’s-complement multiplication, the entry is “yes” if only the right
half of the doubleword product is desired.

We conclude this discussion of the base –2 number system with some observations
about how to convert between straight binary and base –2.

To convert to binary from base –2, form a word that has only the bits with positive
weight, and subtract a word that has only the bits with negative weight, using the
subtraction rules of binary arithmetic. An alternative method that may be a little simpler

Chapter 12. Unusual Bases for Number Systems

is to extract the bits appearing in the negative weight positions, shift them one position
to the left, and subtract the extracted number from the original number using the
subtraction rules of ordinary binary arithmetic.

To convert to base –2 from binary, extract the bits appearing in the odd positions
(positions weighted by 2n with n odd), shift them one position to the left, and add the
two numbers using the addition rules of base –2. Here are two examples:

On a computer, with its fixed word size, these conversions work for negative
numbers if the carries out of the high-order position are simply discarded. To illustrate,
the example on the right above can be regarded as converting −9 to base −2 from
binary if the word size is six bits.

The above algorithm for converting to base −2 cannot easily be implemented in
software on a binary computer, because it requires doing addition in base −2.
Schroeppel [HAK, item 128] overcomes this with a much more clever and useful way to
do the conversions in both directions. To convert to binary, his method is

B ← (N 0b10... 1010) − 0b10 ... 1010.

To see why this works, let the base –2 number consist of the four digits abcd.
Then, interpreted (erroneously) in straight binary, this is 8a + 4b + 2 c + d. After the
exclusive or, interpreted in binary it is 8(1 − a) + 4b + 2(1 − c) + d. After the (binary)
subtraction of 8 + 2, it is − 8 a + 4b − 2 c + d, which is its value interpreted in base
–2.

Schroeppel’s formula can be readily solved for N in terms of B, so it gives a three-
instruction method for converting in the other direction. Collecting these results, we
have the following formulas for converting to binary for a 32-bit machine:

B ← (N & 0x55555555) − (N & ¬0x55555555),
B ← N − ((N& 0xAAAAAAAA) << 1),
B ← (N 0xAAAAAAAA) − 0xAAAAAAAA,

and the following, for converting to base –2 from binary:

N ← (B + 0xAAAAAAAA) 0xAAAAAAAA.

12-2 Base –1 + i

By using – 1 + i as the base, where i is , all complex integers (complex numbers
with integral real and imaginary parts) can be expressed as a single “number” without
an explicit sign or other irregularity. Surprisingly, this can be done using only 0 and 1
for digits, and all integers are represented uniquely. We will not prove this or much else
about this number system, but will just describe it very briefly.

It is not entirely trivial to discover how to write the integer 2.1 But it can be
determined algorithmically by successively dividing 2 by the base and recording the

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch12fn1

Chapter 12. Unusual Bases for Number Systems

remainders. What does a “remainder” mean in this context? We want the remainder
after dividing by – 1 + i to be 0 or 1, if possible (so that the digits will be 0 or 1). To
see that it is always possible, assume that we are to divide an arbitrary complex integer
a + bi by − 1 + i. Then, we wish to find q and r such that q is a complex integer, r = 0
or 1, and

a + bi = (qr + qii)(− 1 + i)+r,

where qr and qt denote the real and imaginary parts of q, respectively. Equating real
and imaginary parts and solving the two simultaneous equations for q gives

Clearly, if a and b are both even or are both odd, then by choosing r = 0, q is a
complex integer. Furthermore, if one of a and b is even and the other is odd, then by
choosing r = 1, q is a complex integer.

Thus, the integer 2 can be converted to base – 1 + i by the plan illustrated below.
Because the real and imaginary parts of the integer 2 are both even, we simply do

the division, knowing that the remainder will be 0:

Because the real and imaginary parts of – 1 – i are both odd, again we simply
divide, knowing that the remainder is 0:

Because the real and imaginary parts of i are even and odd, respectively, the
remainder will be 1. It is simplest to account for this at the beginning by subtracting 1
from the dividend.

Because the real and imaginary parts of 1 are odd and even, the next remainder
will be 1. Subtracting this from the dividend gives

Because we have reached a 0 quotient, the process terminates, and the base – 1 +
i representation for 2 is seen to be 1100 (reading the remainders upward).

Table 12–3 shows how each bit pattern from 0000 to 1111 is interpreted in base –
1 + i and how the real integers in the range –15 to +15 are represented.

The addition rules for base – 1 + i (in addition to the trivial ones involving a 0-bit)

Chapter 12. Unusual Bases for Number Systems

are as follows:

TABLE 12–3. CONVERSIONS BETWEEN DECIMAL AND BASE –1 + i

When adding two numbers, the largest number of carries that occurs in one column
is six, so the largest sum of a column is 8 (111000000). This makes for a rather
complicated adder. If one were to build a complex arithmetic machine, it would no
doubt be best to keep the real and imaginary parts separate,2 with each represented in

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch12fn2

Chapter 12. Unusual Bases for Number Systems

some sensible way such as two’s-complement.

12–3 Other Bases
The base – 1 – i has essentially the same properties as the base – 1 + i discussed
above. If a certain bit pattern represents the number a + bi in one of these bases, then
the same bit pattern represents the number a – bi in the other base.

The bases 1 + i and 1 – i can also represent all the complex integers, using only 0
and 1 for digits. These two bases have the same complex-conjugate relationship to
each other, as do the bases – 1 ± i. In bases 1 ± i, the representation of some
integers has an infinite string of 1’s on the left, similar to the two’s-complement
representation of negative integers. This arises naturally by using uniform rules for
addition and subtraction, as in the case of two’s-complement. One such integer is 2,
which (in either base) is written ...11101100. Thus, these bases have the rather
complex addition rule 1 + 1 = ...11101100.

By grouping into pairs the bits in the base –2 representation of an integer, one
obtains a base 4 representation for the positive and negative numbers, using the digits
–2, –1, 0, and 1. For example,

−14decimal = 110110−2 = (−1)(1)(−2)4 = −1 · 42 + 1 · −41 −2 · 40

Similarly, by grouping into pairs the bits in the base – 1 + i representation of a
complex integer, we obtain a base –2i representation for the complex integers using
the digits 0, 1, – 1 + i, and i. This is a bit too complicated to be interesting.

The “quater-imaginary” system (Knu2) is similar. It represents the complex integers
using 2i as a base, and the digits 0, 1, 2, and 3 (with no sign). To represent some
integers, namely those with an odd imaginary component, it is necessary to use a digit
to the right of the radix point. For example, i is written 10.2 in base 2i.

12–4 What Is the Most Efficient Base?
Suppose you are building a computer and you are trying to decide what base to use to
represent integers. For the registers you have available circuits that are 2-state
(binary), 3-state, 4-state, and so on. Which should you use?

Let us assume that the cost of a b-state circuit is proportional to b. Thus, a 3-state
circuit costs 50% more than a binary circuit, a 4-state circuit costs twice as much as a
binary circuit, and so on.

Suppose you want the registers to be able to hold integers from 0 to some
maximum M. Encoding integers from 0 to M in base b requires logb(M + 1) digits
(e.g., to represent all integers from 0 to 999,999 in decimal requires log10(1,000,000)
= 6 digits).

One would expect the cost of a register to be equal to the product of the number
of digits required times the cost to represent each digit:

c = klogb(M + 1) · b,

where c is the cost of a register and k is a constant of proportionality. For a given M,
we wish to find b that minimizes the cost.

The minimum of this function occurs for that value of b that makes dc/db = 0.
Thus, we have

Chapter 12. Unusual Bases for Number Systems

This is zero when 1nb = 1, or b = e.
This is not a very satisfactory result. Because e ≈ 2.718, 2 and 3 must be the most

efficient integral bases. Which is more efficient? The ratio of the cost of a base 2
register to the cost of a base 3 register is

Thus, base 2 is more costly than base 3, but only by a small amount.
By the same analysis, base 2 is more costly than base e by a factor of about 1.062.

Exercises

1. Schroeppel’s formula for converting from base –2 to binary has a dual involving
the constant 0x5555555. Can you find it?

2. Show how to add 1 to a base –2 number using the arithmetic and logical
operations of a binary computer. For example, 0b111 0b100.

3. Show how to round a base –2 number down (in the negative direction) to a
multiple of 16 using the arithmetic and logical operations of a binary computer.
For example, 0b10 0b110000.

4. Write a program, in a language of your choice, to convert a base – 1 + i integer
to the form a + bi, where a and b are real integers. For example, if you give
the program the integer 33, or 0x21, it should display something like 5 − 4i.

5. How would you convert a number in base − 1 + i to its negative? Extract its
real part? Extract its imaginary part? Convert it to its complex conjugate? (The
complex conjugate of a + bi is a − bi.)

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch12ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch12ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch12ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch12ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch12ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch12ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch12ans4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch12ans4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch12ans5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch12ans5

Chapter 13. Gray Code

Chapter 13. Gray Code

13–1 Gray Code

Is it possible to cycle through all 2n combinations of n bits by changing only one bit at
a time? The answer is “yes,” and this is the defining property of Gray codes. That is, a
Gray code is an encoding of the integers such that a Gray-coded integer and its
successor differ in only one bit position. This concept can be generalized to apply to
any base, such as decimal, but here we will discuss only binary Gray codes.

Although there are many binary Gray codes, we will discuss only one: the “reflected
binary Gray code.” This code is what is usually meant in the literature by the
unqualified term “Gray code.” We will show, usually without proof, how to do some
basic operations in this representation of integers, and we will show a few surprising
properties.

The reflected binary Gray code is constructed as follows. Start with the strings 0
and 1, representing the integers 0 and 1:

Reflect this about a horizontal axis at the bottom of the list, and place a 1 to the
left of the new list entries and a 0 to the left of the original list entries:

This is the reflected binary Gray code for n = 2. To get the code for n = 3, reflect
this and attach a 0 or 1 as before:

From this construction, it is easy to see by induction on n that (1) each of the 2n bit
combinations appears once and only once in the list, (2) only one bit changes in going
from one list entry to the next, and (3) only one bit changes when cycling around from
the last entry to the first. Gray codes having this last property are called “cyclic,” and
the reflected binary Gray code is necessarily cyclic.

If n > 2, there are non-cyclic codes that take on all 2n values once and only once.
One such code is 000 001 011 010 110 100 101 111.

Chapter 13. Gray Code

Figure 13–1 shows, for n = 4, the integers encoded in ordinary binary and in Gray
code. The formulas show how to convert from one representation to the other at the
bit-by-bit level (as it would be done in hardware).

FIGURE 13–1. 4-bit Gray code and conversion formulas.

As for the number of Gray codes on n bits, notice that one still has a cyclic binary
Gray code after rotating the list (starting at any of the 2n positions and cycling around)
or reordering the columns. Any combination of these operations results in a distinct
code. Therefore, there are at least 2n · n! cyclic binary Gray codes on n bits. There are
more than this for n ≥ 3.

The Gray code and binary representations have the following dual relationships,
evident from the formulas given in Figure 13–1:

• Bit i of a Gray-coded integer is the parity of bit i and the bit to the left of i in
the corresponding binary integer (using 0 if there is no bit to the left of i).

• Bit i of a binary integer is the parity of all the bits at and to the left of position i
in the corresponding Gray-coded integer.

Converting to Gray from binary can be done in only two instructions:

The conversion to binary from Gray is harder. One method is given by

Chapter 13. Gray Code

We have already seen this formula in “Computing the Parity of a Word” on page 96. As
mentioned there, this formula can be evaluated as illustrated below for n = 32.

B = G ^ (G >> 1);
B = B ^ (B >> 2);
B = B ^ (B >> 4);
B = B ^ (B >> 8);
B = B ^ (B >> 16);

Thus, in general it requires instructions.
Because it is so easy to convert from binary to Gray, it is trivial to generate

successive Gray-coded integers:

for (i = 0; i < n; i++) {
 G = i ^ (i >> 1);
 output G;
}

13-2 Incrementing a Gray-Coded Integer
The logic for incrementing a 4-bit binary integer abcd can be expressed as follows,
using Boolean algebra notation:

Thus, one way to build a Gray-coded counter in hardware is to build a binary counter
using the above logic and convert the outputs a′, b′, c′, d′ to Gray by forming the
exclusive or of adjacent bits, as shown under “Gray from Binary” in Figure 13–1.

A way that might be slightly better is described by the following formulas:

That is, the general case is

Because the parity p alternates between 0 and 1, a counter circuit might maintain p in

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_96
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images12.html#p312equ03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images12.html#p313fig01

Chapter 13. Gray Code

a separate 1-bit register and simply invert it on each count.
In software, the best way to find the successor G′ of a Gray-coded integer G is

probably simply to convert G to binary, increment the binary word, and convert it back
to Gray code. Another way that’s interesting and almost as good is to determine which
bit to flip in G. The pattern goes like this, expressed as a word to be exclusive or’d to
G:

1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 16

The alert reader will recognize this as a mask that identifies the position of the
leftmost bit that changes when incrementing the integer 0, 1, 2, 3, ..., corresponding
to the positions in the above list. Thus, to increment a Gray-coded integer G, the bit
position to invert is given by the leftmost bit that changes when 1 is added to the
binary integer corresponding to G.

This leads to the algorithms for incrementing a Gray-coded integer G as shown in
Figure 13–2. They both first convert G to binary, which is shown as index(G).

B = index(G); B = index(G);
B = B + 1; M = ~B & (B + 1);
Gp = B ^ (B >> 1); Gp = G ^ M;

FIGURE 13–2. Incrementing a Gray-coded integer.

A pencil-and-paper method of incrementing a Gray-coded integer is as follows:

Starting from the right, find the first place at which the parity of bits at and to
the left of the position is even. Invert the bit at this position.

Or, equivalently:

Let p be the parity of the word G. If p is even, invert the rightmost bit.

If p is odd, invert the bit to the left of the rightmost 1-bit.

The latter rule is directly expressed in the Boolean equations given above.

13–3 Negabinary Gray Code
If you write the integers in order in base –2 and convert them using the “shift and
exclusive or” that converts to Gray from straight binary, you get a Gray code. The 3-bit
Gray code has indexes that range over the 3-bit base –2 numbers, namely –2 to 5.
Similarly, the 4-bit Gray code corresponding to 4-bit base –2 numbers has indexes
ranging from –10 to 5. It is not a reflected Gray code, but it almost is. The 4-bit
negabinary Gray code can be generated by starting with 0 and 1, reflecting this about
a horizontal axis at the top of the list, and then reflecting it about a horizontal axis at
the bottom of the list, and so on. It is cyclic.

To convert back to base –2 from this Gray code, the rules are, of course, the same
as they are for converting to straight binary from ordinary reflected binary Gray code
(because these operations are inverses, no matter what the interpretation of the bit
strings is).

13–4 Brief History and Applications

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images12.html#p13fig02

Chapter 13. Gray Code

Gray codes are named after Frank Gray, a physicist at Bell Telephone Laboratories, who
in the 1930s invented the method we now use for broadcasting color TV in a way that’s
compatible with the black-and-white transmission and reception methods then in
existence; that is, when the color signal is received by a black-and-white set, the
picture appears in shades of gray.

Martin Gardner [Gard] discusses applications of Gray codes involving the Chinese
ring puzzle, the Tower of Hanoi puzzle, and Hamiltonian paths through graphs that
represent hypercubes. He also shows how to convert from the decimal representation of
an integer to a decimal Gray code representation.

Gray codes are used in position sensors. A strip of material is made with conducting
and nonconducting areas, corresponding to the 1’s and 0’s of a Gray-coded integer.
Each column has a conducting wire brush positioned to read it out. If a brush is
positioned on the dividing line between two of the quantized positions so that its
reading is ambiguous, then it doesn’t matter which way the ambiguity is resolved.
There can be only one ambiguous brush, and interpreting it as a 0 or 1 gives a position
adjacent to the dividing line.

The strip can instead be a series of concentric circular tracks, giving a rotational
position sensor. For this application, the Gray code must be cyclic. Such a sensor is
shown in Figure 13–3, where the four dots represent the brushes.

It is possible to construct cyclic Gray codes for rotational sensors that require only
one ring of conducting and nonconducting areas, although at some expense in
resolution for a given number of brushes. The brushes are spaced around the ring
rather than on a radial line. These codes are called single track Gray codes, or STGCs.

The idea is to find a code for which, when written out as in Figure 13–1 , every
column is a rotation of the first column (and that is cyclic, assuming the code is for a
rotational device). The reflected Gray code for n = 2 is trivially an STGC. STGCs for n =
2 through 4 are shown here.

STGCs allow the construction of more compact rotational position sensors. A
rotational STGC device for n = 3 is shown in Figure 13–4.

These are all very similar, simple, and rather uninteresting patterns. Following these
patterns, an STGC for the case n = 5 would have ten code words, giving a resolution
of 36 degrees. It is possible to do much better. Figure 13–5 shows an STGC for n = 5
with 30 code words, giving a resolution of 12 degrees. It is close to the optimum of 32
code words.

Chapter 13. Gray Code

FIGURE 13–3. Rotational position sensor.

FIGURE 13–4. Single track rotational position sensor.

FIGURE 13–5. An STGC for n = 5.

All the STGCs in this section above are the best possible, in the sense that for n = 2
through 5, the largest number of code words possible is 4, 6, 8, and 30.

An STGC has been constructed with exactly 360 code words, with n = 9 (the
smallest possible value of n, because any code for n = 8 has at most 256 code words)
[HilPat].

Exercises

1. Show that if an integer x is even, then G(x) (the reflected binary Gray code of
x) has an even number of 1-bits, and if x is odd, G(x) has an odd number of 1-
bits.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch13ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch13ans1

Chapter 13. Gray Code

2. A balanced Gray code is a cyclic Gray code in which the number of bit changes
is the same in all columns, as one cycles around the code.
(a) Show that an STGC is necessarily balanced.
(b) Can you find a balanced Gray code for n = 3 that has eight code words?

3. Devise a cyclic Gray code that encodes the integers from 0 to 9.
4. [Knu6] Given a number in prime decomposed form, show how to list all its

divisors in such a way that each divisor in the list is derived from the previous
divisor by a single multiplication or division by a prime.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch13ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch13ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch13ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch13ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch13ans4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch13ans4

Chapter 14. Cyclic Redundancy Check

Chapter 14. Cyclic Redundancy Check

14–1 Introduction
The cyclic redundancy check, or CRC, is a technique for detecting errors in digital data,
but not for making corrections when errors are detected. It is used primarily in data
transmission. In the CRC method, a certain number of check bits, often called a
checksum, or a hash code, are appended to the message being transmitted. The
receiver can determine whether or not the check bits agree with the data to ascertain
with a certain degree of probability that an error occurred in transmission. If an error
occurred, the receiver sends a “negative acknowledgment” (NAK) back to the sender,
requesting that the message be retransmitted.

The technique is also sometimes applied to data storage devices, such as a disk
drive. In this situation each block on the disk would have check bits, and the hardware
might automatically initiate a reread of the block when an error is detected, or it might
report the error to software.

The material that follows speaks in terms of a “sender” and a “receiver” of a
“message,” but it should be understood that it applies to storage writing and reading as
well.

Section 14–2 describes the theory behind the CRC methodology. Section 14–3
shows how the theory is put into practice in hardware, and gives a software
implementation of a popular method known as CRC-32.

Background

There are several techniques for generating check bits that can be added to a
message. Perhaps the simplest is to append a single bit, called the “parity bit,” which
makes the total number of 1-bits in the code vector (message with parity bit
appended) even (or odd). If a single bit gets altered in transmission, this will change
the parity from even to odd (or the reverse). The sender generates the parity bit by
simply summing the message bits modulo 2—that is, by exclusive or’ing them together.
It then appends the parity bit (or its complement) to the message. The receiver can
check the message by summing all the message bits modulo 2 and checking that the
sum agrees with the parity bit. Equivalently, the receiver can sum all the bits (message
and parity) and check that the result is 0 (if even parity is being used).

This simple parity technique is often said to detect 1-bit errors. Actually, it detects
errors in any odd number of bits (including the parity bit), but it is a small comfort to
know you are detecting 3-bit errors if you are missing 2-bit errors.

For bit serial sending and receiving, the hardware required to generate and check a
single parity bit is very simple. It consists of a single exclusive or gate together with
some control circuitry. For bit parallel transmission, an exclusive or tree may be used,
as illustrated in Figure 14–1. Efficient ways to compute the parity bit in software are
given in Section 5–2 on page 96.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#ch05lev2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_96

Chapter 14. Cyclic Redundancy Check

FIGURE 14–1. Exclusive or tree.

Other techniques for computing a checksum are to form the exclusive or of all the
bytes in the message, or to compute a sum with end-around carry of all the bytes. In
the latter method, the carry from each 8-bit sum is added into the least significant bit
of the accumulator. It is believed that this is more likely to detect errors than the
simple exclusive or, or the sum of the bytes with carry discarded.

A technique that is believed to be quite good in terms of error detection, and which
is easy to implement in hardware, is the cyclic redundancy check. This is another way
to compute a checksum, usually eight, 16, or 32 bits in length, that is appended to the
message. We will briefly review the theory, show how the theory is implemented in
hardware, and then give software for a commonly used 32-bit CRC checksum.

We should mention that there are much more sophisticated ways to compute a
checksum, or hash code, for data. Examples are the hash functions known as MD5 and
SHA-1, whose hash codes are 128 and 160 bits in length, respectively. These methods
are used mainly in cryptographic applications and are substantially more difficult to
implement, in hardware and software, than the CRC methodology described here.
However, SHA-1 is used in certain revision control systems (Git and others) as simply a
check on data integrity.

14–2 Theory
The CRC is based on polynomial arithmetic, in particular, on computing the remainder
when dividing one polynomial in GF(2) (Galois field with two elements) by another. It is
a little like treating the message as a very large binary number, and computing the
remainder when dividing it by a fairly large prime such as 232 – 5. Intuitively, one
would expect this to give a reliable checksum.

A polynomial in GF(2) is a polynomial in a single variable x whose coefficients are 0
or 1. Addition and subtraction are done modulo 2—that is, they are both the same as
the exclusive or operation. For example, the sum of the polynomials

4 2

Chapter 14. Cyclic Redundancy Check

is x + x + 1, as is their difference. These polynomials are not usually written with
minus signs, but they could be, because a coefficient of –1 is equivalent to a coefficient
of 1.

Multiplication of such polynomials is straightforward. The product of one coefficient
by another is the same as their combination by the logical and operator, and the partial
products are summed using exclusive or. Multiplication is not needed to compute the
CRC checksum.

Division of polynomials over GF(2) can be done in much the same way as long
division of polynomials over the integers. Here is an example.

The reader may verify that the quotient x4 + x3 + 1 multiplied by the divisor x3 + x +
1, plus the remainder x2 + 1, equals the dividend.

The CRC method treats the message as a polynomial in GF(2). For example, the
message 11001001, where the order of transmission is from left to right (110...), is
treated as a representation of the polynomial x7 + x6 + x3 + 1. The sender and
receiver agree on a certain fixed polynomial called the generator polynomial. For
example, for a 16-bit CRC the CCITT (Le Comité Consultatif International Télégraphique
et Téléphonique)1 has chosen the polynomial x16 + x12 + x5 + 1, which is now widely
used for a 16-bit CRC checksum. To compute an r-bit CRC checksum, the generator
polynomial must be of degree r. The sender appends r 0-bits to the m-bit message and
divides the resulting polynomial of degree m + r – 1 by the generator polynomial. This
produces a remainder polynomial of degree r – 1 (or less). The remainder polynomial
has r coefficients, which are the checksum. The quotient polynomial is discarded. The
data transmitted (the code vector) is the original m-bit message followed by the r-bit
checksum.

There are two ways for the receiver to assess the correctness of the transmission. It
can compute the checksum from the first m bits of the received data and verify that it
agrees with the last r received bits. Alternatively, and following usual practice, the
receiver can divide all the m + r received bits by the generator polynomial and check
that the r-bit remainder is 0. To see that the remainder must be 0, let M be the
polynomial representation of the message, and let R be the polynomial representation
of the remainder that was computed by the sender. Then the transmitted data
corresponds to the polynomial Mxr – R (or, equivalently, Mxr + R). By the way R was
computed, we know that Mxr = QG + R, where G is the generator polynomial and Q is
the quotient (that was discarded). Therefore the transmitted data, Mxr – R, is equal to
QG, which is clearly a multiple of G. If the receiver is built as nearly as possible just like
the sender, the receiver will append r 0-bits to the received data as it computes the
remainder R. The received data with 0-bits appended is still a multiple of G, so the

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch14fn1

Chapter 14. Cyclic Redundancy Check

computed remainder is still 0.
That’s the basic idea, but in reality the process is altered slightly to correct for

certain deficiencies. For example, the method as described is insensitive to the number
of leading and trailing 0-bits in the data transmitted. In particular, if a failure occurred
that caused the received data, including the checksum, to be all-0, it would be
accepted.

Choosing a “good” generator polynomial is something of an art and beyond the
scope of this text. Two simple observations: For an r-bit checksum, G should be of
degree r, because otherwise the first bit of the checksum would always be 0, which
wastes a bit of the checksum. Similarly, the last coefficient should be 1 (that is, G
should not be divisible by x), because otherwise the last bit of the checksum would
always be 0 (because Mxr = QG + R, if G is divisible by x, then R must be also). The
following facts about generator polynomials are proved in [PeBr] and/or [Tanen]:

• If G contains two or more terms, all single-bit errors are detected.
• If G is not divisible by x (that is, if the last term is 1), and e is the least positive

integer such that G evenly divides xe + 1, then all double errors that are within
a frame of e bits are detected. A particularly good polynomial in this respect is
x15 + x14 + 1, for which e = 32767.

• If x + 1 is a factor of G, all errors consisting of an odd number of bits are
detected.

• An r-bit CRC checksum detects all burst errors of length ≤ r. (A burst error of
length r is a string of r bits in which the first and last are in error, and the
intermediate r – 2 bits may or may not be in error.)

The generator polynomial x + 1 creates a checksum of length 1, which applies even
parity to the message. (Proof hint: For arbitrary k ≥ 0, what is the remainder when
dividing xk by x + 1 ?)

It is interesting to note that if a code of any type can detect all double-bit and
single-bit errors, then it can in principle correct single-bit errors. To see this, suppose
data containing a single-bit error is received. Imagine complementing all the bits, one
at a time. In all cases but one, this results in a double-bit error, which is detected. But
when the erroneous bit is complemented, the data is error free, which is recognized. In
spite of this, the CRC method does not seem to be used for single-bit error correction.
Instead, the sender is requested to repeat the whole transmission if any error is
detected.

14–3 Practice
Table 14–1 shows the generator polynomials used by some common CRC standards.
The “Hex” column shows the hexadecimal representation of the generator polynomial;
the most significant bit is omitted, as it is always 1.

The CRC standards differ in ways other than the choice of generating polynomials.
Most initialize by assuming that the message has been preceded by certain nonzero
bits, others do no such initialization. Most transmit the bits within a byte least
significant bit first, some most significant bit first. Most append the checksum least
significant byte first, others most significant byte first. Some complement the checksum.

CRC-12 is used for transmission of 6-bit character streams, and the others are for
8-bit characters, or 8-bit bytes of arbitrary data. CRC-16 is used in IBM’s BISYNCH
communication standard. The CRC-CCITT polynomial, also known as ITU-TSS, is used
in communication protocols such as XMODEM, X.25, IBM’s SDLC, and ISO’s HDLC

Chapter 14. Cyclic Redundancy Check

[Tanen]. CRC-32 is also known as AUTODIN-II and ITU-TSS (ITU-TSS has defined both
16- and a 32-bit polynomials). It is used in PKZip, Ethernet, AAL5 (ATM Adaptation
Layer 5), FDDI (Fiber Distributed Data Interface), the IEEE-802 LAN/MAN standard,
and in some DOD applications. It is the one for which software algorithms are given
here.

The first three polynomials in Table 14–1 have x + 1 as a factor. The last (CRC-32)
does not.

TABLE 14–1. GENERATOR POLYNOMIALS OF SOME CRC CODES

To detect the error of erroneous insertion or deletion of leading 0’s, some protocols
prepend one or more nonzero bits to the message. These don’t actually get
transmitted; they are simply used to initialize the key register (described below) used in
the CRC calculation. A value of r 1-bits seems to be universally used. The receiver
initializes its register in the same way.

The problem of trailing 0’s is a little more difficult. There would be no problem if the
receiver operated by comparing the remainder based on just the message bits to the
checksum received. But, it seems to be simpler for the receiver to calculate the
remainder for all bits received (message and checksum), plus r appended 0-bits. The
remainder should be 0. With a 0 remainder, if the message has trailing 0-bits inserted
or deleted, the remainder will still be 0, so this error goes undetected.

The usual solution to this problem is for the sender to complement the checksum
before appending it. Because this makes the remainder calculated by the receiver
nonzero (usually), the remainder will change if trailing 0’s are inserted or deleted. How
then does the receiver recognize an error-free transmission?

Using the “mod” notation for remainder, we know that

(Mxr + R) mod G = 0.

Denoting the “complement” of the polynomial R by , we have

Thus, the checksum calculated by the receiver for an error-free transmission should be

Chapter 14. Cyclic Redundancy Check

(xr – 1 + xr – 2 + ... + 1) mod G.

This is a constant (for a given G). For CRC-32 this polynomial, called the residual or
residue, is

or hex C704DD7B [Black].

Hardware

To develop a hardware circuit for computing the CRC checksum, we reduce the
polynomial division process to its essentials.

The process employs a shift register, which we denote by CRC. This is of length r
(the degree of G) bits, not r + 1 as you might expect. When the subtractions (exclusive
or’s) are done, it is not necessary to represent the high-order bit, because the high-
order bits of G and the quantity it is being subtracted from are both 1. The division
process might be described informally as follows:

Initialize the CRC register to all 0-bits.
Get first/next message bit m.
If the high-order bit of CRC is 1,

Shift CRC and m together left 1 position, and XOR the result with the low-
order r bits of G.

Otherwise,
Just shift CRC and m left 1 position.

If there are more message bits, go back to get the next one.
It might seem that the subtraction should be done first, and then the shift. It would

be done that way if the CRC register held the entire generator polynomial, which in bit
form is r + 1 bits. Instead, the CRC register holds only the low-order r bits of G, so the
shift is done first, to align things properly.

The contents of the CRC register for the generator G = x3 + x + 1 and the
message M = x7 + x6 + x5 + x2 + x are shown below. Expressed in binary, G = 1011
and M = 11100110.

These steps can be implemented with the (simplified) circuit shown in Figure 14–2,
which is known as a feedback shift register. The three boxes in the figure represent the

Chapter 14. Cyclic Redundancy Check

three bits of the CRC register. When a message bit comes in, if the high-order bit (x2

box) is 0, simultaneously the message bit is shifted into the x0 box, the bit in x0 is
shifted to x1, the bit in x1 is shifted to x2, and the bit in x2 is discarded. If the high-
order bit of the CRC register is 1, then a 1 is present at the lower input of each of the
two exclusive or gates. When a message bit comes in, the same shifting takes place,
but the three bits that wind up in the CRC register have been exclusive or’ed with
binary 011. When all the message bits have been processed, the CRC holds M mod G.

FIGURE 14–2. Polynomial division circuit for G = x3 + x + 1.

If the circuit of Figure 14–2 were used for the CRC calculation, then after processing
the message, r (in this case 3) 0-bits would have to be fed in. Then the CRC register
would have the desired checksum, Mxr mod G. There is a way to avoid this step with a
simple rearrangement of the circuit.

Instead of feeding the message in at the right end, feed it in at the left end, r steps
away, as shown in Figure 14–3. This has the effect of premultiplying the input message
M by xr. But premultiplying and postmultiplying are the same for polynomials.
Therefore, as each message bit comes in, the CRC register contents are the remainder
for the portion of the message processed, as if that portion had r 0-bits appended.

FIGURE 14–3. CRC circuit for G = x3 + x + 1.

Figure 14–4 shows the circuit for the CRC-32 polynomial.

Chapter 14. Cyclic Redundancy Check

FIGURE 14–4. CRC circuit for CRC-32.

Software

Figure 14–5 shows a basic implementation of CRC-32 in software. The CRC-32
protocol initializes the CRC register to all 1’s, transmits each byte least significant bit
first, and complements the checksum. We assume the message consists of an integral
number of bytes.

To follow Figure 14–4 as closely as possible, the program uses left shifts. This
requires reversing each message byte and positioning it at the left end of the 32-bit
register, denoted byte in the program. The word-level reversing program shown in
Figure 7–1 on page 129 can be used (although this is not very efficient, because we
need to reverse only eight bits).

The code of Figure 14–5 is shown for illustration only. It can be improved
substantially while still retaining its one-bit-at-a-time character. First, notice that the
eight bits of the reversed byte are used in the inner loop’s if-statement and then
discarded. Also, the high-order eight bits of crc are not altered in the inner loop (other
than by shifting). Therefore, we can set crc = crc ^ byte ahead of the inner loop,
simplify the if-statement, and omit the left shift of byte at the bottom of the loop.

The two reversals can be avoided by shifting right instead of left. This requires
reversing the hex constant that represents the CRC-32 polynomial and testing the least
significant bit of crc. Finally, the if-test can be replaced with some simple logic, to
save branches. The result is shown in Figure 14–6.

unsigned int crc32(unsigned char *message) {
 int i, j;
 unsigned int byte, crc;

 i = 0;
 crc = 0xFFFFFFFF;
 while (message[i] != 0) {
 byte = message[i]; // Get next byte.
 byte = reverse(byte); // 32-bit reversal.
 for (j = 0; j < = 7; j++) { // Do eight times.
 if ((int)(crc ^ byte) < 0)
 crc = (crc << 1) ^ 0x04C11DB7;

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07fig1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_129
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images13.html#p14fig05

Chapter 14. Cyclic Redundancy Check

 else crc = crc << 1;
 byte = byte << 1; // Ready next msg bit.
 }
 i = i + 1;
 }
 return reverse(~crc);
}

FIGURE 14–5. Basic CRC-32 algorithm.

It is not unreasonable to unroll the inner loop by the full factor of eight. If this is
done, the program of Figure 14–6 executes in about 46 instructions per byte of input
message. This includes a load and a branch. (We rely on the compiler to common the
two loads of message[i] and to transform the while-loop so there is only one branch, at
the bottom of the loop.)

unsigned int crc32(unsigned char *message) {
 int i, j;
 unsigned int byte, crc, mask;

 i = 0;
 crc = 0xFFFFFFFF;
 while (message[i] != 0) {
 byte = message[i]; // Get next byte.
 crc = crc ^ byte;
 for (j = 7; j >= 0; j--) { // Do eight times.
 mask = -(crc & 1);
 crc = (crc >> 1) ^ (0xEDB88320 & mask);
 }
 i = i + 1;
 }
 return ~crc;
}

FIGURE 14–6. Improved bit-at-a-time CRC-32 algorithm.

Our next version employs table lookup. This is the usual way that CRC-32 is
calculated. Although the programs above work one bit at a time, the table lookup
method (as usually implemented) works one byte at a time. A table of 256 fullword
constants is used.

The inner loop of Figure 14–6 shifts register crc right eight times, while doing an
exclusive or operation with a constant when the low-order bit of crc is 1. These steps
can be replaced by a single right shift of eight positions, followed by a single exclusive
or with a mask that depends on the pattern of 1-bits in the rightmost eight bits of the
crc register.

It turns out that the calculations for setting up the table are the same as those for
computing the CRC of a single byte. The code is shown in Figure 14–7. To keep the
program self-contained, it includes steps to set up the table on first use. In practice,
these steps would probably be put in a separate function to keep the CRC calculation
as simple as possible. Alternatively, the table could be defined by a long sequence of
array initialization data. When compiled with GCC to the basic RISC, the function
executes 13 instructions per byte of input. This includes two loads and one branch
instruction.

Faster versions of these programs can be constructed by standard techniques, but

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images13.html#p14fig06

Chapter 14. Cyclic Redundancy Check

there is nothing dramatic known to this writer. One can unroll loops and do careful
scheduling of loads that the compiler may not do automatically. One can load the
message string a halfword or a word at a time (with proper attention paid to
alignment), to reduce the number of loads of the message and the number of exclusive
or’s of crc with the message (see exercise 1). The table lookup method can process
message bytes two at a time using a table of size 65536 words. This might make the
program run faster or slower, depending on the size of the data cache and the penalty
for a miss.

unsigned int crc32(unsigned char *message) {
 int i, j;
 unsigned int byte, crc, mask;
 static unsigned int table[256];

 /* Set up the table, if necessary. */

 if (table[1] == 0) {
 for (byte = 0; byte <= 255; byte++) {
 crc = byte;
 for (j = 7; j >= 0; j--) { // Do eight times.
 mask = -(crc & 1);
 crc = (crc >> 1) ^ (0xEDB88320 & mask);
 }
 table[byte] = crc;
 }
 }

 /* Through with table setup, now calculate the CRC. */

 i = 0;
 crc = 0xFFFFFFFF;
 while ((byte = message[i]) != 0) {
 crc = (crc >> 8) ^ table[(crc ^ byte) & 0xFF];
 i = i + 1;
 }
 return ~crc;
}

FIGURE 14–7. Table lookup CRC algorithm.

Exercises

1. Show that if a generator G contains two or more terms, all single-bit errors are
detected.

2. Referring to Figure 14–7, show how to code the main loop so that the message
data is loaded one word at a time. For simplicity, assume the message is full-
word aligned and an integral number of words in length, before the zero byte
that marks the end of the message.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images13.html#p14fig07
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch14ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch14ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch14ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch14ans2

Chapter 15. Error-Correcting Codes

Chapter 15. Error-Correcting Codes

15–1 Introduction
This section is a brief introduction to the theory and practice of error-correcting codes
(ECCs). We limit our attention to binary forward error-correcting (FEC) block codes.
This means that the symbol alphabet consists of just two symbols (which we denote 0
and 1), that the receiver can correct a transmission error without asking the sender for
more information or for a retransmission, and that the transmissions consist of a
sequence of fixed length blocks, called code words.

Section 15–2 describes the code independently discovered by R. W. Hamming and
M. J. E. Golay before 1950 [Ham]. This code is single error-correcting (SEC), and a
simple extension of it, also discovered by Hamming, is single error-correcting and,
simultaneously, double error-detecting (SEC-DED).

Section 15–4 steps back and asks what is possible in the area of forward error
correction. Still sticking to binary FEC block codes, the basic question addressed is: for a
given block length (or code length) and level of error detection and correction
capability, how many different code words can be encoded?

Section 15–2 is for readers who are primarily interested in learning the basics of
how ECC works in computer memories. Section 15–4 is for those who are interested in
the mathematics of the subject, and who might be interested in the challenge of an
unsolved mathematical problem.

The reader is cautioned that over the past 50 years ECC has become a very big
subject. Many books have been published on it and closely related subjects [Hill, LC,
MS, and Roman, to mention a few]. Here we just scratch the surface and introduce the
reader to two important topics and to some of the terminology used in this field.
Although much of the subject of error-correcting codes relies very heavily on the
notations and results of linear algebra, and, in fact, is a very nice application of that
abstract theory, we avoid it here for the benefit of those who are not familiar with that
theory.

The following notation is used throughout this chapter. The terms are defined in
subsequent sections.

m Number of “information” or “message” bits
k Number of parity-check bits (“check bits,” for short)
n Code length, n = m + k
u Information bit vector, u0, u1, ... um – 1
p Parity check bit vector, p0, p1, ..., pk – 1
s Syndrome vector, s0, s1, ..., sk – 1

15–2 The Hamming Code
Hamming’s development [Ham] is a very direct construction of a code that permits
correcting single-bit errors. He assumes that the data to be transmitted consists of a
certain number of information bits u, and he adds to these a number of check bits p,
such that if a block is received that has at most one bit in error, then p identifies the bit
that is in error (which might be one of the check bits). Specifically, in Hamming’s code,
p is interpreted as an integer that is 0 if no error occurred, and otherwise is the 1-
origin index of the bit that is in error. Let m be the number of information bits, and k

Chapter 15. Error-Correcting Codes

the number of check bits used. Because the k check bits must check themselves as
well as the information bits, the value of p, interpreted as an integer, must range from
0 to m + k, which is m + k + 1 distinct values. Because k bits can distinguish 2k cases,
we must have

This is known as the Hamming rule. It applies to any single-error correcting (SEC)
binary FEC block code in which all of the transmitted bits must be checked. The check
bits will be interspersed among the information bits in a manner described below.

Because p indexes the bit (if any) that is in error, the least significant bit of p must
be 1 if the erroneous bit is in an odd position, and 0 if it is in an even position or if
there is no error. A simple way to achieve this is to let the least significant bit of p, p0,
be an even parity check on the odd positions of the block and to put p0 in an odd
position. The receiver then checks the parity of the odd positions (including that of p0).
If the result is 1, an error has occurred in an odd position, and if the result is 0, either
no error occurred or an error occurred in an even position. This satisfies the condition
that p should be the index of the erroneous bit, or be 0 if no error occurred.

Similarly, let the next-from-least significant bit of p, p1, be an even parity check of
positions 2, 3, 6, 7, 10, 11, ... (in binary, 10, 11, 110, 111, 1010, 1011, ...), and put
p1 in one of these positions. Those positions have a 1 in their second-from-least
significant binary position number. The receiver checks the parity of these positions
(including the position of p1). If the result is 1, an error occurred in one of those
positions, and if the result is 0, either no error occurred or an error occurred in some
other position.

Continuing, the third-from-least significant check bit, p2, is made an even parity
check on those positions that have a 1 in their third-from-least significant position
number, namely positions 4, 5, 6, 7, 12, 13, 14, 15, 20, ..., and p2 is put in one of
those positions.

Putting the check bits in power-of-two positions (1, 2, 4, 8, ...) has the advantage
that they are independent. That is, the sender can compute p0 independent of p1, p2,
... and, more generally, it can compute each check bit independent of the others.

As an example, let us develop a single error-correcting code for m = 4. Solving (1)
for k gives k = 3, with equality holding. This means that all 2k possible values of the k
check bits are used, so it is particularly efficient. A code with this property is called a
perfect code.1

This code is called the (7, 4) Hamming code, which signifies that the code length is
7 and the number of information bits is 4. The positions of the check bits pi and the
information bits ui are shown here.

Table 15–1 shows the entire code. The 16 rows show all 16 possible information bit
configurations and the check bits calculated by Hamming’s method.

To illustrate how the receiver corrects a single-bit error, suppose the code word

1001110

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch15fn1

Chapter 15. Error-Correcting Codes

is received. This is row 4 in Table 15–1 with bit 6 flipped. The receiver calculates the
exclusive or of the bits in odd positions and gets 0. It calculates the exclusive or of bits
2, 3, 6, and 7 and gets 1. Lastly, it calculates the exclusive or of bits 4, 5, 6, and 7
and gets 1. Thus the error indicator, which is called the syndrome, is binary 110, or 6.
The receiver flips the bit at position 6 to correct the block.

TABLE 15–1. THE (7,4) HAMMING CODE

A SEC-DED Code

For many applications, a single error-correcting code would be considered
unsatisfactory, because it accepts all blocks received. A SEC-DED code seems safer, and
it is the level of correction and detection most often used in computer memories.

The Hamming code can be converted to a SEC-DED code by adding one check bit,
which is a parity bit (let us assume even parity) on all the bits in the SEC code word.
This code is called an extended Hamming code [Hill, MS]. It is not obvious that it is
SEC-DED. To see that it is, consider Table 15–2. It is assumed a priori that either 0, 1,
or 2 transmission errors occur. As indicated in Table 15–2, if there are no errors, the
overall parity (the parity of the entire n-bit received code word) will be even, and the
syndrome of the (n – 1) -bit SEC portion of the block will be 0. If there is one error,
then the overall parity of the received block will be odd. If the error occurred in the
overall parity bit, then the syndrome will be 0. If the error occurred in some other bit,
then the syndrome will be nonzero and it will indicate which bit is in error. If there are
two errors, then the overall parity of the received block will be even. If one of the two
errors is in the overall parity bit, then the other is in the SEC portion of the block. In
this case, the syndrome will be nonzero (and will indicate the bit in the SEC portion

Chapter 15. Error-Correcting Codes

that is in error). If the errors are both in the SEC portion of the block, then the
syndrome will also be nonzero, although the reason is a bit hard to explain.

TABLE 15–2. ADDING A PARITY BIT TO MAKE A SEC-DED CODE

The reason is that there must be a check bit that checks one of the two bit
positions, but not the other one. The parity of this check bit and the bits it checks will
thus be odd, resulting in a nonzero syndrome. Why must there be a check bit that
checks one of the erroneous bits but not the other one? To see this, first suppose one
of the erroneous bits is in an even position and the other is in an odd position. Then,
because one of the check bits (p0) checks all the odd positions and none of the even
positions, the parity of the bits at the odd positions will be odd, resulting in a nonzero
syndrome. More generally, suppose the erroneous bits are in positions i and j (with i ≠
j). Then, because the binary representations of i and j must differ in some bit position,
one of them has a 1 at that position and the other has a 0 at that position. The check
bit corresponding to this position in the binary integers checks the bits at positions in
the code word that have a 1 in their position number, but not the positions that have a
0 in their position number. The bits covered by that check bit will have odd parity, and
thus the syndrome will be nonzero. As an example, suppose the erroneous bits are in
positions 3 and 7. In binary, the position numbers are 0...0011 and 0...0111. These
numbers differ in the third position from the right, and at that position the number 7
has a 1 and the number 3 has a 0. Therefore, the bits checked by the third check bit
(these are bits 4, 5, 6, 7, 12, 13, 14, 15, ...) will have odd parity.

Thus, referring to Table 15–2, the overall parity and the syndrome together
uniquely identify whether 0, 1, or 2 errors occurred. In the case of one error, the
receiver can correct it. In the case of two errors, the receiver cannot tell whether just
one of the errors is in the SEC portion (in which case it could correct it) or both errors
are in the SEC portion (in which case an attempt to correct it would result in incorrect
information bits).

The overall parity bit could as well be a parity check on only the even positions,
because the overall parity bit is easily calculated from that and the parity of the odd
positions (which is the least significant check bit). More generally, the overall parity bit
could as well be a parity check on the complement set of bits checked by any one of
the SEC parity bits. This observation might save some gates in hardware.

It should be clear that the Hamming SEC code has minimum redundancy. That is,
for a given number of information bits, it adds a minimum number of check bits that
permit single error correction. This is so because by construction, just enough check bits
are added so that when interpreted as an integer, they can index any bit in the code,

Chapter 15. Error-Correcting Codes

with one state left over to denote “no errors.” In other words, the code satisfies
inequality (1). Hamming shows that the SEC-DED code constructed from a SEC code by
adding one overall parity bit is also of minimum redundancy. His argument is to assume
that a SEC-DED code exists that has fewer check bits, and he derives from this a
contradiction to the fact that the starting SEC code had minimum redundancy.

Minimum Number of Check Bits Required

The middle column of Table 15–3 shows minimal solutions of inequality (1) for a range
of values of m. The rightmost column simply shows that one more bit is required for a
SEC-DED code. From this table one can see, for example, that to provide the SEC-DED
level ECC for a memory word containing 64 information bits, eight check bits are
required, giving a total memory word size of 72 bits.

TABLE 15–3. EXTRA BITS FOR ERROR CORRECTION/DETECTION

Concluding Remarks

In the more mathematically oriented ECC literature, the term “Hamming code” is
reserved for the perfect codes described above—that is, those with (n, m) = (3, 1), (7,
4), (15, 11), (31, 26), and so on. Similarly, the extended Hamming codes are the
perfect SEC-DED codes described above. Computer architects and engineers often use
the term to denote any of the codes that Hamming described, and some variations. The
term “extended” is often understood.

The first IBM computer to use Hamming codes was the IBM Stretch computer
(model 7030), built in 1961 [LC]. It used a (72, 64) SEC-DED code (not a perfect
code). A follow-on machine known as Harvest (model 7950), built in 1962, was
equipped with 22-track tape drives that employed a (22, 16) SEC-DED code. The ECCs
found on modern machines are usually not Hamming codes, but rather are codes
devised for some logical or electrical property, such as minimizing the depth of the
parity check trees, and making them all the same length. Such codes give up
Hamming’s simple method of determining which bit is in error, and instead use a
hardware table lookup.

At the time of this writing (2012), most notebook PCs (personal computers) have

Chapter 15. Error-Correcting Codes

no error checking in their memory systems. Desktop PCs may have none, or they may
have a simple parity check. Server-class computers generally have ECC at the SEC-DED
level.

In the early solid-state computers equipped with ECC memory, the memory was
usually in the form of eight check bits and 64 information bits. A memory module
(group of chips) might be built from, typically, nine 8-bit-wide chips. A word access (72
bits, including check bits) fetches eight bits from each of these nine chips. Each chip is
laid out in such a way that the eight bits accessed for a single word are physically far
apart. Thus, a word access references 72 bits that are physically somewhat separated.
With bits interleaved in that way, if a few close-together bits in the same chip are
altered, as, for example, by an alpha particle or cosmic ray hit, a few words will have
single-bit errors, which can be corrected. Some larger memories incorporate a
technology known as Chipkill. This allows the computer to continue to function even if
an entire memory chip fails, for example, due to loss of power to the chip.

The interleaving technique can be used in communication applications to correct
burst errors by interleaving the bits in time.

Today the organization of ECC memories is often more complicated than simply
having eight check bits and 64 information bits. Modern server memories might have
16 or 32 information bytes (128 or 256 bits) checked as a single ECC word. Each DRAM
chip may store two, three, or four bits in physically adjacent positions. Correspondingly,
ECC is done on alphabets of four, eight, or 16 characters—a subject not discussed
here. Because the DRAM chips usually come in 8- or 16-bit-wide configurations, the
memory module often provides more than enough bits for the ECC function. The extra
bits might be used for other functions, such as one or two parity bits on the memory
address. This allows the memory to check that the address it receives is (probably) the
address that the CPU generated.

In modern server-class machines, ECC might be used in different levels of cache
memory, as well as in main memory. It might also be used in non-memory areas, such
as on busses.

15–3 Software for SEC-DED on 32 Information Bits
This section describes a code for which encoding and decoding can be efficiently
implemented in software for a basic RISC. It does single error correction and double
error detection on 32 information bits. The technique is basically Hamming’s.

We follow Hamming in using check bits in such a way that the receiver can easily
(in software) determine whether zero, one, or two errors occurred, and if one error
occurred it can easily correct it. We also follow Hamming in using a single overall parity
bit to convert a SEC code to SEC-DED, and we assume the check bit values are chosen
to make even parity on the check bit and the bits it checks. A total of seven check bits
are required (Table 15–3).

Consider first just the SEC property, without DED. For SEC, six check bits are
required. For implementation in software, the main difficulty with Hamming’s method is
that it merges the six check bits with the 32 information bits, resulting in a 38-bit
quantity. We are assuming the implementation is done on a 32-bit machine, and the
information bits are in a 32-bit word. It would be very awkward for the sender to
spread out the information bits over a 38-bit quantity and calculate the check bits into
the positions described by Hamming. The receiver would have similar difficulties. The
check bits could be moved into a separate word or register, with the 32 information
bits kept in another word or register. But this gives an irregular range of positions that
are checked by each check bit. In the scheme to be described, these ranges retain

Chapter 15. Error-Correcting Codes

most of the regularity that they have in Hamming’s scheme (which ignores word
boundaries). The regularity leads to simplified calculations.

The positions checked by each check bit are shown in Table 15–4. In this table, bits
are numbered in the usual little-endian way, with position 0 being the least significant
bit (unlike Hamming’s numbering).

TABLE 15–4. POSITIONS CHECKED BY THE CHECK BITS

Observe that each of the 32 information word bit positions is checked by at least
two check bits. For example, position 6 is checked by p1 and p2 (and also by p5).
Thus, if two information words differ in one bit position, the code words (information
plus check bits) differ in at least three positions (the information bit that was corrupted
and two or more check bits), so the code words are at a distance of at least three from
one another (see “Hamming Distance” on page 343). Furthermore, if two information
words differ in two bit positions, then at least one of p0 – p5 checks one of the
positions, but not the other, so again the code words will be at least a distance of three
apart. Therefore, the above scheme represents a code with minimum distance three (a
SEC code).

Suppose a code word is transmitted to a receiver. Let u denote the information bits
received, p denote the check bits received, and s (for syndrome) denote the exclusive
or of p and the check bits calculated from u by the receiver. Then, examination of
Table 15–4 reveals that s will be set as shown in Table 15–5, for zero or one errors in
the code word.

TABLE 15–5. SYNDROME FOR ZERO OR ONE ERRORS

Chapter 15. Error-Correcting Codes

As an example, suppose information bit u4 is corrupted in transmission. Table 15–4
shows that u4 is checked by check bits p2 and p5. Therefore, the check bits calculated
by the sender and receiver will differ in p2 and p5. In this scenario the check bits
received are the same as those transmitted, so the syndrome will have bits 2 and 5 set
—that is, it will be 100100.

If one of the check bits is corrupted in transmission (and no errors occur in the
information bits), then the check bits received and those calculated by the receiver
(which equal those calculated by the sender) differ in the check bit that was corrupted,
and in no other bits, as shown in the last six rows of Table 15–5.

The syndromes shown in Table 15–5 are distinct for all 39 possibilities of no error or
a single-bit error anywhere in the code word. Therefore, the syndrome identifies
whether or not an error occurred, and if so, which bit position is in error. Furthermore,
if a single-bit error occurred, it is fairly easy to calculate which bit is in error (without
resorting to a table lookup) and to correct it. Here is the logic:

If s = 0, no error occurred.
If s = 011111, u0 is in error.
If s = 1xxxxx, with xxxxx nonzero, the error is in u at position xxxxx.
Otherwise, a single bit in s is set, the error is in a check bit, and the correct check

bits are given by the exclusive or of the syndrome and the received check bits (or by
the calculated check bits).

Chapter 15. Error-Correcting Codes

Under the assumption that an error in the check bits need not be corrected, this
can be expressed as shown here, where b is the bit number to be corrected.

There is a hack that changes the second if-then-else construction shown above into
an assignment statement.

To recognize double-bit errors, an overall parity bit is computed (parity of u31:0 and
p5:0), and put in bit position 6 of p for transmission. Double-bit errors are distinguished
by the overall parity being correct, but with the syndrome (s5:0) being nonzero. The
reason the syndrome is nonzero is the same as in the case of the extended Hamming
code, given on page 334.

Software that implements this code is shown in Figures 15–1 and 15–2. We assume
the simple case of a sender and a receiver, and the receiver has no need to correct an
error that occurs in the check bits or in the overall parity bit.

unsigned int checkbits(unsigned int u) {

 /* Computes the six parity check bits for the
 "information" bits given in the 32-bit word u. The
 check bits are p[5:0]. On sending, an overall parity
 bit will be prepended to p (by another process).

 Bit Checks these bits of u
 p[0] 0, 1, 3, 5, ..., 31 (0 and the odd positions).
 p[1] 0, 2-3, 6-7, ..., 30-31 (0 and positions xxx1x).
 p[2] 0, 4-7, 12-15, 20-23, 28-31 (0 and posns xx1xx).
 p[3] 0, 8-15, 24-31 (0 and positions x1xxx).
 p[4] 0, 16-31 (0 and positions 1xxxx).
 p[5] 1-31 */

 unsigned int p0, p1, p2, p3, p4, p5, p6, p;
 unsigned int t1, t2, t3;

 // First calculate p[5:0] ignoring u[0].
 p0 = u ^ (u >> 2);
 p0 = p0 ^ (p0 >> 4);
 p0 = p0 ^ (p0 >> 8);
 p0 = p0 ^ (p0 >> 16); // p0 is in posn 1.

 t1 = u ^ (u >> 1);
 p1 = t1 ^ (t1 >> 4);
 p1 = p1 ^ (p1 >> 8);
 p1 = p1 ^ (p1 >> 16); // p1 is in posn 2.

 t2 = t1 ^ (t1 >> 2);
 p2 = t2 ^ (t2 >> 8);
 p2 = p2 ^ (p2 >> 16); // p2 is in posn 4.

 t3 = t2 ^ (t2 >> 4);
 p3 = t3 ^ (t3 >> 16); // p3 is in posn 8.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images14.html#p15fig01

Chapter 15. Error-Correcting Codes

 p4 = t3 ^ (t3 >> 8) // p4 is in posn 16.

 p5 = p4 ^ (p4 >> 16); // p5 is in posn 0.

 p = ((p0>>1) & 1) | ((pl>>l) & 2) | ((p2>>2) & 4) |
 ((p3>>5) & 8) | ((p4>>12) & 16) | ((p5 & 1) << 5);

 p = p ^ (-(u & 1) & 0x3F); // Now account for u[0].
 return p;
}

FIGURE 15–1. Calculation of check bits.

int correct(unsigned int pr, unsigned int *ur) {

 /* This function looks at the received seven check
 bits and 32 information bits (pr and ur) and
 determines how many errors occurred (under the
 presumption that it must be 0, 1, or 2). It returns
 with 0, 1, or 2, meaning that no errors, one error, or
 two errors occurred. It corrects the information word
 received (ur) if there was one error in it. */

 unsigned int po, p, syn, b;

 po = parity(pr ^ *ur); // Compute overall parity
 // of the received data.
 p = checkbits(*ur); // Calculate check bits
 // for the received info.
 syn = p ^ (pr & 0x3F); // Syndrome (exclusive of
 // overall parity bit).
 if (po == 0) {
 if (syn == 0) return 0; // If no errors, return 0.
 else return 2; // Two errors, return 2.
 }
 // One error occurred.
 if (((syn - 1) & syn) == 0) // If syn has zero or one
 return 1; // bits set, then the
 // error is in the check
 // bits or the overall
 // parity bit (no
 // correction required).

 // One error, and syn bits 5:0 tell where it is in ur.

 b = syn - 31 - (syn >> 5); // Map syn to range 0 to 31.
// if (syn == 0x1f) b = 0; // (These two lines equiv.
// else b = syn & 0x1f; // to the one line above.)
 *ur = *ur ^ (1 << b); // Correct the bit.
 return 1;
}

FIGURE 15–2. The receiver’s actions.

To compute the check bits, function checkbits first ignores information bit u0 and
computes

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images14.html#p15fig02

Chapter 15. Error-Correcting Codes

except omitting line i when computing check bit ki, for 0 ≤ i ≤ 4. This puts pi in various
positions of word x, as shown in Figure 15–1. For p5, all the above assignments are
used. This is where the regularity of the pattern of bits checked by each check bit pays
off; a lot of code commoning can be done. This reduces what would be 4×5 + 5 = 25
such assignments to 15, as shown in Figure 15–1.

Incidentally, if the computer has an instruction for computing the parity of a word,
or has the population count instruction (which puts the word parity in the least
significant bit of the target register), then the regular pattern is not needed. On such a
machine, the check bits might be computed as

p0 = pop(u ^ 0xAAAAAAAB) & 1;
p1 = pop(u & 0xCCCCCCCD) & 1;

and so forth.
After packing the six check bits into a single quantity p, the checkbits function

accounts for information bit u0 by complementing all six check bits if u0 = 1. (See Table
15-4; p5 must be complemented because u0 was erroneously included in the
calculation of p5 up to this point.)

15–4 Error Correction Considered More Generally
This section continues to focus on the binary FEC block codes, but a little more
generally than the codes described in Section 15–2. We drop the assumption that the
block consists of a set of “information” bits and a distinct set of “check” bits, and any
implication that the number of code words must be a power of 2. We also consider
levels of error correction and detection capability greater than SEC and SEC-DED. For
example, suppose you want a double error-correcting code for a binary representation
of decimal digits. If the code has 16 code words (with ten being used to represent the
decimal digits and six being unused), the length of the code words must be at least 11
bits. But if a code with only 10 code words is used, the code words can be of length
10 bits. (This is shown in Table 15–8 on page 351, in the column for d = 5, as is
explained below.)

A code is simply a set of code words, and for our purposes the code words are
binary strings all of the same length which, as mentioned above, is called the code
length. The number of code words in the set is called the code size. We make no
interpretation of the code words; they might represent alphanumeric characters or pixel
values in a picture, for example.

As a trivial example, a code might consist of the binary integers from 0 to 7, with
each bit repeated three times:

{000000000, 000000111, 000111000, 000111111, 111000000, ... 111111111}.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images14.html#p342fig02

Chapter 15. Error-Correcting Codes

Another example is the two-out-of-five code, in which each code word has exactly
two 1-bits:

{00011, 00101, 00110, 01001, 01010, 01100, 10001, 10010, 10100, 11000}.

The code size is 10, and thus it is suitable for representing decimal digits. Notice that if
code word 00110 is considered to represent decimal 0, then the remaining values can
be decoded into digits 1 through 9 by giving the bits weights of 6, 3, 2, 1, and 0, in
left-to-right order.

The code rate is a measure of the efficiency of a code. For a code like Hamming’s,
this can be defined as the number of information bits divided by the code length. For
the Hamming code discussed above, it is 4/7 ≈ 0.57. More generally, the code rate is
defined as the log base 2 of the code size, divided by the code length. The simple
codes above have rates of log2(8)/9 ≈ 0.33 and log2(10)/5 ≈ 0.66, respectively.

Hamming Distance

The central concept in the theory of ECC is that of Hamming distance. The Hamming
distance between two words (of equal length) is the number of bit positions in which
they differ. Put another way, it is the population count of the exclusive or of the two
words. It is appropriate to call this a distance function because it satisfies the definition
of a distance function used in linear algebra:

Here d(x, y) denotes the Hamming distance between code words x and y, which for
brevity we will call simply the distance between x and y.

Suppose a code has a minimum distance of 1. That is, there are two words x and y
in the set that differ in only one bit position. Clearly, if x were transmitted and the bit
that makes it distinct from y were flipped due to a transmission error, then the receiver
could not distinguish between receiving x with a certain bit in error and receiving y with
no errors. Hence in such a code it is impossible to detect even a 1-bit error, in general.

Suppose now that a code has a minimum distance of 2. Then if just one bit is
flipped in transmission, an invalid code word is produced, and thus the receiver can (in
principle) detect the error. If two bits are flipped, a valid code word might be
transformed into another valid code word. Thus, double-bit errors cannot be detected.
Furthermore, single-bit errors cannot be corrected. This is because if a received word
has one bit in error, then there may be two code words that are one bit-change away
from the received word, and the receiver has no basis for deciding which is the original
code word.

The code obtained by appending a single parity bit is in this category. It is shown
below for the case of three information bits (m = 3). The rightmost bit is the parity bit,
chosen to make even parity on all four bits. The reader may verify that the minimum
distance between code words is 2.

Chapter 15. Error-Correcting Codes

Actually, adding a single parity bit permits detecting any odd number of errors, but
when we say that a code permits detecting k-bit errors, we mean all errors up to k bits.

Now consider the case in which the minimum distance between code words is 3. If
any one or two bits is flipped in transmission, an invalid code word results. If just one
bit is flipped, the receiver can (we imagine) try flipping each of the received bits one at
a time, and in only one case will a code word result. Hence in such a code the receiver
can detect and correct a single-bit error. A double-bit error might appear to be a
single-bit error from another code word, and thus the receiver cannot detect double-bit
errors.

Similarly, it is easy to reason that if the minimum distance of a code is 4, the
receiver can correct all single-bit errors and detect all double-bit errors (it is a SEC-DED
code). As mentioned above, this is the level of capability often used in computer
memories.

Table 15–6 summarizes the error-correction and -detection capabilities of a block
code based on its minimum distance.

TABLE 15–6. NUMBER OF BITS CORRECTED/DETECTED

Error-correction capability can be traded for error detection. For example, if the
minimum distance of a code is 3, that redundancy can be used to correct no errors but
to detect single- or double-bit errors. If the minimum distance is 5, the code can be
used to correct single-bit errors and detect 3-bit errors, or to correct no errors but to

Chapter 15. Error-Correcting Codes

detect 4-bit errors, and so forth. Whatever is subtracted from the “Correct” column of
Table 15–6 can be added to the “Detect” column.

The Main Coding Theory Problem

Up to this point we have asked, “Given a number of information bits m and a desired
minimum distance d, how many check bits are required?” In the interest of generality,
we will now turn this question around and ask, “For a given code length n and
minimum distance d, how many code words are possible?” Thus, the number of code
words need not be an integral power of 2.

Following [Roman] and others, let A(n, d) denote the largest possible code size for
a (binary) code with length n and minimum distance d. The remainder of this section is
devoted to exploring some of what is known about this function. Determining its values
has been called the main coding theory problem [Hill, Roman]. Throughout this section
we assume that n ≥ d ≥ 1.

It is nearly trivial that

because there are 2n distinct words of length n.
For minimum distance 2, we know from the single parity bit example that A(n, 2) ≥

2n–1 . But A(n, 2) cannot exceed 2n–1 for the following reason. Suppose there is a
code of length n and minimum distance 2 that has more than 2n–1 code words. Delete
any one column from the code words. (We envision the code words as being arranged
in a matrix much like that of Table 15–1 on page 333.) This produces a code of length
n – 1 and minimum distance at least 1 (deleting a column can reduce the minimum
distance by at most 1), and of size exceeding 2n – 1. Thus, it has A(n – 1, 1) > 2n – 1,
contradicting Equation (2). Hence,

A(n ,2) = 2n – 1.

That was not difficult. What about A(n, 3)? That is an unsolved problem, in the
sense that no formula or reasonably easy means of calculating it is known. Of course,
many specific values of A (n, 3) are known, and some bounds are known, but the exact
value is unknown in most cases.

When equality holds in (1), it represents the solution to this problem for the case d
= 3. Letting n = m + k, (1) can be rewritten

Here, m is the number of information bits, so 2m is the maximum number of code
words. Hence, we have

with equality holding when 2n/(n + 1) is an integer (by Hamming’s construction).
For n = 7, this gives A(7, 3) = 16, which we already know from Section 15–2. For

n = 3 it gives A (3, 3) ≤ 2, and the limit of 2 can be realized with code words 000 and
111. For n = 4 it gives A (4, 3) ≤ 3.2, and with a little doodling you will see that it is

Chapter 15. Error-Correcting Codes

not possible to get three code words of length 4 with d = 3. Thus, when equality does
not hold in (3), it merely gives an upper bound, quite possibly not realizable, on the
maximum number of code words.

An interesting relation is that for n ≥ 2,

Therefore, adding 1 to the code length at most doubles the number of code words
possible for the same minimum distance d. To see this, suppose you have a code of
length n, distance d, and size A(n, d). Choose an arbitrary column of the code. Either
half or more of the code words have a 0 in the selected column, or half or more have a
1 in that position. Of these two subsets, choose one that has at least A(n, d)/2 code
words, form a new code consisting of this subset, and delete the selected column
(which is either all 0’s or all 1’s). The resulting set of code words has n reduced by 1,
has the same distance d, and has at least A (n, d)/2 code words. Thus, A(n – 1, d) ≥
A (n, d)/ 2, from which inequality (4) follows.

A useful relation is that if d is even, then

To see this, suppose you have a code C of length n and minimum distance d, with d
odd. Form a new code by appending to each word of C a parity bit, let us say to make
the parity of each word even. The new code has length n + 1 and has the same
number of code words as does C. It has minimum distance d + 1. For if two words of
C are a distance x apart, with x odd, then one word must have even parity and the
other must have odd parity. Thus, we append a 0 in the first case and a 1 in the
second case, which increases the distance between the words to x + 1. If x is even, we
append a 0 to both words, which does not change the distance between them. Because
d is odd, all pairs of words that are a distance d apart become distance d + 1 apart.
The distance between two words more than d apart either does not change or
increases. Therefore the new code has minimum distance d + 1. This shows that if d is
odd, then A(n+ 1, d + 1) ≥ A(n, d), or, equivalently, A(n, d) ≥ A(n – 1, d – 1) for
even d ≥ 2.

Now suppose you have a code of length n and minimum distance d ≥ 2 (d can be
odd or even). Form a new code by eliminating any one column. The new code has
length n – 1, minimum distance at least d – 1, and is the same size as the original
code (all the code words of the new code are distinct because the new code has
minimum distance at least 1). Therefore A(n – 1, d – 1) ≥ A (n, d). This establishes
Equation (5).

Spheres

Upper and lower bounds on A(n, d), for any d ≥ 1, can be derived by thinking in terms
of n-dimensional spheres. Given a code word, think of it as being at the center of a
“sphere” of radius r, consisting of all words at a Hamming distance r or less from it.

How many points (words) are in a sphere of radius r? First, consider how many
points are in the shell at distance exactly r from the central code word. This is given by
the number of ways to choose r different items from n, ignoring the order of choice.
We imagine the r chosen bits as being complemented to form a word at distance

exactly r from the central point. This “choice” function, often written , can be
calculated from2

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch15fn2

Chapter 15. Error-Correcting Codes

Thus, , , , , and so forth.
The total number of points in a sphere of radius r is the sum of the points in the

shells from radius 0 to r:

There seems to be no simple formula for this sum [Knu1].
From this it is easy to obtain bounds on A(n, d). First, assume you have a code of

length n and minimum distance d, and it consists of M code words. Surround each
code word with a sphere, all of the same maximal radius such that no two spheres
have a point in common. This radius is (d – 1)/2 if d is odd, and is (d – 2)/2 if d is
even (see Figure 15–3). Because each point is in at most one sphere, the total number
of points in the M spheres must be less than or equal to the total number of points in
the space. That is,

This holds for any M, hence for M = A(n, d), so that

This is known as the sphere-packing bound, or the Hamming bound.

FIGURE 15–3. Maximum radius that allows correcting points within a sphere.

The sphere idea also easily gives a lower bound on A(n, d). Assume again that you
have a code of length n and minimum distance d, and it has the maximum possible
number of code words—that is, it has A(n, d) code words. Surround each code word
with a sphere of radius d – 1. Then these spheres must cover all 2n points in the space

Chapter 15. Error-Correcting Codes

(possibly overlapping). For if not, there would be a point that is at a distance d or more
from all code words, and that is impossible because such a point would be a code
word. Thus, we have a weak form of the Gilbert-Varshamov bound:

There is the strong form of the G-V bound, which applies to linear codes. Its
derivation relies on methods of linear algebra which, important as they are to the
subject of linear codes, are not covered in this short introduction to error-correcting
codes. Suffice it to say that a linear code is one in which the sum (exclusive or) of any
two code words is also a code word. The Hamming code of Table 15–1 is a linear code.
Because the G-V bound is a lower bound on linear codes, it is also a lower bound on
the unrestricted codes considered here. For large n, it is the best known lower bound
on both linear and unrestricted codes.

The strong G-V bound states that A(n, d) ≥ 2m, where m is the largest integer such
that

That is, it is the value of the right-hand side of this inequality rounded down to the
next strictly smaller integral power of 2. The “strictness” is important for cases such as
(n, d) = (8, 3), (16, 3) and (the degenerate case) (6, 7).

Combining these results:

where GP2LT denotes the greatest integral power of 2 (strictly) less than its argument.
Table 15–7 gives the values of these bounds for some small values of n and d. A

single number in an entry means the lower and upper bounds given by (6) are equal.

TABLE 15–7. THE G - V AND HAMMING BOUNDS ON A(n, d)

Chapter 15. Error-Correcting Codes

If d is even, bounds can be computed directly from (6) or, making use of Equation
(5), they can be computed from (6) with d replaced with d – 1 and n replaced with n –
1 in the two bounds expressions. It turns out that the latter method always results in
tighter or equal bounds. Therefore, the entries in Table 15–7 were calculated only for
odd d. To access the table for even d, use the values of d shown in the heading and
the values of n shown at the left.

The bounds given by (6) can be seen to be rather loose, especially for large d. The
ratio of the upper bound to the lower bound diverges to infinity with increasing n. The
lower bound is particularly loose. Over a thousand papers have been written describing
methods to improve these bounds, and the results as of this writing are shown in Table
15–8 [Agrell, Brou; where they differ, Table 15–8. shows the tighter bounds].

TABLE 15–8. BEST KNOWN BOUNDS ON A(n, d)

Chapter 15. Error-Correcting Codes

The cases of (n, d) = (7, 3), (15, 3), and (23, 7) are perfect codes, meaning that
they achieve the upper bound given by (6). This definition is a generalization of that

Chapter 15. Error-Correcting Codes

given on page 333. The codes for which n is odd and n = d are also perfect; see
exercise 8.

We conclude this chapter by pointing out that the idea of minimum distance over an
entire code, which leads to the ideas of p-bit error detection and q-bit error correction
for some p and q, is not the only criterion for the “power” of a binary FEC block code.
For example, work has been done on codes aimed at correcting burst errors. [Etzion]
has demonstrated a (16, 11) code, and others, that can correct any single-bit error and
any error in two consecutive bits, and is perfect, in a sense not discussed here. It is not
capable of general double-bit error detection. The (16, 11) extended Hamming code is
SEC-DED and is perfect. Thus, his code gives up general double-bit error detection in
return for double-bit error correction of consecutive bits. This is, of course, interesting
because in many applications errors are likely to occur in short bursts.

Exercises

1. Show a Hamming code for m = 3 (make a table similar to Table 15-1).
2. In a certain application of an SEC code, there is no need to correct the check

bits. Hence the k check bits need only check the information bits, but not
themselves. For m information bits, k must be large enough so that the receiver
can distinguish m + 1 cases: which of the m bits is in error, or no error
occurred. Thus, the number of check bits required is given by 2k ≥ m + 1. This
is a weaker restriction on k than is the Hamming rule, so it should be possible
to construct, for some values of m, an SEC code that has fewer check bits than
those required by the Hamming rule. Alternatively, one could have just one
value to signify that an error occurred somewhere in the check bits, without
specifying where. This would lead to the rule 2k ≥ m + 2.

What is wrong with this reasoning?
3. (Brain teaser) Given m, how would you find the least k that satisfies inequality

(1)?
4. Show that the Hamming distance function for any binary block code satisfies the

triangle inequality: if x and y are code vectors and d(x, y) denotes the
Hamming distance between them, then

d (x, z) ≤ d (x, y) + d (y, z).

5. Prove: A(2n, 2d) ≥ A(n, d).

6. Prove the “singleton bound”: A(n, d) ≤ 2n – d + 1.
7. Show that the notion of a perfect code as equality in the right-hand portion of

inequality (6) is a generalization of the Hamming rule.
8. What is the value of A(n, d) if n = d? Show that for odd n, these codes are

perfect.
9. Show that if n is a multiple of 3 and d = 2n/3, then A(n, d) = 4.

10. Show that if d > 2n/3, then A(n, d) = 2.

11. A two-dimensional parity check scheme for 64 information bits arranges the
information bits u0 ... u63 into an 8×8 array, and appends a parity bit to each
row and column as shown below.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch15ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch15ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch15ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch15ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch15ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch15ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch15ans4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch15ans4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch15ans5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch15ans5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch15ans6
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch15ans6
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch15ans7
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch15ans7
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch15ans8
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch15ans8
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch15ans9
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch15ans9
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch15ans10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch15ans10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch15ans11
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch15ans11

Chapter 15. Error-Correcting Codes

The ri are parity check bits on the rows, and the ci are parity check bits on the
columns. The “corner” check bit could be parity check on the row or the column of
check bits (but not both); it is shown as a check on the bottom row (check bits c0
through c7).

Comment on this scheme. In particular, is it SEC-DED? Is its error-detection and -
correction capability significantly altered if the corner bit r8 is omitted? Is there any
simple relation between the value of the corner bit if it’s a row sum or a column sum?

Chapter 16. Hilbert’s Curve

Chapter 16. Hilbert’s Curve

In 1890, Giuseppe Peano discovered a planar curve1 with the rather surprising property
that it is “space-filling.” The curve winds around the unit square and hits every point (x,
y) at least once.

Peano’s curve is based on dividing each side of the unit square into three equal
parts, which divides the square into nine smaller squares. His curve traverses these
nine squares in a certain order. Then, each of the nine small squares is similarly divided
into nine still smaller squares, and the curve is modified to traverse all these squares in
a certain order. The curve can be described using fractions expressed in base 3; in fact,
that’s the way Peano first described it.

In 1891, David Hilbert [Hil] discovered a variation of Peano’s curve based on
dividing each side of the unit square into two equal parts, which divides the square into
four smaller squares. Then, each of the four small squares is similarly divided into four
still smaller squares, and so on. For each stage of this division, Hilbert gives a curve
that traverses all the squares. Hilbert’s curve, sometimes called the “Peano-Hilbert
curve,” is the limit curve of this division process. It can be described using fractions
expressed in base 2.

Figure 16–1 shows the first three steps in the sequence that leads to Hilbert’s
space-filling curve, as they were depicted in his 1891 paper.

FIGURE 16–1. First three curves in the sequence defining Hilbert’s curve.

Here, we do things a little differently. We use the term “Hilbert curve” for any of the
curves on the sequence whose limit is the Hilbert space-filling curve. The “Hilbert curve
of order n” means the nth curve in the sequence. In Figure 16–1, the curves are of
order 1, 2, and 3. We shift the curves down and to the left so that the corners of the
curves coincide with the intersections of the lines in the boxes above. Finally, we scale
the size of the order n curve up by a factor of 2n, so that the coordinates of the
corners of the curves are integers. Thus, our order n Hilbert curve has corners at
integers ranging from 0 to 2n – 1 in both x and y. We take the positive direction along
the curve to be from (x, y) = (0, 0) to (2n – 1.0). Figure 16–2 shows the Hilbert
curves of orders 1 through 6.

16–1 A Recursive Algorithm for Generating the Hilbert Curve
To see how to generate a Hilbert curve, examine the curves in Figure 16–2. The order
1 curve goes up, right, and down. The order 2 curve follows this overall pattern. First,
it makes a U-shaped curve that goes up, in net effect. Second, it takes a unit step up.
Third, it takes a U-shaped curve, a step, and another U, all to the right. Finally, it takes
a step down, followed by a U that goes down, in net effect.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch16fn1

Chapter 16. Hilbert’s Curve

FIGURE 16–2. Hilbert curves of orders 1–6.

Chapter 16. Hilbert’s Curve

The order 1 inverted U is converted into the order 2 Y-shaped curve.
We can regard the Hilbert curve of any order as a series of U-shaped curves of

various orientations, each of which, except for the last, is followed by a unit step in a
certain direction. In transforming a Hilbert curve of one order to the next, each U-
shaped curve is transformed into a Y-shaped curve with the same general orientation,
and each unit step is transformed to a unit step in the same direction.

The transformation of the order 1 Hilbert curve (a U curve with a net direction to
the right and a clockwise rotational orientation) to the order 2 Hilbert curve goes as
follows:

1. Draw a U that goes up and has a counterclockwise rotation.
2. Draw a step up.
3. Draw a U that goes to the right and has a clockwise rotation.
4. Draw a step to the right.
5. Draw a U that goes to the right and has a clockwise rotation.
6. Draw a step down.
7. Draw a U that goes down and has a counterclockwise rotation.
We can see by inspection that all U’s that are oriented as the order 1 Hilbert curve

are transformed in the same way. A similar set of rules can be made for transforming
U’s with other orientations. These rules are embodied in the recursive program shown
in Figure 16–3 [Voor]. In this program, the orientation of a U curve is characterized by
two integers that specify the net linear and the rotational directions, encoded as
follows:

Actually, dir can take on other values, but its congruency modulo 4 is what
matters.

void step(int);

void hilbert(int dir, int rot, int order) {

 if (order == 0) return;

 dir = dir + rot;
 hilbert(dir, -rot, order - 1);
 step(dir);
 dir = dir - rot;
 hilbert(dir, rot, order - 1);
 step(dir);
 hilbert(dir, rot, order - 1);
 dir = dir - rot;
 step(dir);
 hilbert(dir, -rot, order - 1);
}

FIGURE 16–3. Hilbert curve generator.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images15.html#p16fig03

Chapter 16. Hilbert’s Curve

Figure 16–4 shows a driver program and function step that is used by program
hilbert. This program is given the order of a Hilbert curve to construct, and it displays
a list of line segments, giving for each the direction of movement, the length along the
curve to the end of the segment, and the coordinates of the end of the segment. For
example, for order 2 it displays

 0 0000 00 00
 0 0001 01 00
 1 0010 01 01
 2 0011 00 01
 1 0100 00 10
 1 0101 00 11
 0 0110 01 11
-1 0111 01 10
 0 1000 10 10
 1 1001 10 11
 0 1010 11 11
-1 1011 11 10
-1 1100 11 01
-2 1101 10 01
-1 1110 10 00
 0 1111 11 00

#include <stdio.h>
#include <stdlib.h>

int x = -1, y = 0; // Global variables.
int s = 0; // Dist. along curve.
int blen; // Length to print.

void hilbert(int dir, int rot, int order);

void binary(unsigned k, int len, char *s) {
/* Converts the unsigned integer k to binary character form.
Result is string s of length len. */
 int i;

 s[len] = 0;
 for (i = len - 1; i >= 0; i--) {
 if (k & 1) s[i] = ‘1’;
 else s[i] = ‘0’;
 k = k >> 1;
 }
}
void step(int dir) {
 char ii[33], xx[17], yy[17];

 switch(dir & 3) {
 case 0: x = x + 1; break;
 case 1: y = y + 1; break;
 case 2: x = x - 1; break;
 case 3: y = y - 1; break;
 }
 binary(s, 2*blen, ii);
 binary(x, blen, xx);
 binary(y, blen, yy);
 printf("%5d %s %s %s\n", dir, ii, xx, yy);
 s = s + 1; // Increment distance.
}
int main(int argc, char *argv[]) {
 int order;

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images15.html#p358fig01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images15.html#p16fig04

Chapter 16. Hilbert’s Curve

 order = atoi(argv[1]);
 blen = order;
 step(0); // Print init. point.
 hilbert(0, 1, order);
 return 0;
}

FIGURE 16–4. Driver program for Hilbert curve generator.

16–2 Coordinates from Distance along the Hilbert Curve
To find the (x, y) coordinates of a point located at a distance s along the order n
Hilbert curve, observe that the most significant two bits of the 2n-bit integer s
determine which major quadrant the point is in. This is because the Hilbert curve of any
order follows the overall pattern of the order 1 curve. If the most significant two bits of
s are 00, the point is somewhere in the lower-left quadrant, if 01 it is in the upper-left
quadrant, if 10 it is in the upper-right quadrant, and if 11 it is in the lower-right
quadrant. Thus, the most significant two bits of s determine the most significant bits of
the n-bit integers x and y, as follows:

In any Hilbert curve, only four of the eight possible U-shapes occur. These are
shown in Table 16–1 as graphics and as maps from two bits of s to a single bit of each
of x and y.

TABLE 16-1. THE FOUR POSSIBLE MAPPINGS

Observe from Figure 16–2 that in all cases the U-shape represented by map A
 becomes, at the next level of detail, a U-shape represented by maps B, A, A, or

D, depending on whether the length traversed in the first-mentioned map A is 0, 1, 2,

Chapter 16. Hilbert’s Curve

or 3, respectively. Similarly, a U-shape represented by map B becomes, at the
next level of detail, a U-shape represented by maps A, B, B, or C, depending on
whether the length traversed in the first-mentioned map B is 0, 1, 2, or 3, respectively.

TABLE 16–2. STATE TRANSITION TABLE FOR COMPUTING (X, Y) FROMS

These observations lead to the state transition table shown in Table 16–2, in which
the states correspond to the mappings shown in Table 16–1.

To use the table, start in state A. The integer s should be padded with leading
zeros so that its length is 2n, where n is the order of the Hilbert curve. Scan the bits of
s in pairs from left to right. The first row of Table 16–2 means that if the current state
is A and the currently scanned bits of s are 00, then output (0, 0) and enter state B.
Then, advance to the next two bits of s. Similarly, the second row means that if the
current state is A and the scanned bits are 01, then output (0, 1) and stay in state A.

The output bits are accumulated in left-to-right order. When the end of s is
reached, the n-bit output quantities x and y are defined.

As an example, suppose n = 3 and

s = 110100.

Because the process starts in state A and the initial bits scanned are 11, the process
outputs (1, 0) and enters state D (fourth row). Then, in state D and scanning 01, the

Chapter 16. Hilbert’s Curve

process outputs (0, 1) and stays in state D. Lastly, the process outputs (1, 1) and
enters state C, although the state is now immaterial.

Thus, the output is (101, 011)—that is, x = 5 and y = 3.
A C program implementing these steps is shown in Figure 16–5. In this program,

the current state is represented by an integer from 0 to 3 for states A through D,
respectively. In the assignment to variable row, the current state is concatenated with
the next two bits of s, giving an integer from 0 to 15, which is the applicable row
number in Table 16–2. Variable row is used to access integers (expressed in
hexadecimal) that are used as bit strings to represent the rightmost two columns of
Table 16–2; that is, these accesses are in-register table lookups. Left-to-right in the
hexadecimal values corresponds to bottom-to-top in Table 16–2.

void hil_xy_from_s(unsigned s, int n, unsigned *xp,
 unsigned *yp) {
 int i;
 unsigned state, x, y, row;

 state = 0; // Initialize.
 x = y = 0;

 for (i = 2*n - 2; i >= 0; i -= 2) { // Do n times.
 row = 4*state | (s >> i) & 3; // Row in table.
 x = (x << 1) | (0x936C >> row) & 1;
 y = (y << 1) | (0x39C6 >> row) & 1;
 state = (0x3E6B94C1 >> 2*row) & 3; // New state.
 }
 *xp = x; // Pass back
 *yp = y; // results.
}

FIGURE 16–5. Program for computing (x, y) from s.

[L&S] give a quite different algorithm. Unlike the algorithm of Figure 16–5, it scans
the bits of s from right to left. It is based on the observation that one can map the
least significant two bits of s to (x, y) based on the order 1 Hilbert curve, and then test
the next two bits of s to the left. If they are 00, the values of x and y just computed
should be interchanged, which corresponds to reflecting the order 1 Hilbert curve about
the line x = y. (Refer to the curves of orders 1 and 2 shown in Figure 16–1 on page
355.) If these two bits are 01 or 10, the values of x and y are not changed. If they are
11, the values of x and y are interchanged and complemented. These same rules apply
as one progresses leftward along the bits of s. They are embodied in Table 16–3 and
the code of Figure 16–6. It is somewhat curious that the bits can be prepended to x
and y first, and then the swap and complement operations can be done, including
these newly prepended bits; the results are the same.

TABLE 16–3. LAM AND SHAPIRO METHOD FOR COMPUTING (X, Y) FROM S

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images15.html#p16fig05

Chapter 16. Hilbert’s Curve

void hil_xy_from_s(unsigned s, int n, unsigned *xp,
 unsigned *yp) {
 int i, sa, sb;
 unsigned x, y, temp;

 for (i = 0; i < 2*n; i += 2) {
 sa = (s >> (i+1)) & 1; // Get bit i+1 of s.
 sb = (s >> i) & 1; // Get bit i of s.

 if ((sa ^ sb) == 0) { // If sa,sb = 00 or 11,
 temp = x; // swap x and y,
 x = y ^ (-sa); // and if sa = 1,
 y = temp ^ (-sa); // complement them.
 }
 x = (x >> 1) | (sa << 31);// Prepend sa to x and
 y = (y >> 1) | ((sa ^ sb) << 31); // (sa ^ sb) to y.
 }
 *xp = x >> (32 - n); // Right-adjust x and y
 *yp = y >> (32 - n); // and return them to
} // the caller.

FIGURE 16–6. Lam and Shapiro method for computing (x, y) from s.

In Figure 16–6, variables x and y are uninitialized, which might cause an error
message from some compilers, but the code functions correctly for whatever values x
and y have initially.

The branch in the loop of Figure 16–6 can be avoided by doing the swap operation
with the “three exclusive or” trick given in Section 2–20 on page 45. The if block can
be replaced by the following code, where swap and cmpl are unsigned integers:

swap = (sa ^ sb) - 1; // -1 if should swap, else 0.
cmpl = -(sa & sb); // -1 if should compl’t, else 0.
x = x ^ y;
y = y ^ (x & swap) ^ cmpl;
x = x ^ y;

This is nine instructions, versus about two or six for the if block, so the branch cost
would have to be quite high for this to be a good choice.

The “swap and complement” idea of [L&S] suggests a logic circuit for generating
the Hilbert curve. The idea behind the circuit, described below, is that as you trace
along the path of an order n curve, you basically map pairs of bits of s to (x, y)
according to map A of Table 16–1. As the trace enters various regions, the mapping
output gets swapped, complemented, or both. The circuit of Figure 16–7 keeps track of
the swap and complement requirements of each stage, uses the appropriate mapping
to map two bits of s to (xi, yi), and generates the swap and complement signals for the

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images15.html#p16fig06
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev20
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_45
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images15.html#p363fig01

Chapter 16. Hilbert’s Curve

next stage.

FIGURE 16–7. Logic circuit for computing (x, y) from s.

Assume there is a register containing the path length s and circuits for incrementing
it. Then, to find the next point on the Hilbert curve, first increment s and then
transform it as described in Table 16–4. This is a left-to-right process, which is a bit of
a problem because incrementing s is a right-to-left process. Thus, the time to generate
a new point on an order n Hilbert curve is proportional to 2n (for incrementing s) plus
n (for transforming s to (x, y)).

TABLE 16–4. LOGIC FOR COMPUTING (X, Y) FROM S

Figure 16–7 shows this computation as a logic circuit. In this figure, S denotes the
swap signal and C denotes the complement signal.

The logic circuit of Figure 16–7 suggests another way to compute (x, y) from s.
Notice how the swap and complement signals propagate from left to right through the
n stages. This suggests that it might be possible to use the parallel prefix operation to
quickly (in log2n steps rather than n – 1) propagate the swap and complement
information to each stage, and then do some word-parallel logical operations to
compute x and y, using the equations in Figure 16–7. The values of x and y are
intermingled in the even and odd bit positions of a word, so they have to be separated
by the unshuffle operation (see page 140). This might seem a bit complicated, and

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_140

Chapter 16. Hilbert’s Curve

likely to pay off only for rather large values of n, but let us see how it goes.
A procedure for this operation is shown in Figure 16–8 [GLS1]. The procedure

operates on fullword quantities, so it first pads the input s on the left with ‘01’ bits. This
bit combination does not affect the swap and complement quantities. Next, a quantity
cs (complement-swap) is computed. This word is of the form cscs...cs, where each c
(a single bit), if 1, means that the corresponding pair of bits is to be complemented,
and each s means that the corresponding pair of bits is to be swapped, following Table
16–3. In other words, these two statements map each pair of bits of s as follows:

void hil_xy_from_s(unsigned s, int n, unsigned *xp,
 unsigned *yp) {
 unsigned comp, swap, cs, t, sr;

 s = s | (0x55555555 << 2*n); // Pad s on left with 01
 sr = (s >> 1) & 0x55555555; // (no change) groups.
 cs = ((s & 0x55555555) + sr) // Compute complement &
 ^ 0x55555555; // swap info in two-bit
 // groups.
 // Parallel prefix xor op to propagate both complement
 // and swap info together from left to right (there is
 // no step "cs ^= cs >> 1", so in effect it computes
 // two independent parallel prefix operations on two
 // interleaved sets of sixteen bits).

 cs = cs ^ (cs >> 2);
 cs = cs ^ (cs >> 4);
 cs = cs ^ (cs >> 8);
 cs = cs ^ (cs >> 16);
 swap = cs & 0x55555555; // Separate the swap and
 comp = (cs >> 1) & 0x55555555; // complement bits.

 t = (s & swap) ^ comp; // Calculate x and y in
 s = s ^ sr ^ t ^ (t << 1); // the odd & even bit
 // positions, resp.
 s = s & ((1 << 2*n) - 1); // Clear out any junk
 // on the left (unpad).

 // Now "unshuffle" to separate the x and y bits.

 t = (s ^ (s >> 1)) & 0x22222222; s = s ^ t ^ (t << 1);
 t = (s ^ (s >> 2)) & 0x0C0C0C0C; s = s ^ t ^ (t << 2);
 t = (s ^ (s >> 4)) & 0x00F000F0; s = s ^ t ^ (t << 4);
 t = (s ^ (s >> 8)) & 0x0000FF00; s = s ^ t ^ (t << 8);

 *xp = s >> 16; // Assign the two halves
 *yp = s & 0xFFFF; // of t to x and y.
}

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images15.html#p16fig08

Chapter 16. Hilbert’s Curve

FIGURE 16–8. Parallel prefix method for computing (x, y) from s.

This is the quantity to which we want to apply the parallel prefix operation. PP-XOR
is the one to use, going from left to right, because successive 1-bits meaning to
complement or to swap have the same logical properties as exclusive or: Two
successive 1-bits cancel each other.

Both signals (complement and swap) are propagated in the same PP-XOR
operation, each working with every other bit of cs.

The next four assignment statements have the effect of translating each pair of bits
of s into (x, y) values, with x being in the odd (leftmost) bit positions, and y being in
the even bit positions. Although the logic may seem obscure, it is not difficult to verify
that each pair of bits of s is transformed by the logic of the first two Boolean equations
in Figure 16–7. (Suggestion: Consider separately how the even and odd bit positions
are transformed, using the fact that t and sr are 0 in the odd positions.)

The rest of the procedure is self-explanatory. It executes in 66 basic RISC
instructions (constant, branch-free), versus about 19n + 10 (average) for the code of
Figure 16–6 (based on compiled code; includes prologs and epilogs, which are
essentially nil). Thus, the parallel prefix method is faster for n ≥ 3.

16–3 Distance from Coordinates on the Hilbert Curve
Given the coordinates of a point on the Hilbert curve, the distance from the origin

to the point can be calculated by means of a state transition table similar to Table 16–
2. Table 16–5 is such a table.

TABLE 16–5. STATE TRANSITION TABLE FOR COMPUTING S FROM (X, Y)

Chapter 16. Hilbert’s Curve

Its interpretation is similar to that of the previous section. First, x and y should be
padded with leading zeros so that they are of length n bits, where n is the order of the
Hilbert curve. Second, the bits of x and y are scanned from left to right, and s is built
up from left to right.

A C program implementing these steps is shown in Figure 16–9.

unsigned hil_s_from_xy(unsigned x, unsigned y, int n) {

 int i;
 unsigned state, s, row;

 state = 0; // Initialize.
 s = 0;

 for (i = n - 1; i >= 0; i--) {
 row = 4*state | 2*((x >> i) & 1) | (y >> i) & 1;
 s = (s << 2) | (0x361E9CB4 >> 2*row) & 3;
 state = (0x8FE65831 >> 2*row) & 3;
 }
 return s;
}

FIGURE 16–9. Program for computing s from (x, y).

[L&S] give an algorithm for computing s from (x, y) that is similar to their algorithm
for going in the other direction (Table 16–3). It is a left-to-right algorithm, shown in

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images15.html#p16fig09

Chapter 16. Hilbert’s Curve

Table 16–6 and Figure 16–10.
TABLE 16–6. LAM AND SHAPIRO METHOD FOR COMPUTING S FROM (X, Y)

unsigned hil_s_from_xy(unsigned x, unsigned y, int n) {

 int i, xi, yi;
 unsigned s, temp;

 s = 0; // Initialize.
 for (i = n - 1; i >= 0; i--) {
 xi = (x >> i) & 1; // Get bit i of x.
 yi = (y >> i) & 1; // Get bit i of y.

 if (yi == 0) {
 temp = x; // Swap x and y and,
 x = y^(-xi); // if xi = 1,
 y = temp^(-xi); // complement them.
 }
 s = 4*s + 2*xi + (xi^yi); // Append two bits to s.
 }
 return s;
}

FIGURE 16–10. Lam and Shapiro method for computing s from (x, y).

16–4 Incrementing the Coordinates on the Hilbert Curve
Given the (x, y) coordinates of a point on the order n Hilbert curve, how can one find
the coordinates of the next point? One way is to convert (x, y) to s, add 1 to s, and
then convert the new value of s back to (x, y), using algorithms given above.

A slightly (but not dramatically) better way is based on the fact that as one moves
along the Hilbert curve, at each step either x or y, but not both, is either incremented
or decremented (by 1). The algorithm to be described scans the coordinate numbers
from left to right to determine the type of U-curve that the rightmost two bits are on.
Then, based on the U-curve and the value of the rightmost two bits, it increments or
decrements either x or y.

That’s basically it, but there is a complication when the path is at the end of a U-
curve (which happens once every four steps). At this point, the direction to take is
determined by the previous bits of x and y and by the higher order U-curve with which
these bits are associated. If that point is also at the end of its U-curve, then the
previous bits and the U-curve there determine the direction to take, and so on.

Table 16–7 describes this algorithm. In this table, the A, B, C, and D denote the U-
curves as shown in Table 16–1 on page 360. To use the table, first pad x and y with
leading zeros so they are n bits long, where n is the order of the Hilbert curve. Start in

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images15.html#p16fig10

Chapter 16. Hilbert’s Curve

state A and scan the bits of x and y from left to right. The first row of Table 16–7
means that if the current state is A and the currently scanned bits are (0, 0), then set a
variable to indicate to increment y, and enter state B. The other rows are interpreted
similarly, with a suffix minus sign indicating to decrement the associated coordinate. A
dash in the third column means do not alter the variable that keeps track of the
coordinate changes.

TABLE 16–7. TAKING ONE STEP ON THE HILBERT CURVE

After scanning the last (rightmost) bits of x and y, increment or decrement the
appropriate coordinate as indicated by the final value of the variable.

A C program implementing these steps is shown in Figure 16–11. Variable dx is
initialized in such a way that if invoked many times, the algorithm cycles around,
generating the same Hilbert curve over and over again. (However, the step that
connects one cycle to the next is not a unit step.)

void hil_inc_xy(unsigned *xp, unsigned *yp, int n) {

 int i;
 unsigned x, y, state, dx, dy, row, dochange;

 x = *xp;

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images15.html#p16fig11

Chapter 16. Hilbert’s Curve

 y = *yp;
 state = 0; // Initialize.
 dx = -((1 << n) - 1); // Init. -(2**n - 1).
 dy = 0;

 for (i = n-1; i >= 0; i--) { // Do n times.
 row = 4*state | 2*((x >> i) & 1) | (y >> i) & 1;
 dochange = (0xBDDB >> row) & 1;
 if (dochange) {
 dx = ((0x16451659 >> 2*row) & 3) - 1;
 dy = ((0x51166516 >> 2*row) & 3) - 1;
 }
 state = (0x8FE65831 >> 2*row) & 3;
 }
 *xp = *xp + dx;
 *yp = *yp + dy;
}

FIGURE 16–11. Program for taking one step on the Hilbert curve.

Table 16–7 can readily be implemented in logic, as shown in Figure 16–12. In this
figure, the variables have the following meanings:

S and C together identify the “state” of Table 16–7, with (C, S) = (0,0), (0,1), (1,0),
and (1,1) denoting states A, B, C, and D, respectively. The output signals are I0 and
W0, which tell, respectively, whether to increment or decrement, and which variable to
change. (In addition to the logic shown, an incrementer/decrementer circuit is required,
with MUX’s to route either x or y to the incrementer/decrementer, and a circuit to route
the altered value back to the register that holds x or y. Alternatively, two
incrementer/decrementer circuits could be used.)

Chapter 16. Hilbert’s Curve

FIGURE 16–12. Logic circuit for incrementing (x, y) by one step along the
Hilbert curve.

16–5 Non-Recursive Generating Algorithms
The algorithms of Tables 16–2 and 16–7 provide two non-recursive algorithms for
generating the Hilbert curve of any order. Either algorithm can be implemented in
hardware without great difficulty. Hardware based on Table 16–2 includes a register
holding s, which it increments for each step, and then converts to (x, y) coordinates.
Hardware based on Table 16–7 would not have to include a register for s, but the
algorithm is more complicated.

16–6 Other Space-Filling Curves
As was mentioned, Peano was first, in 1890, to discover a space-filling curve. The
many variations discovered since then are often called “Peano curves.” One interesting
variation of Hilbert’s curve was discovered by Eliakim Hastings Moore in 1900. It is
“cyclic” in the sense that the end point is one step away from the starting point. The
Peano curve of order 3, and the Moore curve of order 4, are shown in Figure 16–13.
Moore’s curve has an irregularity in that the order 1 curve is upright-down , but
this shape does not appear in the higher-order curves. Except for this minor exception,
the algorithms for dealing with Moore’s curve are very similar to those for the Hilbert
curve.

Chapter 16. Hilbert’s Curve

FIGURE 16–13. Peano (left) and Moore (right) curves.

The Hilbert curve has been generalized to arbitrary rectangles and to three and
higher dimensions. The basic building block for a three-dimensional Hilbert curve is
shown below. It hits all eight points of a 2×2×2 cube. These and many other space-
filling curves are discussed in [Sagan].

16–7 Applications
Space-filling curves have applications in image processing: compression, halftoning,
and textural analysis [L&S]. Another application is to improve computer performance in
ray tracing, a graphics-rendering technique. Conventionally, a scene is scanned by
projecting rays across the scene in ordinary raster scan line order (left to right across
the screen, and then top to bottom). When a ray hits an object in the simulated
scene’s database, the color and other properties of the object at that point are
determined, and the results are used to illuminate the pixel through which the ray was
sent. (This is an oversimplification, but it’s adequate for our purposes.) One problem is
that the database is often large and the data on each object must be paged in and cast
out as various objects are hit by the scanning ray. When the ray scans across a line, it
often hits many objects that were hit in the previous scan, requiring them to be paged
in again. Paging operations would be reduced if the scanning had some kind of locality
property. For example, it might be helpful to scan a quadrant of the screen completely
before going on to another quadrant.

The Hilbert curve seems to have the locality property we are seeking. It scans a
quadrant completely before scanning another, recursively, and also does not make a
long jump when going from one quadrant to another.

Douglas Voorhies [Voor] has simulated what the paging behavior would likely be for
the conventional uni-directional scan line traversal, the Peano curve, and the Hilbert
curve. His method is to scatter circles of a given size randomly on the screen. A scan

Chapter 16. Hilbert’s Curve

path hitting a circle represents touching a new object, and paging it in. When a scan
leaves a circle, it is presumed that the object’s data remains in memory until the scan
exits a circle of radius twice that of the “object” circle. Thus, if the scan leaves the
object for just a short distance and then returns to it, it is assumed that no paging
operation occurred. He repeats this experiment for many different sizes of circles, on a
simulated 1024×1024 screen.

Assume that entering an object circle and leaving its surrounding circle represent
one paging operation. Then, clearly the normal scan line causes D paging operations in
covering a (not too big) circle of diameter D pixels, because each scan line that enters
it leaves its outer circle. The interesting result of Voorhies’s simulation is that for the
Peano curve, the number of paging operations to scan a circle is about 2.7 and,
perhaps surprisingly, is independent of the circle’s diameter. For the Hilbert curve, the
figure is about 1.4, also independent of the circle’s diameter. Thus, the experiment
suggests that the Hilbert curve is superior to the Peano curve, and vastly superior to
the normal scan line path, in reducing paging operations. (The result that the page
count is independent of the circles’ diameters is probably an artifact of the outer circle’s
being proportional in size to the object circle.)

The Hilbert curve has been used to assign jobs to processors when the processors
are interconnected in a rectangular 2D or 3D grid [Cplant]. The processor allocation
system software uses a linear list of the processors that follows a Hilbert curve over the
grid. When a job that requires a number of processors is scheduled to run, the allocator
allocates them from the linear list, much as a memory allocator would do. The allocated
processors tend to be close together on the grid, which leads to good
intercommunication properties.

Exercises

1. A simple way to cover an n × n grid in a way that doesn’t make too many big
jumps, and hits every point once and only once, is to have a 2n-bit variable s
that is incremented at each step, and form x from the first and every other bit
of s, and y from the second and every other bit of s. This is equivalent to
computing the perfect outer unshuffle of s, and then letting x and y be the left
and right halves of the result. Investigate this curve’s locality property by
sketching the curve for n = 3.

2. A variation of exercise 1 is to first transform s into Gray(s) (see page 312), and
then let x and y be formed from every other bit of the result, as in exercise 1.
Sketch the curve for n = 3. Has this improved the locality property?

3. How would you construct a three-dimensional analog of the curve of exercise 1?

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch16ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch16ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch16ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch16ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_312
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch16ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch16ans3

Chapter 17. Floating-Point

Chapter 17. Floating-Point

God created the integers,
all else is the work of man.

Leopold Kronecker

Operating on floating-point numbers with integer arithmetic and logical instructions is
often a messy proposition. This is particularly true for the rules and formats of the IEEE
Standard for Floating-Point Arithmetic, IEEE Std. 754-2008, commonly known as “IEEE
arithmetic.” It has the NaN (not a number) and infinities, which are special cases for
almost all operations. It has plus and minus zero, which must compare equal to one
another. It has a fourth comparison result, “unordered.” The most significant bit of the
fraction is not explicitly present in “normal” numbers, but it is in “subnormal” numbers.
The fraction is in signed-true form and the exponent is in biased form, whereas
integers are now almost universally in two’s-complement form. There are, of course,
reasons for all this, but it results in programs that deal with the representation being
full of tests and branches, and that present a challenge to implement efficiently.

We assume the reader has some familiarity with the IEEE standard, and summarize
it here only very briefly.

17–1 IEEE Format
The 2008 standard includes three binary and two decimal formats. We will restrict our
attention to the binary “single” and “double” formats (32- and 64-bit). These are
shown below.

The sign bit s is encoded as 0 for plus, 1 for minus. The biased exponent e and
fraction f are magnitudes with their most significant bits on the left. The floating-point
value represented is encoded as shown on the next page.

As an example, consider encoding the number π in single format. In binary [Knu1],
π ≈ 11.0010 0100 0011 1111 0110 1010 1000 1000 1000 0101 1010 0011 0000

10....
This is in the range of the “normal” numbers shown in the third row of the table

Chapter 17. Floating-Point

above. The most significant 1 in π is dropped, as the leading 1 is not stored in the
encoding of normal numbers. The exponent e – 127 should be 1, to get the binary
point in the right place, and hence e = 128. Thus, the representation is

0 10000000 10010010000111111011011

or, in hexadecimal,

40490FDB,

where we have rounded the fraction to the nearest representable number.
Numbers with 1 ≤ e ≤ 254 are the “normal numbers.” These are “normalized,”

meaning that their most significant bit is 1 and it is not explicitly stored. Nonzero
numbers with e = 0 are called “subnormal numbers,” or simply “subnormals.” Their
most significant bit is explicitly stored. This scheme is sometimes called “gradual
underflow.” Some extreme values in the various ranges of floating-point numbers are
shown in Table 17–1. In this table, “Max integer” means the largest integer such that
all integers less than or equal to it, in absolute value, are representable exactly; the
next integer is rounded.

For normal numbers, one unit in the last position (ulp) has a relative value ranging
from 1 / 224 to 1 / 223 (about 5.96 × 10–8 to 1.19 × 10–7) for single format, and
from 1 / 253 to 1 / 252 (about 1.11 × 10–16 to 2.22 × 10–16) for double format. The
maximum “relative error,” for round to nearest mode, is half of those figures.

The range of integers that is represented exactly is from –224 to +224(–16,777,216
to +16,777,216) for single format, and from –253 to +253(–9,007,199,254,740,992 to
+9,007,199,254,740,992) for double format. Of course, certain integers outside these
ranges, such as larger powers of 2, can be represented exactly; the ranges cited are
the maximal ranges for which all integers are represented exactly.

TABLE 17–1. EXTREME VALUES

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images16.html#p376fig02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images16.html#p376fig03

Chapter 17. Floating-Point

One might want to change division by a constant to multiplication by the reciprocal.
This can be done with complete (IEEE) accuracy only for numbers whose reciprocals
are represented exactly. These are the powers of 2 from 2–127 to 2127 for single
format, and from 2–1023 to 21023 for double format. The numbers 2–127 and 2–1023

are subnormal numbers, which are best avoided on machines that implement
operations on subnormal numbers inefficiently.

17–2 Floating-Point To/From Integer Conversions
Table 17–2 gives some formulas for conversion between IEEE floating-point format

and integers. These methods are concise and fast, but they do not give the correct
result for the full range of input values. The ranges over which they do give the
precisely correct result are given in the table. They all give the correct result for ±0.0
and for subnormals within the stated ranges. Most do not give a reasonable result for a
NaN or infinity. These formulas may be suitable for direct use in some applications, or
in a library routine to get the common cases quickly.

TABLE 17–2. FLOATING-POINT CONVERSIONS

Chapter 17. Floating-Point

Chapter 17. Floating-Point

Chapter 17. Floating-Point

The Type column denotes the type of conversion desired, including the rounding
mode: n for round to nearest even, d for round down, u for round up, and z for round
toward zero. The R column denotes the rounding mode that the machine must be in
for the formula to give the correct result. (On some machines, such as the Intel IA-32,
the rounding mode can be specified in the instruction itself, rather than in a “mode”
register.)

A “double” is an IEEE double, which is 64 bits in length. A “float” is an IEEE single,
which is 32 bits in length.

The notation “ulp” means one unit in the last position. For example, 1.0 – ulp
denotes the IEEE-format number that is closest to 1.0 but less than 1.0, something like
0.99999.... The notation “int64” denotes a signed 64-bit integer (two’s-complement),
and “int32” denotes a signed 32-bit integer. “uint64” and “uint32” have similar
meanings, but for unsigned interpretations.

The function low32(x) extracts the low-order 32 bits of x.

The operators and denote double- and single-precision floating-point addition,
respectively. Similarly, the operators and denote double- and single-precision
subtraction.

It might seem curious that on most Intel machines the double to integer (of any
size) conversions require that the machine’s precision mode be reduced to 53 bits,
whereas for float to integer conversions, the reduction in precision is not necessary—
the correct result is obtained with the machine running in extended-precision mode (64
bits of precision). This is because for the double-precision add of the constant, the

Chapter 17. Floating-Point

fraction might be shifted right as many as 52 bits, which may cause 1-bits to be shifted
beyond the 64-bit limit, and hence lost. Thus, two roundings occur—first to 64 bits and
then to 53 bits. On the other hand, for the single-precision add of the constant, the
maximum shift is 23 bits. With that small shift amount, no bit can be shifted beyond
the 64-bit boundary, so that only one rounding operation occurs. The conversions from
float to integer get the correct result on Intel machines in all three precision modes.

On Intel machines running in extended-precision mode, the conversions from double
to int64 and uint64 can be done without changing the precision mode by using

different constants and one more floating-point operation. The calculation is where
and denote extended-precision addition and subtraction, respectively. (The result of
the add must remain in the 80-bit register for use by the extended-precision subtract
operation.)

For double to int64,

c1 = 0x43E00300 00000000 = 263 + 252 + 251

c2 = 0x43E00000 00000000 = 263

c3 = 0x43380000 00000000 = 252 + 251.

For double to uint64,

c1 = 0x43E00200 00000000 = 263 + 252

c2 = 0x43E00000 00000000 = 263

c3 = 0x43300000 00000000 = 252.

Using these constants, similar expressions can be derived for the conversion and
rounding operations shown in Table 17–2 that are flagged by Note 1. The ranges of
applicability are close to those shown in the table.

However, for the round double to nearest operation, if the calculation subtracts first
and then adds, that is,

(using the first set of constants above), then the range for which the correct result is
obtained is – 251 – 0.5 to ∞, but not a NaN.

17–3 Comparing Floating-Point Numbers Using Integer
Operations
One of the features of the IEEE encodings is that non-NaN values are properly ordered
if treated as signed magnitude integers.

To program a floating-point comparison using integer operations, it is necessary that
the “unordered” result not be needed. In IEEE 754, the unordered result occurs when
one or both comparands are NaNs. The methods below treat NaNs as if they were
numbers greater in magnitude than infinity.

The comparisons are also much simpler if -0.0 can be treated as strictly less than
+0.0 (which is not in accordance with IEEE 754). Assuming this is acceptable, the

comparisons can be done as shown below, where , , and denote floating-point
comparisons, and the ≈ symbol is used as a reminder that these formulas do not treat

Chapter 17. Floating-Point

±0.0 quite right. These comparisons are the same as IEEE 754-2008’s “total-ordering”
predicate.

If -0.0 must be treated as equal to +0.0, there does not seem to be any slick way
to do it, but the following formulas, which follow more or less obviously from the
above, are possibilities.

In some applications, it might be more efficient to first transform the numbers in
some way, and then do a floating-point comparison with a single fixed-point
comparison instruction. For example, in sorting n numbers, the transformation would be
done only once to each number, whereas a comparison must be done at least

 times (in the minimax sense).
Table 17–3 gives four such transformations. For those in the left column, -0.0

compares equal to +0.0, and for those in the right column, -0.0 compares less than
+0.0. In all cases, the sense of the comparison is not altered by the transformation.
Variable n is signed, t is unsigned, and c may be either signed or unsigned.

The last row shows branch-free code that can be implemented on our basic RISC in
four instructions for the left column, and three for the right column (these four or three
instructions must be executed for each comparand).

TABLE 17-3. PRECONDITIONING FLOATING-POINT NUMBERS FOR INTEGER
COMPARISONS

Chapter 17. Floating-Point

17–4 An Approximate Reciprocal Square Root Routine
In the early 2000s, there was some buzz in programming circles about an amazing
routine for computing an approximation to the reciprocal square root of a number in
IEEE single format. The routine is useful in graphics applications, for example, to

normalize a vector by multiplying its components x, y, and z by . C
code for the function is shown in Figure 17–1 [Taro].

The relative error of the result is in the range 0 to -0.00176 for all normal single-
precision numbers (it errs on the low side). It gives the correct IEEE result (NaN) if its
argument is a NaN. However, it gives an unreasonable result if its argument is ±∞, a
negative number, or -0. If the argument is +0 or a positive subnormal, the result is not
what it should be, but it is a large number (greater than 9 x 1018), which might be
acceptable in some applications.

The relative error can be reduced in magnitude, to the range ±0.000892, by
changing the constant 1.5 in the Newton step to 1.5008908.

Another possible refinement is to replace the multiplication by 0.5 with a subtract of
1 from the exponent of x. That is, replace the definition of xhalf with

union {int ihalf; float xhalf;};
ihalf = ix - 0x00800000;

However, the function then gives inaccurate results (although greater than 6 × 1018)
for x a normal number less than about 2.34 × 10-38, and NaN for x a subnormal
number. For x = 0 the result is ±∞ (which is correct).

The Newton step is a standard Newton-Raphson calculation for the reciprocal square
root function (see Appendix B). Simply repeating this step reduces the relative error to
the range 0 to -0.0000047. The optimal constant for this is 0x5F37599E.

On the other hand, deleting the Newton step results in a substantially faster
function with a relative error within ±0.035, using a constant of 0x5F37642F. It consists
of only two integer instructions, plus code to load the constant. (The variable xhalf can

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images16.html#p383fig02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app02.html

Chapter 17. Floating-Point

be deleted.)

float rsqrt(float x0) {
 union {int ix; float x;};

 x = x0; // x can be viewed as int.
 float xhalf = 0.5f*x;
 ix = 0x5f375a82 - (ix >> 1); // Initial guess.
 x = x*(1.5f - xhalf*x*x); // Newton step.
 return x;
}

FIGURE 17–1. Approximate reciprocal square root.

To get an inkling of why this works, suppose x = 2n (1 + f), where n is the
unbiased exponent and f is the fraction (0 ≤ f < 1). Then

Ignoring the fraction, this shows that we must change the biased exponent from 127 +
n to 127 -n/2. If e = 127 +n, then 127 –n/2 = 127 – (e – 127)/2 = 190.5 –e/2.
Therefore, it appears that a calculation something like shifting x right one position and
subtracting it from 190 in the exponent position, might give a very rough approximation

to . In C, this can be expressed as1

union {int ix; float x;}; // Make ix and x overlap.
...
0x5F000000 - (ix >> 1); // Refer to x as integer ix.

To find a better value for the constant 0x5F000000 by analysis is difficult. Four cases
must be analyzed: the cases in which a 0-bit or a 1-bit is shifted from the exponent
field to the fraction field, and the cases in which the subtraction does or does not
generate a borrow that propagates to the exponent field. This analysis is done in
[Lomo]. Here, we make some simple observations.

Using rep(x) to denote the representation of the floating-point number x in IEEE
single format, we want a formula of the form

for some constant k. (Whether the shift is signed or unsigned makes no difference,
because we exclude negative values of x and -0.0.) We can get an idea of roughly
what k should be from

and trying a few values of x. The results are shown in Table 17–4 (in hexadecimal).
It looks like k is approximately a constant. Notice that the same value is obtained for

x = 1.0 and 4.0. In fact, the same value of k results from any number x and 4x
(provided they are both normal numbers). This is because, in the formula for k, if x is

quadrupled, then the term rep decreases by 1 in the exponent field, and the

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images16.html#p383tab01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch17fn1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images16.html#p384fig01

Chapter 17. Floating-Point

term rep increases by 1 in the exponent field.
More significantly, the relative errors for x and 4x are exactly the same, provided

both quantities are normal numbers. To see this, it can be shown that if the argument
x of the rsqrt function is quadrupled, the result of the function is exactly halved, and

this is true no matter how many Newton steps are done. Of course, is also
halved. Therefore, the relative error is unchanged.

TABLE 17–4. DETERMINING THE CONSTANT

This is important, because it means that if we find an optimal value (by some
criterion, such as minimizing the maximum absolute value of the error) for values of x
in the range 1.0 to 4.0, then the same value of k is optimal for all normal numbers.

It is then a straightforward task to write a program that, for a given value of k,

calculates the true value of (using a known accurate library routine) and the
estimated value for some 10,000 or so values of x from 1.0 to 4.0, and calculates the
maximum error. The optimal value of k can be determined by hand, which is tedious
but sometimes illuminating. It is quite amazing that there is a constant for which the
error is less than ±3.5% in a function that uses only two integer operations and no
table lookup.

17–5 The Distribution of Leading Digits
When IBM introduced the System/360 computer in 1964, numerical analysts were
horrified at the loss of precision of single-precision arithmetic. The previous IBM
computer line, the 704 - 709 - 7090 family, had a 36-bit word. For single-precision
floating-point, the format consisted of a 9-bit sign and exponent field, followed by a
27-bit fraction in binary. The most significant fraction bit was explicitly included (in
“normal” numbers), so quantities were represented with a precision of 27 bits.

The S/360 has a 32-bit word. For single-precision, IBM chose to have an 8-bit sign
and exponent field followed by a 24-bit fraction. This drop from 27 to 24 bits was bad
enough, but it gets worse. To keep the exponent range large, a unit in the 7-bit
exponent of the S/360 format represents a factor of 16. Thus, the fraction is in base
16, and this format came to be called “hexadecimal” floating-point. The leading digit
can be any number from 1 to 15 (binary 0001 to 1111). Numbers with leading digit 1
have only 21 bits of precision (because of the three leading 0’s), but they should
constitute only 1/15 (6.7%) of all numbers.

Chapter 17. Floating-Point

No, it’s worse than that! There was a flurry of activity to show, both analytically and
empirically, that leading digits are not uniformly distributed. In hexadecimal floating-
point, one would expect 25% of the numbers to have leading digit 1, and hence only
21 bits of precision.

Let us consider the distribution of leading digits in decimal. Suppose you have a
large set of numbers with units, such as length, volume, mass, speed, and so on,
expressed in “scientific” notation (e.g., 6.022 x 1023). If the leading digit of a large
number of such numbers has a well-defined distribution function, then it must be
independent of the units—whether inches or centimeters, pounds or kilograms, and so
on. Thus, if you multiply all the numbers in the set by any constant, the distribution of
leading digits should be unchanged. For example, considering multiplying by 2, we
conclude that the number of numbers with leading digit 1 (those from 1.0 to 1.999...
times 10 to some power) must equal the number of numbers with leading digit 2 or 3
(those from 2.0 to 3.999... times 10 to some power), because it shouldn’t matter if our
unit of length is inches or half inches, or our unit of mass is kilograms or half kilograms,
and so on.

Let f(x), for 1 ≤ x < 10, be the probability density function for the leading digits of
the set of numbers with units. f(x) has the property that

is the proportion of numbers that have leading digits ranging from a to b. Referring to
the figure below, for a small increment Δ x in x, f must satisfy

f(1) · Δx = f(x) · xΔx,

because f (1) · Δx is, approximately, the proportion of numbers ranging from 1 to 1 +
Δx (ignoring a multiplier of a power of 10), and f(x) · x Δx is the approximate
proportion of numbers ranging from x to x + x Δx. Because the latter set is the first set
multiplied by x, their proportions must be equal. Thus, the probability density function
is a simple reciprocal relationship,

f(x) = f(1) / x.

Because the area under the curve from x = 1 to x = 10 must be 1 (all numbers
have leading digits from 1.000... to 9.999...), it is easily shown that

f(1) = 1/ln10.

Chapter 17. Floating-Point

The proportion of numbers with leading digits in the range a to b, with 1 ≤ a ≤ b <
10, is

Thus, in decimal, the proportion of numbers with leading digit 1 is log10(2 / 1) ≈
0.30103, and the proportion of numbers with leading digit 9 is log10(10 / 9) ≈ 0.0458.

For base 16, the proportion of numbers with leading digits in the range a to b, with
1 ≤ a ≤ b < 16, is similarly derived to be log16(b / a). Hence, the proportion of
numbers with leading digit 1 is log16(2 / 1) = 1 / log216 = 0.25.

17–6 Table of Miscellaneous Values
Table 17–5 shows the IEEE representation of miscellaneous values that may be of
interest. The values that are not exact are rounded to the nearest representable value.

TABLE 17–5. MISCELLANEOUS VALUES

Chapter 17. Floating-Point

Chapter 17. Floating-Point

IEEE 754 does not specify how the signaling and quiet NaNs are distinguished. Table
17–5 uses the convention employed by PowerPC, the AMD 29050, the Intel x86 and
I860, the SPARC, and the ARM family: The most significant fraction bit is 0 for signaling
and 1 for quiet NaN’s. A few machines, mostly older ones, use the opposite convention
(0 = quiet, 1 = signaling).

Exercises

1. What numbers have the same representation, apart from trailing 0’s, in both
single- and double-precision?

2. Is there a program similar to the approximate reciprocal square root routine for
computing the approximate square root?

3. Is there a similar program for the approximate cube root of a nonnegative
normal number?

4. Is there a similar program for the reciprocal square root of a double-precision
floating-point number? Assume it is for a 64-bit machine, or at any rate that the
“long long” (64-bit integer) data type is available.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch17ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch17ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch17ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch17ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch17ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch17ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch17ans4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch17ans4

Chapter 18. Formulas For Primes

Chapter 18. Formulas For Primes

18–1 Introduction
Like many young students, I once became fascinated with prime numbers and tried to
find a formula for them. I didn’t know exactly what operations would be considered
valid in a “formula,” or exactly what function I was looking for—a formula for the nth
prime in terms of n, or in terms of the previous prime(s), or a formula that produces
primes but not all of them, or something else. Nevertheless, in spite of these
ambiguities, I would like to discuss a little of what is known about this problem. We will
see that (a) there are formulas for primes, and (b) none of them are very satisfying.

Much of this subject relates to the present work in that it deals with formulas similar
to those of some of our programming tricks, albeit in the domain of real number
arithmetic rather than “computer arithmetic.” Let us first review a few highlights from
the history of this subject.

In 1640, Fermat conjectured that the formula

Fn = 22n +1

always produces a prime, and numbers of this form have come to be called “Fermat
numbers.” It is true that Fn is prime for n ranging from 0 to 4, but Euler found in 1732
that

F5 = 225 + 1 = 641 · 6700417.

(We have seen these factors before in connection with dividing by a constant on a 32-
bit machine). Then, F. Landry showed in 1880 that

F6 = 226 + 1 = 274177·67280421310721.

Fn is now known to be composite for many larger values of n, such as all n from 7
to 16 inclusive. For no value of n > 4 is it known to be prime [H&W]. So much for rash
conjectures.1

Incidentally, why would Fermat be led to the double exponential? He knew that if m
has an odd factor other than 1, then 2m + 1 is composite. For if m = ab with b odd
and not equal to 1, then

2ab + 1 = (2a + 1)(2a(b – 1) –2a(b – 2) +2a(b – 3) –...+1.

Knowing this, he must have wondered about 2m + 1 with m not containing any odd
factors (other than 1)—that is, m = 2n. He tried a few values of n and found that 22n

+ 1 seemed to be prime.
Certainly everyone would agree that a polynomial qualifies as a “formula.” One

rather amazing polynomial was discovered by Leonhard Euler in 1772. He found that

f(n) = n2 + n + 41

is prime-valued for every n from 0 to 39. His result can be extended. Because

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch18fn1

Chapter 18. Formulas For Primes

f(–n) = n2 n + 41 = f(n –1),

f(–n) is prime-valued for every n from 1 to 40; that is, f(n) is prime-valued for every n
from –1 to –40. Therefore,

f(n –40) = (n –40)2 + (n –40) + 41 = n2 – 79n + 1601

is prime-valued for every n from 0 to 79. (However, it is lacking in aesthetic appeal
because it is nonmonotonic and it repeats; that is, for n = 0, 1, ..., 79, n2–79 n +
1601 = 1601, 1523, 1447, ..., 43, 41, 41, 43, ..., 1447, 1523, 1601.)

In spite of this success, it is now known that there is no polynomial f(n) that
produces a prime for every n (aside from constant polynomials such as f(n) = 5). In
fact, any nontrivial “polynomial in exponentials” is composite infinitely often. More
precisely, as stated in [H & W],

THEOREM. If f(n) = p(n, 2n, 3n,..., kn) is a polynomial in its arguments, with
integral coefficients, and f(n) → ∞ when n → ∞, then f(n) is composite for an infinity
of values of n.

Thus, a formula such as n2 · 2n + 2n3 + 2n + 5 must produce an infinite number of
composites. On the other hand, the theorem says nothing about formulas containing
terms such as 22n, nn, and n!.

A formula for the nth prime, in terms of n, can be obtained by using the floor
function and a magic number

a = 0.203005000700011000013....

The number a is, in decimal, the first prime written in the first place after the decimal
point, the second prime written in the next two places, the third prime written in the
next three places, and so on. There is always room for the nth prime, because pn <
10n. We will not prove this, except to point out that it is known that there is always a
prime between n and 2n (for n ≥ 2), and hence certainly at least one between n and
10n, from which it follows that pn < 10n. The formula for the nth prime is

where we have used the relation 1 + 2 + 3 + ... + n = (n2 + n) / 2. For example,

This is a pretty cheap trick, as it requires knowledge of the result to define a. The
formula would be interesting if there were some way to define a independent of the
primes, but no one knows of such a definition.

Obviously, this technique can be used to obtain a formula for many sequences, but
it begs the question.

Chapter 18. Formulas For Primes

18–2 Willans’s Formulas
C. P. Willans gives the following formula for the nth prime [Will]:

The derivation starts from Wilson’s theorem, which states that p is prime or 1 if and
only if (p -1)! = –1(modp). Thus,

is an integer for x prime or x = 1 and is fractional for all composite x. Hence,

Thus, if π(m) denotes2 the number of primes ≤ m,

Observe that π(pn) = n, and furthermore,

π(m)<n, for m <pn, and

π(m)≥n, for m≥pn.

Therefore, the number of values of m from 1 to ∞ for which π(m) <n is pn – 1. That
is,

where the summand is a “predicate expression” (0/1-valued).
Because we have a formula for π(m), Equation (3) constitutes a formula for the wth

prime as a function of n. But it has two features that might be considered
unacceptable: an infinite summation and the use of a “predicate expression,” which is
not in standard mathematical usage.

It has been proved that for n ≥ 1 there is at least one prime between n and 2n.
Therefore, the number of primes ≤ 2n is at least n— that is, π(2n) ≥ n. Thus, the
predicate π(m) < n is 0 for m ≥ 2n, so the upper limit of the summation above can be
replaced with 2n.

Willans has a rather clever substitute for the predicate expression. Let

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch18fn2

Chapter 18. Formulas For Primes

Then, if x < y, 1 ≤y /(1 +x) ≤y, so . Furthermore, if x ≥ y,

then 0 <y /(1 + x) < 1, so . Applying the floor function, we have

That is, LT(x, y) is the predicate x < y (for x and y in the given ranges).
Substituting, Equation (3) can be written

Further substituting Equation (2) for π(m) in terms of F(x), and Equation (1) for F(x),
gives the formula shown at the beginning of this section.

Second Formula

Willans then gives another formula:

Here, F and π are the functions used in his first formula. Thus, mF(m) = m if m is
prime or 1, and 0 otherwise. The third factor in the summand is the predicate π(m) =
n. The summand is 0 except for one term, which is the nth prime. For example,

Third Formula

Willans goes on to present another formula for the nth prime that does not use any
“nonanalytic”3 functions such as floor and absolute value. He starts by noting that for x
= 2, 3, ..., the function

The first part follows from

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch18fn3

Chapter 18. Formulas For Primes

and x divides (x – 1)! + 1, by Wilson’s theorem. Thus, the predicate “x is prime,” for x
≥ 2, is given by

From this it follows that

This cannot be converted to a formula for pn by the methods used in the first two
formulas, because they use the floor function. Instead, Willans suggests the following
formula4 for the predicate x <y, for x, y ≥ 1:

Thus, if x < y, e = x (x – 1)...(0)(–1)...(x –(y – 1)) = 0, so that LT(x,y) = sin(π/2) =
1. If x ≥ y, the product does not include 0, so e ≥ l, so that LT(x,y) = sin((π/2) · (an
even number)) = 0.

Finally, as in the first of Willans’s formulas,

Written out in full, this is the rather formidable

Fourth Formula

Willans then gives a formula for pn + 1 in terms of pn:

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ch18fn4

Chapter 18. Formulas For Primes

where f(x) is the predicate “x is composite,” for x ≥ 2; that is,

Alternatively, one could use f(x) = 1 – H(x), to keep the formula free of floor functions.
As an example of this formula, let pn = 7. Then,

18–3 Wormell’s Formula
C. P. Wormell [Wor] improves on Willans’s formulas by avoiding both trigonometric
functions and the floor function. Wormell’s formula can, in principle, be evaluated by a
simple computer program that uses only integer arithmetic. The derivation does not use
Wilson’s theorem. Wormell starts with, for x ≥ 2,

Thus, the number of primes ≤ m is given by

because the summand is the predicate “x is prime.”
Observe that, for n ≥ 1, a ≥ 0,

Repeating a trick above, the predicate a < n is

Because

Chapter 18. Formulas For Primes

we have, upon factoring constants out of summations,

As promised, Wormell’s formula does not use trigonometric functions. However, as
he points out, if the powers of -1 were expanded using (-1)n = cos πn, they would
reappear.

18–4 Formulas for Other Difficult Functions
Let us have a closer look at what Willans and Wormell have done. We postulate the
rules below as defining what we mean by the class of functions that can be
represented by “formulas,” which we will call “formula functions.” Here, is shorthand
for x1, x2,...,xn for any n ≥ 1. The domain of values is the integers ... -2, -1, 0, 1, 2,
....

1. The constants ... -1, 0, 1, ... are formula functions.

2. The projection functions , for 1≤i≤n, are formula functions.
3. The expressions x+y, x-y, and xy are formula functions, if x and y are.
4. The class of formula functions is closed under composition (substitution). That is,

 is a formula function if f and gi are, for i = 1, ...,
m.

5. Bounded sums and products, written

are formula functions, if a, b, and f are, and .
Sums and products are required to be bounded to preserve the computational

character of formulas; that is, formulas can be evaluated by plugging in values for the
arguments and carrying out a finite number of calculations. The reason for the prime
on the Σ and Π is explained later in this chapter.

When forming new formula functions using composition, we supply parentheses
when necessary according to well-established conventions.

Notice that division is not included in the list above; that’s too complicated to be
uncritically accepted as a “formula function.” Even so, the above list is not minimal. It
might be fun to find a minimal starting point, but we won’t dwell on that here.

This definition of “formula function” is close to the definition of “elementary
function” given in [Cut]. However, the domain of values used in [Cut] is the
nonnegative integers (as is usual in recursive function theory). Also, [Cut] requires the

Chapter 18. Formulas For Primes

bounds on the iterated sum and product to be 0 and x – 1 (where x is a variable), and
allows the range to be vacuous (in which case the sum is defined as 0 and the product
is defined as 1).

In what follows, we show that the class of formula functions is quite extensive,
including most of the functions ordinarily encountered in mathematics. But it doesn’t
include every function that is easy to define and has an elementary character.

Our development is slightly encumbered, compared to similar developments in
recursive function theory, because here variables can take on negative values. The
possibility of a value’s being negative can often be accommodated by simply squaring
some expression that would otherwise appear in the first power. Our insistence that
iterated sums and products not be vacuous is another slight encumbrance.

Here, a “predicate” is simply a 0/1-valued function, whereas in recursive function
theory a predicate is a true/false-valued function, and every predicate has an associated
“characteristic function” that is 0/1-valued. We associate 1 with true and 0 with false,
as is universally done in programming languages and in computers (in what their and
and or instructions do); in logic and recursive function theory, the association is often
the opposite.

The following are formula functions:

1. a2 = aa, a3 = aaa, and so on.
2. The predicate a = b:

3. (a≠b) = 1-(a = b).
4. The predicate a ≥ b:

We can now explain why we do not use the convention that a vacuous iterated
sum/product has the value 0/1. If we did, we would have such shams as

The comparison predicates are key to everything that follows, and we don’t
wish to have them based on anything quite that artificial.

5. (a>b) = (a ≥ b + 1).
6. (a ≤ b) = (b ≥ a).
7. (a<b) = (b>a).
8. |a| = (2(a ≥ 0)-1)a.
9. max(a,b) = (a≥b)(a-b) + b.

Chapter 18. Formulas For Primes

10. min(a, b) = (a ≥ b)(b-a) +a.
Now we can fix the iterated sums and products so that they give the
conventional and useful result when the range is vacuous.

11. .

12. .
From now on we will use Σ and Π without the prime. All functions thus defined
are total (defined for all values of the arguments).

13. .
This gives n! = 1 for n ≤ 0.
In what follows, P and Q denote predicates.

14. .

15. .

16. .

17. .

18. if then else .

19. an = if n ≥ 0 then else 0.
This gives, arbitrarily and perhaps incorrectly for a few cases, the result 0 for n
< 0, and the result 1 for 00.

20. .

21. .
 is vacuously true; is vacuously false.

22. .
The value of this expression is the least x in the range m to n such that the
predicate is true, or m if the range is vacuous, or n + 1 if the predicate is false
throughout the (nonvacuous) range. The operation is called “bounded
minimalization” and it is a very powerful tool for developing new formula
functions. It is a sort of functional inverse, as illustrated by the next formula.
That minimalization can be done by a sum of products is due to Goodstein
[Good].

23. .
This is the “integer square root” function, which we define to be 0 for n < 0,

Chapter 18. Formulas For Primes

just to make it a total function.

24. .
This is the “d divides n” predicate, according to which 0|0 but ¬(0|n) for n≠0.

25. n ÷ d = if n ≥ 0 then (–n ≤min q≤) (n = qd + r) else (n ≤
min q ≤ – n) (n = qd + r).
This is the conventional truncating form of integer division. For d = 0, it gives a
result of \n\ + 1, arbitrarily.

26. rem(n, d) = n-(n ÷ d)d.
This is the conventional remainder function. If rem (n, d) is nonzero, it has the
sign of the numerator n. If d = 0, the remainder is n.

27. isprime .

28. isprime(i).
(Number of primes ≤n.)

29. pn = (1 ≤ min k ≤2n)(π(k) = n).

30. exponent (p, n) = (0 ≤ min x ≤ |n |)¬(px+1 |n).
This is the exponent of a given prime factor p of n, for n ≥ 1.

31. For n ≥ 0:

32. The nth digit after the decimal point in the decimal expansion of : rem

.
Thus, the class of formula functions is quite large. It is limited, though, by the

following theorem (at least):
THEOREM. If f is a formula function, then there is a constant k such that

where there are k 2’s.
This can be proved by showing that each application of one of the rules 1–5 (on

page 398) preserves the theorem. For example, if (rule 1), then for some h,

where there are h 2’s. Therefore,

because max(|x1|, ..., |xn |) ≥ 0.

Chapter 18. Formulas For Primes

For (rule 2), max (|x1|, ..., |xn |), so the theorem holds with k =
0.

For rule 3, let

Then, clearly

Similarly, it can be shown that the theorem holds for f(x, y) = xy.
The proofs that rules 4 and 5 preserve the theorem are a bit tedious, but not

difficult, and are omitted.
From the theorem, it follows that the function

is not a formula function, because for sufficiently large x, Equation (4) exceeds the
value of the same expression with any fixed number k of 2’s.

For those interested in recursive function theory, we point out that Equation (4) is
primitive recursive. Furthermore, it is easy to show directly from the definition of
primitive recursion that formula functions are primitive recursive. Therefore, the class of
formula functions is a proper subset of the primitive recursive functions. The interested
reader is referred to [Cut].

In summary, this section shows that not only is there a formula in elementary
functions for the nth prime but also for a good many other functions encountered in
mathematics. Furthermore, our “formula functions” are not based on trigonometric
functions, the floor function, absolute value, powers of -1, or even division. The only
sneaky maneuver is to use the fact that the product of a lot of numbers is 0 if any one
of them is 0, which is used in the formula for the predicate a = b.

It is true, however, that once you see them, they are not interesting. The quest for
“interesting” formulas for primes should go on. For example, [Rib] cites the amazing
theorem of W. H. Mills (1947) that there exists a θ such that the expression

is prime-valued for all n ≥ 1. Actually, there are an infinite number of such values (e.g.,
1.3063778838+ and 1.4537508625483+). Furthermore, there is nothing special about
the “3”; the theorem is true if the 3 is replaced with any real number ≥2.106 (for
different values of θ). Better yet, the 3 can be replaced with 2 if it is true that there is
always a prime between n2 and (n + 1)2, which is almost certainly true, but has never
been proved. And furthermore, ... well, the interested reader is referred to [Rib] and to
[Dud] for more fascinating formulas of this type.

Exercises

Chapter 18. Formulas For Primes

1. Prove that for any non-constant polynomial f(x) with integral coefficients, |f(x) |
is composite for an infinite number of values of x.
Hint: If f(x0) = k, consider f(x0 + rk), where r is an integer greater than 1.

2. Prove Wilson’s theorem: An integer p > 1 is prime if and only if

(p- 1)! ≡ -1 (mod p).

Hint: To show that if p is prime, then (p-1)! ≡ –1 (mod p), group the terms of
the factorial in pairs (a, b) such that ab ≡ 1 (mod p). Use Theorem MI of
Section 10–16 on page 240.

3. Show that if n is a composite integer greater than 4, then

(n-1)!=0 (mod n).

4. Calculate an estimate of the value of θ that satisfies Mills’s theorem, and in the
process give an informal proof of the theorem. Assume that for n > 1 there
exists a prime between n3 and (n + 1)3. (This depends upon the Riemann
Hypothesis, although it has been proved independent of RH for sufficiently large
n.)

5. Consider the set of numbers of the form , where a and b are integers.
Show that 2 and 3 are primes in this set; that is, they cannot be decomposed
into factors in the set unless one of the factors is ±1 (a “unit”). Find a number
in the set that has two distinct decompositions into products of primes. (The
“fundamental theorem of arithmetic” states that prime decomposition is unique
except for units and the order of the factors. Uniqueness does not hold for this
set of numbers with multiplication and addition being that of complex numbers.
It is an example of a “ring.”).

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch18ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch18ans1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch18ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch18ans2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev16
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_240
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch18ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch18ans3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch18ans4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch18ans4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch18ans5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ch18ans5

Answers To Exercises

Answers To Exercises

Chapter 1: Introduction
1. The following is pretty accurate:

If e2 is not present in the for loop, the constant 1 is used for it in the above
expansion (which would then be a nonterminating loop, unless something in
statement terminates it).

Expressing a for loop in terms of a do loop is somewhat awkward, because
the body of a do loop is always executed at least once, whereas the body of a
for loop may not be executed at all, depending on e1 and e2. Nevertheless, the
for loop can be expressed as follows.

Again, if e2 is not present in the for loop, then use 1 for it above.

2. If your code is

for (i = 0; i <= 0xFFFFFFFF; i++) {...}

then you have an infinite loop. A loop that works is

i = 0xFFFFFFFF;
do {i = i + 1;...} while (i < 0xFFFFFFFF);

3. The text mentions multiply, which for 32 × 32 ==< 64-bit multiplication needs
two output registers.

It also mentions divide. The usual implementation of this instruction
produces a remainder as well as the quotient, and execution time would be
saved in many programs if both results were available.

Actually, the most natural machine division operation takes a doubleword
dividend, a single word divisor, and produces a quotient and remainder. This
uses three source registers and two targets.

Indexed store instructions use three source registers: the register being
stored, the base register, and the index register.

To efficiently deal with bit fields in a register, many machines provide extract
and insert instructions. The general form of extract needs three sources and one
target. The source registers are the register that contains the field being

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#ch01ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#ch01ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#ch01ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#ch01ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p405fig04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p405fig03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#ch01ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#ch01ansa3

Answers To Exercises

extracted, a starting bit number, and an ending bit number or length. The result
is right justified and either zero- or sign-extended and placed in the target
register. Some machines provide this instruction only in the form in which the
field length is an immediate quantity, which is a reasonable compromise because
that is the common case.

The general insert instruction reads four source registers and writes one
target register. As commonly implemented, the sources are a register that
contains the source bits to be inserted in the target (these come from the low-
order end of the source register), the starting bit position in the target, and the
length. In addition to reading these three registers, the instruction must read
the target register, combine it with the bits to be inserted, and write the result
to the target register. As in the case of extract, the field length may be an
immediate quantity, in which case the instruction does three register reads and
one write.

Some machines provide a family of select instructions:

SELcc RT,RA,RB,RC

Register RC is tested, and if it satisfies the condition specified in the opcode
(shown as cc, which may be EQ, GT, GE, etc.), then RA is selected; otherwise,
RB is selected. The selected register is copied to the target.

Although not common, a plausible instruction is bit select, or multiplex:

MUX RT,RA,RB,RC

Here RC contains a mask. Wherever the mask is 1, the corresponding bit of RA
is selected, and wherever it is 0, the corresponding bit of RB is selected. That
is, it performs the operation

RT <-- RA & RC | RB & ~RC

Shift right/left double: A sometimes useful instruction is

SHLD RT,RA,RB,RC

This concatenates RA and RB, treating them as a double-length register, and
shifts them left (or right) by an amount given by RC. RT gets the part of the
result that has bits from RA and RB. These instructions are useful in “bignum”
arithmetic and in more mundane situations.

In signal processing and other applications, it is helpful to have an
instruction that computes A*B + C. This applies to both integer and floating-
point data.

Of course, there are load multiple and store multiple, which require many
register reads or writes. Although many RISCs have them, they are not usually
considered to be RISC instructions.

Chapter 2: Basics
1. (Derivation by David de Kloet) Clearly the body of the while-loop is executed a

number of times equal to the number of trailing 0’s in x. The k 1-bits partition
the n-bit word into k + 1 segments, each containing 0 or more 0-bits. The

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p406fig01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p406fig02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p406fig03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p406fig04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa1

Answers To Exercises

number of 0’s in each word is n-k. If N is the number of words , but
that need not concern us here), then the total number of 0’s in all the words is
N(n – k). By symmetry, the number of 0’s in any segment, summed over all N
words, is the same, and is therefore equal to N(n – k)/(k + 1). Thus, the
average number of 0’s in any segment is (n-k)/(k+1), and this applies to the
last segment, which is the number of trailing 0’s.

As an example, if n = 32 and k = 3, then the while-loop is executed 7.25
times, on average. On many machines the while-loop can be implemented in as
few as three instructions (and, shift right, and conditional branch), which might
take as few as four cycles. With these parameters, the while-loop takes 4•7.25
= 29 cycles on average. This is less than the divide time on most 32-bit
machines, resulting in de Kloet’s algorithm being faster than Gosper’s. For larger
values of k, de Kloet’s is still more favorable.

2. The and with 1 makes the shift amount independent of all bits of x except for
its rightmost bit. Therefore, by looking at only the rightmost bit of the shift
amount, one can ascertain whether the result is x or x << 1. Since both x and x
<< 1 are right-to-left computable, choosing one of these based on a rightmost
bit is also. The function x << (x & 2), incidentally, is not right-to-left
computable. But (x & -2) << (x & 2) is.

Another example is the function xn, where we take x0 to be 1. This is not
right-to-left computable because if x is even, then the rightmost bit of the result
depends upon whether or not x = 0, and thus is a function of bits to the left of
the rightmost position. But if it were known a priori that the variable n is either
0 or 1, then xn is right-to-left computable. Similarly, xn&1 is right-to-left
computable, for example, by

Notice that xn is like the left shift function in that xn is right-to-left
computable for any particular value of n, or if n is a variable restricted to the
values 0 and 1, but not if n is an unrestricted variable.

3. A somewhat obvious formula for addition is given on page 16, item (g):

x + y = (x y) +2(x & y).

Dividing each side by 2 gives Dietz’s formula. The addition in Dietz’s formula
cannot overflow because the average of two representable integers is
representable.

Notice that if we start with item (i) on page 16, we obtain the formula given
in the text for the ceiling average of two unsigned integers.

4. Compute the floor average of a and b, and also of c and d, using Dietz’s
formula. Then compute the floor average of x and y, and apply a correction:

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_16
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_16
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa4

Answers To Exercises

The correction step is really four operations, not the seven that it appears to
be, because the exclusive or terms were calculated earlier. It was arrived at by
the following reasoning: The computed value of x can be lower than the true
(real number) average by 1/2, and this error occurs if a is odd and b is even, or
vice versa. This error amounts to 1/4 after x and y are averaged. If this were
the only truncation error, the first value computed for r would be correct,
because in this case the true average is an integer plus 1/4, and we want the
floor average, so we want to discard the 1/4 anyway. Similarly, the truncation in
computing y can make the computed average lower than the true average by
1/4. The first computed value of r can be lower than the true average of x and
y by 1/2. These errors accumulate. If they sum to an error less than 1, they can
be ignored, because we want to discard the fractional part of the true average
anyway. But if all three errors occur, they sum to 1 / 4 + 1 / 4 + 1 / 2 = 1,
which must be corrected by adding 1 to r. The last line does this: if one of a
and b is odd, and one of c and d is odd, and one of x and y is odd, then we
want to add 1, which the last line does.

5. The expression for to be simplified is

(¬x | y) & ((x y) | ¬(y – x)).

Only bit 31 of x and y is relevant in the logical operations of this expression.
Because y31 = 0, the expression immediately simplifies to

¬x & (x | ¬(y– x)).

“Multiplying in” the ¬x (distributive law) gives

¬x&¬(y – x),

and applying De Morgan’s law further simplifies it to three elementary
instructions:

¬(x | (y – x)).

(Removing the complementation operator gives a two-instruction solution for
the predicate .)

If y is a constant, we can use the identity ¬u= – 1 – u to rewrite the
expression obtained from the distributive law as

¬x & (x – (y + 1)),

which is three instuctions because the addition of 1 to y can be done before
evaluating the expression. This form is preferable when y is a small constant,
because the add immediate instruction can be used. (Problem suggested by

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa5

Answers To Exercises

George Timms.)
6. To get a carry from the second addition, the carry from the first addition must

be 1, and the low-order 32 bits of the first sum must be all 1’s. That is, the first
sum must be at least 233 – 1. But the operands are each at most 232 – 1, so
their sum is at most 233 – 2.

7. For notational simplicity, let us consider a 4-bit machine. Let x and y denote the
integer values of 4-bit quantities under unsigned binary interpretation. Let f (x,
y) denote the integer result of applying ordinary binary addition with end-
around carry, to x and y, with a 4-bit adder and a 4-bit result. Then,

The table at the right shows the one’s-complement interpretation of 4-bit
binary words. Observe that the one’s-complement interpretation of a word
whose straight binary interpretation is x is given by

We must show that f (x, y), when interpreted as a one’s-complement
integer, is the sum of x and y when they are interpreted as one’s-complement
integers. That is, we must show that

ones(x) + ones(y) = ones(f (x, y)).

We are interested only in the non-overflow cases (that is, when the sum can be
expressed as a one’s-complement integer).
Case 0, 0 ≤ x, y ≤ 7. Then, ones(x) + ones(y) = x + y, and

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa6
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa6
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa7
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa7

Answers To Exercises

f (x, y) = mod(x + y + 0, 16) = x + y.

For no overflow, the one’s-complement result must be in the range 0 to 7, and
from the table it is apparent that we must have x + y ≤ 7. Therefore, ones(x +
y) = x + y.

Case 1, 0 ≤ x ≤ 7, 8 ≤ y ≤ 15. Overflow cannot occur because ones(x) ≥ 0
and ones(y) ≤ 0. In this case, ones(x) + ones(y) = x + y – 15. If x + y < 16,

f (x, y) = mod(x + y + 0, 16) = x + y.

In this case x + y must be at least 8, so ones(x + y) = x + y – 15. On the
other hand, if x + y ≥ 16,

f (x, y) = mod(x + y + 1, 16) = x + y + 1 – 16 = x + y – 15.

Because x + y is at most 22 and is at least 16, 1 ≤ x + y – 15 ≤ 7, so that
ones(x + y – 15) = x + y – 15.

Case 2, 8 ≤ x ≤ 15, 0 ≤ y ≤ 7. This is similar to case 1 above.
Case 3, 8 ≤ x ≤ 15, 8 ≤ y ≤ 15. Then, ones(x) + ones(y) = x – 15 + y –

15 = x + y – 30, and

f (x, y) = mod(x + y + 1, 16) = x + y + 1 – 16 = x + y – 15.

Because of the limits on x and y, 16 ≤ x + y ≤ 30. To avoid overflow, the table
reveals that we must have x + y ≥ 23. For, in terms of one’s-complement
interpretation, we can add –6 and –1, or –6 and –0, but not –6 and –2,
without getting overflow. Therefore, 23 ≤ x + y ≤ 30. Hence 8 ≤ x + y – 15 ≤
15, so that ones(x + y – 15) = x + y – 30.

For the carry propagation question, for one’s-complement addition, the worst
case occurs for something like

 111...1111
+ 000...0100

 000...0011
+ 1 (end-around carry)

 000...0100

for which the carry is propagated n places, where n is the word size. In two’s-
complement addition, the worst case is n – 1 places, assuming the carry out of
the high-order position is discarded.

The following comparisons are interesting, using 4-bit quantities for
illustration: In straight binary (unsigned) or two’s-complement arithmetic, the
sum of two numbers is always (even if overflow occurs) correct modulo 16. In
one’s-complement, the sum is always correct modulo 15. If xn denotes bit n of
x, then in two’s-complement notation, x = -8x3 + 4x2 + 2x1 + x0. In one’s-
complement notation, x = -7x3 + 4x2 + 2x1 + x0.

8. ((x y)& m) y.

9. x y = (x | y) & ¬(x & y).

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p410fig01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa8
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa8
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa9
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa9

Answers To Exercises

10. [Arndt] Variable t is 1 if the bits differ (six instructions).

Adding the line x ← x (t << i) makes it swap bits i and j

11. As described in the text, any Boolean function f(x1, x2,..., xn) can be
decomposed into the form g(x1, x2,..., xn–1) xn h (x1,x2,...,xn—1,). Let c (n)
be the number of instructions required for the decomposition of an n-variable
Boolean function into binary Boolean instructions, for n ≥ 2. Then

cn+1 = 2cn + 2,

with c2 = 1. This has the solution

cn = 3·2n – 2 –2.

(The least upper bound is much smaller.)
12. (a)

which is in the required form.
(b) From part (a),

which is in the required form.
13. Using the notation of Table 2–3 on page 54, the missing functions can be

obtained from 0000 = andc (x, x), 0011 = and (x, x), 0100 = andc (y, x), 0101
= and (y, y), 1010 = nand (y, y), 1011 = cor (y, x), 1100 = nand (x, x), and
1111 = cor (x, x).

14. No. The ten truly binary functions are, in numeric form,

By implementing function 0010 you get 0100 by interchanging the operands,
and, similarly, 1011 yields 1101. That’s all you can accomplish by interchanging

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa11
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa11
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa13
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa13
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02tab3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_54
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa14

Answers To Exercises

the operands, because the other functions are commutative. Equating the
operands, of course, reduces a function to a constant or unary function.
Therefore, you need eight instruction types.

15. The table below shows one set of six instruction types that accomplish the task.
Here, x denotes the contents of the register operand, and k denotes the
contents of the immediate field.

SIX SUFFICIENT R-I BOOLEAN INSTRUCTIONS

The missing functions can be obtained from 0000 = and (x, 0), 0010 = and
(x,), 0011 = or (x, 0), 0100 = nor (x,), 1001 = xor (x,), 1010 = const (x,
), 1011 = or (x,), 1100 = nor (x, 0), 1101 = nand (x,), and 1111 = nand

(x, 0).
16. This writer does not know of an “analytic” way to do this. But it is not difficult to

write a program that generates all Boolean functions of three variables that can
be implemented with three binary instructions. Such a program is given in C
below. It is written in as simple a way as possible to give a convincing answer to
the question. Some optimizations are possible, which are mentioned below.

The program represents a function by an 8-bit string that is the truth table
of the function, with the values for x, y, and z written in the usual way for a
truth table. Each time a function is generated, it is checked off by setting a byte
in vector found to 1. This vector is 256 bytes long and is initially all zero.
The truth table that the program works with is shown in the table below.

TRUTH TABLE FOR THREE VARIABLES

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa15
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa15
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa16
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02ansa16

Answers To Exercises

The six columns of the truth table are stored in a vector fun. The first three
positions of fun contain the truth table columns for x, y, and z. These columns
have the values hexadecimal 0F, 33, and 55, which represent the trivial
functions f (x, y, z) = x, f (x, y, z) = y, and f (x, y, z) = z. The next three
positions will contain the truth table columns for the functions generated by
one, two, and three binary instructions, respectively, for the current trial.

The program conceptually consists of three nested loops, one for each
instruction currently being tried. The outermost loop iterates over all 16 binary
Boolean operations, operating on all pairs of x, y, and z (16*3*3 = 144
iterations). For each iteration, the result of operating on all eight bits of x, y,
and/or z in parallel is put in fun[3].

The next level of looping similarly iterates over all 16 binary Boolean
operations, operating on all pairs of x, y, z, and the result of the outermost loop
(16*4*4 = 256 iterations). For each iteration, the result is put in fun[4].

The innermost level of looping similarly iterates over all 16 binary Boolean
operations, operating on all pairs of x, y, z, and the results of the outer two
loops (16*5*5 = 400 iterations). For each of these calculated functions, the
corresponding byte of found is set to 1.

At the end, the program writes out vector found in 16 rows of 16 vector
elements each. Several positions of vector found are 0, showing that three
binary Boolean instructions do not suffice to implement all 256 Boolean
functions of three variables. The first function that was not calculated is number
0x16, or binary 00010110, which represents the function yz + x z + xy .

There are many symmetries that could be used to reduce the number of
iterations. For example, for a given operation op and operands x and y, it is not
necessary to evaluate both op(x, y) and op(y, x), because if op(x, y) is
evaluated, then op(y, x) will result from op’(x, y) where op’ is another of the 16
binary operations. Similarly, it is not necessary to evaluate op(x, x), because
that will be equal to op’(x, y) for some other function op’. Thus, the outermost
loops that select combinations of operands to try could be written

for (i1 = 0; i1 < 3; i1++) {
for (i2 = i1 + 1; i2 < 3; i2++) {

and similarly for the other loops.
Another improvement results from observing that it is not necessary to

include all 16 binary Boolean operations in the table. The operations numbered
0, 3, 5, 10, 12, and 15 can be omitted, reducing the loops that iterate over the

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p414fig02

Answers To Exercises

operations from 16 to ten iterations. The argument in support of this is a little
lengthy and is not given here.

The program can be easily changed to experiment with smaller instruction
sets, or allow more instructions, or handle more variables. But be forewarned:
The execution time increases dramatically with the number of instructions being
allowed, because that determines the level of nesting in the main program. As a
practical matter, you can’t go beyond five instructions.

/* Determines which of the 256 Boolean functions of three
variables can be implemented with three binary Boolean
instructions if the instruction set includes all 16 binary
Boolean operations. */

#include <stdio.h>

char found[256];

unsigned char boole(int op, unsigned char x,
 unsigned char y) {
 switch (op) {
 case 0: return 0;
 case 1: return x & y;
 case 2: return x & ~y;
 case 3: return x;
 case 4: return ~x & y;
 case 5: return y;
 case 6: return x ^ y;
 case 7: return x | y;
 case 8: return ~(x | y);
 case 9: return ~(x ^ y);
 case 10: return ~y;
 case 11: return x | ~y;
 case 12: return ~x;
 case 13: return ~x | y;
 case 14: return ~(x & y);
 case 15: return 0xFF;
 }
}
#define NB 16 // Number of Boolean operations.
int main() {

 int i, j, o1, i1, i2, o2, j1, j2, o3, k1, k2;
 unsigned char fun[6];// Truth table, 3 columns for
 // x, y, and z, and 3 columns
 // for computed functions.

 fun[0] = 0xOF; // Truth table column for x,
 fun[1] = 0x33; // y,
 fun[2] = 0x55; // and z.

 for (o1 = 0; o1 < NB; ol++) {
 for (i1 = 0; i1 < 3; i1++) {
 for (i2 = 0; i2 < 3; i2++) {
 fun[3] = boole(ol, fun[i1], fun[i2]);
 for (o2 = 0; o2 < NB; o2++) {
 for (j1 = 0; j1< 4; j1++) {
 for (j2 = 0; j2 < 4; j2++) {
 fun[4] = boole(o2, fun[j1], fun[j2]);
 for (o3 = 0; o3 < NB; o3++) {
 for (k1 = 0; k1 < 5; k1++) {
 for (k2 = 0; k2 < 5; k2++) {
 fun[5] = boole(o3, fun[kl], fun[k2]);

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p414fig01

Answers To Exercises

 found[fun[5]] = 1;
 }}}
 }}}
 }}}
 printf("0 1 2 3 4 5 6 7 8 9 A B C D E F\n");
 for (i = 0; i < 16; i++) {
 printf("%X", i);
 for (j = 0; j < 16; j++)
 printf("%2d", found[16*i + j]);
 printf("\n");
 }
 return 0;
}

All ternary Boolean functions computable with three instructions, continued.

Chapter 3: Power-of-2 Boundaries
1. (a) (x + 4) & –8.

(b) (x + 3) & –8.

(c) (x + 3 + (() & 1)) & –8.
Part (c) can be done in four instructions if the extract instruction is

available; it can do () & 1 in one instruction.
Note: Unbiased rounding preserves the average value of a large set of

random integers.

2. The standard way to do part (a) is . If the remainder
function is readily available, it can also be done with x + 5 – remu(x + 5, 10),
which saves a multiplication at the expense of an addition.

Part (b) is similar, but replace the 5 with 4 in the answer for part (a).
Part (c): Use the fact that an integer is an odd multiple of 10 if and only if it

is an odd multiple of 2.

r = x % 10;
y = x - r;
if (r > 5 | (r == 5 & (y & 2) != 0)
 y = y + 10;

An alternative (must have x ≤ 232 – 6):

r = (x + 5)%10;
y = x + 5 - r;
if (r == 0 & (y & 2) != 0)
 y = y - 10;

3. A possible implementation in C is shown below.

int loadUnaligned(int *a) {
 int *alo, *ahi;
 int xlo, xhi, shift;

 alo = (int *)((int)a & -4);
 ahi = (int *)(((int)a + 3) & -4);
 xlo = *alo;

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#ch03ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#ch03ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#ch03ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#ch03ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p416fig02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p416fig03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#ch03ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#ch03ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p416fig04

Answers To Exercises

 xhi = *ahi;
 shift = ((int)a & 3) << 3;
 return ((unsigned)xlo >> shift) | (xhi <<; (32-shift));
}

Chapter 4: Arithmetic Bounds
1. For a = c = 0, inequalities (5) become

Because the quantities are unsigned, -d < 0 is equivalent to d ≠ 0, and b ≥
0 is true. Therefore, the inequalities simplify to

This is simply the observation that if d= 0, then y= 0 and so, trivially, 0 ≤
x– y≤ b. On the other hand, if d ≠ 0, then the difference can attain the value 0
by choosing x= y= 0, and it can attain the maximum unsigned number by
choosing x= 0 and y= 1.

2. If a = 0, the test if (temp >= a) is always true. Therefore, when the first
position (from the left) is found in which the bits of b and d are 1, the program
sets that bit of b equal to 0 and the following bits equal to 1, and returns that
value or’ed with d. This can be accomplished more simply with the following
replacement for the body of the procedure. The if statement is required only
on machines that have mod 32 shifts, such as the Intel x86 family.

temp = nlz(c & d);
if (temp == 0) return 0xFFFFFFFF;
m = 1 << (32 - temp);
return b | d | (m - 1);

For example, suppose

Then to find the maximum value of x| y, the procedure is to scan from the left
for the first position in which b and d are both 1. The maximum value is c| d
for bits to the left of that position, and 1’s for bits at and to the right of that
position. For the example, this is 0b01001000 | 0b00101010 | 0b0000
1111 = 0b0110 1111.

Chapter 5: Counting Bits
1. A version from Norbert Juffa:

int ntz (unsigned int n) {

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#ch04ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#ch04ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#ch04ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#ch04ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p417fig01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#ch05ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#ch05ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p417fig03

Answers To Exercises

 static unsigned char tab[32] =
 { 0, 1, 2, 24, 3, 19, 6, 25,
 22, 4, 20, 10, 16, 7, 12, 26,
 31, 23, 18, 5, 21, 9, 15, 11,
 30, 17, 8, 14, 29, 13, 28, 27
 };
 unsigned int k;
 n = n & (-n); /* isolate lsb */
#if defined(SLOW_MUL)
 k = (n << 11) - n;
 k = (k << 2) + k;
 k = (k << 8) + n;
 k = (k << 5) - k;
#else
 k = n * 0x4d7651f;
#endif
 return n ? tab[k>>27] : 32;
}

2. . This is used in the snoob function (page 15).
3. Denote the parallel prefix operation applied to x by PP-XOR(x). Then, if

. To see this, let x be the 4-bit quantity
abcd (where each letter denotes a single bit). Then

For the parallel suffix operation, if y= PS-XOR(x) then, as you might guess, x=
y (y<< 1).

Chapter 6: Searching Words
1. Length and position of the longest string of 1’s (c.f. Norbert Juffa):

int fmaxstr1(unsigned x, int *apos) {
 int k;
 unsigned oldx;

 oldx = 0;
 for (k = 0; x != 0; k++) {
 oldx = x;
 x &= 2*x;
 }
 *apos = nlz(oldx);
 return k;
}

2. As said in the text, this can be done by first left-propagating the 0’s in x by n –
1 positions, and then finding the shortest string of 1’s in the revised x. A good
way to do the left-propagation is to use the code of Figure 6–5 on page 125,
which is logarithmic in its execution time. (But the second part of the algorithm
is linear in the length of the shortest string of 1’s in the revised x.) The code is
shown below. It assumes that 1 ≤ n ≤ 32. In the “not found” case, the

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#ch05ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#ch05ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#ch05ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#ch05ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p418fig04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06fig5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_125

Answers To Exercises

function returns with apos = 32. In this case, the length should be regarded as
undefined, but it happens to return a length of n – 1.

int bestfit(unsigned x, int n, int *apos) {
 int m, s;

 m = n;
 while (m > 1) {
 s = m >> 1;
 x = x & (x << s);
 m = m - s;
 }
 return fminstr1(x, apos) + n - 1;
}

3. The code below uses an expression from page 12 for turning off the rightmost
contiguous string of 1’s.

int fminstr1(unsigned x, int *apos) {
 int k, kmin, y0, y;
 unsigned int x0, xmin;

 kmin = 32;
 y0 = pop(x);
 x0 = x;
 do {
 x = ((x & -x) + x) & x; // Turn off rightmost
 y = pop(x); // string.
 k = y0 - y; // k = length of string
 if (k <= kmin) { // turned off.
 kmin = k; // Save shortest length
 xmin = x; // found, and the string.
 }
 y0 = y;
 } while (x != 0);
 *apos = nlz(x0 ^ xmin);
 return kmin;
}

The function executes in 5 + 11n instructions, where n is the number of
strings of 1’s in x, for n ≥ 1 (that is, for x ≠ 0.) This assumes the if-test goes
either way half the time, and that pop(x) and nlz(x) count as one instruction
each. By making changes to the sense of the “if (k <= kmin)” test, and to the
initialization of kmin, it can be made to find the longest string of 1’s, and either
the leftmost or the rightmost in the case of equally long strings. It is also easily
modified to perform the “best fit” function.

4. The first bit of x will be 1, and hence mark the beginning of a string of 1’s, with
probability 0.5. Any other bit marks the beginning of a string of 1’s with
probability 0.25 (it must be 1, and the bit to its left must be 0). Therefore the
average number of strings of 1’s is 0.5 + 31•0.25 = 8.25.

5. One would expect the vast majority of words, if they are fairly long, to contain a
string of 1’s of length 1. For, if it begins with 10, or ends with 01, or contains
the string 010, then its shortest contained string of 1’s is of length 1. Therefore
the average length is probably just slightly more than 1.

32

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p419fig01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p419fig02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06ansa4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06ansa4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06ansa5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06ansa5

Answers To Exercises

An exhaustive check of all 2 words shows that the average length of the
shortest string of 1’s is approximately 1.011795.

6. (Solution by John Gunnels) This problem is surprisingly difficult, but the
technique used is a good one to know. The solution is based on a recursion that
counts the number of words in each of four sets, as shown in the table below.
In this table, “singleton” means a string of 1’s of length 1, “nnn” denotes a
string of length ≥ 0 that does not contain a singleton, and “sss” means a string
of length ≥ 1 that contains a singleton. The ellipsis means 0 or more of the
preceding bit. Every binary word is in one and only one of these four sets.

At each step, a bit is appended to the right-hand end of the word. As this is
done, a word moves from one set to another as shown below. It moves to the
left alternative if a 0 is appended, and to the right alternative if a 1 is
appended.

For example, the word 1101 is in set B. If a 0 is appended, it becomes 11010,
which is in set D. If a 1 is appended, it becomes 11011, which is in set C.

Let an, bn, cn, and dn denote the sizes of sets A, B, C, and D, respectively,
after n steps (when the words are of length n). Then

This is because set A at step n + 1 contains every member of set A at step n,
with a 0 appended, and also every member of set C at step n, with a 0
appended. Set B at step n + 1 contains only every member of set A at step n,
with a 1 appended, and so on.

The initial conditions are a0 = 1 and b0 = c0 = d0 = 0.

It is a simple matter to evaluate these difference equations with a computer
program or even by hand. The result, for n = 32, is

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06ansa6
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06ansa6

Answers To Exercises

The last line gives the number we are interested in—the number of words for
which their shortest contained string of 1’s is of length 1. It is about 98.9
percent of the number of 32-bit words (232).

What about a closed-form solution? This is also difficult to obtain. We will
just sketch a solution.

Let en = bn + dn, which is the quantity we desire to find. Then, from the
difference equations, and using the fact that an + bn + cn+ dn = 2n,

Thus, if we can find a closed-form formula for an, we will have one for en.

We can find a single-variable difference equation for an as follows. From the
difference equations,

This difference equation can be solved by well-known methods. The process
is a bit lengthy and messy and won’t be gone into here. It involves the solution
of a cubic polynomial that has two complex roots. When combined with the
equation for en, we obtain, approximately,

If n is an integer, the imaginary parts cancel out, which is not hard to prove.
(Hint: If x and y are complex conjugates, then so are xn and yn.)

We can get a formula involving only real numbers. The real part of the
second term of the formula above is certainly less than

Answers To Exercises

|0.29425 – 0.13811 i |·|0.12256 + 0.74486i |n +1

which is, for n = 0,

0.32505 · 0.75488 ≈ 0.24537,

and is still smaller for n > 0. The same holds for the last term of the equation
for en. Therefore the real part of the last two terms sum to less than 0.5. Since
en is known a priori to be an integer, this means that en is given by the first
term rounded to the nearest integer, or

7. Briefly, this problem can be solved by using 10 sets of words, described below.
In this table, “nnn” denotes a string of length ≥ 0 whose shortest contained
string of 1’s is of length 0 or is ≥ 3, “ddd” denotes a string of length ≥ 2 whose
shortest contained string of 1’s is of length 2, and “sss” denotes a string of
length ≥ 1 whose shortest contained string of 1’s is of length 1. (The sets keep
track of the words that contain a singleton at a position other than the
rightmost, because such words will never have a shortest contained string of 1’s
of length 2.) The ellipsis means 0 or more of the preceding bit.

At each step, as a bit is appended to the right-hand end of a word from one
of these sets, it moves to another set as shown below. It moves to the left
alternative if a 0 is appended, and to the right alternative if a 1 is appended.

Let an, bn, ..., jn denote the sizes of sets A, B, n steps (when the words are
of length n). Then

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06ansa7
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#ch06ansa7

Answers To Exercises

The initial conditions are a0 = 1 and all other variables are 0.

The quantity we are interested in, the number of words whose shortest
contained string of 1’s is of length 2, is given by cn + en + gn + hn. For n =
32, the difference equations give for this the value 44,410,452, which is about
1.034 percent of the number of 32-bit words. As an additional result, the
number of words whose shortest contained string of 1’s is of length 1 is given
by bn + fn + in + jn, which for n = 32 evaluates to 4,247,705,401, confirming
the result of the preceding exercise.

This is as far as we are going with this problem.

Chapter 7: Rearranging Bits and Bytes
1. An ordinary integer can be incremented by complementing a certain number of

consecutive low-order bits.1 For example, to add 1 to 0x321F, it suffices to
apply the exclusive or operation to it with the mask 0x003F. Similarly, to
increment a reversed integer, it suffices to complement some high-order bits
with a mask that consists of an initial string of 1’s followed by 0’s. Möbius’s
formula computes this mask and applies it to the reversed integer. (The method
in the text that uses the nlz operation also does this.)

For an ordinary integer, the mask consists of 0’s followed by 1’s from the
rightmost 0-bit to the low-order bit. The integer that consists of a 1-bit at the
position of the rightmost 0-bit in i is given by the expression ¬i& (i+ 1) (see
Section 2–1). To increment an ordinary integer x, we would compute a mask by
right-propagating the 1-bit in this integer, and then exclusive or the result to x.
To increment a reversed integer, we need to compute the reflection, or bit
reversal, of that mask. The one-bit (power of 2) quantity ¬i& (i+ 1) can be
reflected by dividing it into m/ 2. (This step is the key to this algorithm.) For
example, in the case of 4-bit integers, m/ 2 = 8. 8 / 1 = 8, 8 / 2 = 4, 8 / 4 =
2, and 8 / 8 = 1. To compute the mask, it is necessary only to left-propagate
the 1-bit of the quotient, which is done by subtracting the quotient from m.
Finally, the mask is exclusive-or’ed to the reversed integer, which produces the
next reversed integer.

As an example, suppose the integers are eight bits in length, so that m =
256. Let i = 19 (binary 00010011), so that revi = binary 11001000. Then
¬i& (i+ 1) = binary 00000100 (decimal 4). Dividing this into m/ 2 gives a
quotient of 32 (binary 00100000). Subtracting this from m gives binary 1110
0000. Finally, exclusive or’ing this mask to revi gives binary 00101000, which
is the reversed integer for decimal 20.

2. Notice that

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ansfn1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07ansa2

Answers To Exercises

Also, notice that

Thus, we have the formulas

In general,

where W is the length of the word being shuffled, which must be a power of 2.
3. It is necessary only to change the two lines

s = s + b;
x = x >> 1;

to

s = s + 1;
x = x >> b;

4. Any true LRU algorithm must record the complete order of references to the n
cache lines in a set. Since there are n! orderings of n things, any
implementation of LRU must use at least log2 n! memory bits. The table
below compares this to the number of bits required by the reference matrix
method.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p425fig01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p425fig02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07ansa4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07ansa4

Answers To Exercises

Chapter 8: Multiplication
1. As shown in Section 8–3 , if x and y are the multiplication operands interpreted

as signed integers, then their product interpreted as unsigned integers is

(x + 232x31)(y + 232y31) = xy + 232(x31 y + y31x) + 264x31y31,

where x31 and y31 are the sign bits of x and y, respectively, as integers 0 or 1.
Because the product differs from xy by a multiple of 232, the low-order 32 bits
of the product are the same.

2. Method 1: Chances are the machine has a multiplication instruction that gives
the low-order 32 bits of the product of two 32-bit integers. That is,

low = u*v;

Method 2: Just before the return statement, insert

low = (w1 << 16) + (w0 & 0xFFFF);

Method 3: Save the products u1*v0 and u0*v1 in temporaries t1 and t2. Then

low = ((t1 + t2) << 16) + w0;

Methods 2 and 3 are three basic RISC instructions each, and they work for
both mulhs and its unsigned counterpart (and may be faster than method 1).

3. Partition the 32-bit operands u and v into 16-bit unsigned components a, b, c,
and d, so that

where 0 ≤ a, b, c, d ≤ 216 – 1. Let

Then uv = 232 p + 216(r + p + q) + q, which is easily verified.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#ch08ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#ch08ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#ch08lev3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#ch08ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#ch08ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p425fig03
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p425fig04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p425fig05
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#ch08ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#ch08ansa3

Answers To Exercises

Now 0 ≤ p, q ≤ 232 – 217 + 1, so that p and q can be represented by 32-bit
unsigned integers. However, it is easily calculated that

-232 + 217 1 ≤ r ≤ 232 -217+1,

so that r is a signed 33-bit quantity. It will be convenient to represent it by a
signed 64-bit integer, with the high-order 32 bits being either all 0’s or all 1’s.
The machine’s multiply instruction will compute the low-order 32 bits of r, and
the high-order 32 bits can be ascertained from the values of – a + b and c – d.
These are 17-bit signed integers. If they have opposite signs and are nonzero,
then r is negative and hence its high-order 32 bits are all 1’s. If they have the
same signs or either is 0, then r is nonnegative and hence its high-order 32 bits
are all 0’s. The test that either – a + b or c – d is 0 can be done by testing only
the low-order 32 bits of r. If they are 0, then one of the factors must be 0,
because r < 232.

These considerations lead to the following function for computing the high-
order 32 bits of the product of u and v.

unsigned mulhu(unsigned u, unsigned v) {
 unsigned a, b, c, d, p, q, rlow, rhigh;

 a = u >> 16; b = u & 0xFFFF;
 c = v >> 16; d = v & 0xFFFF;

 p = a*c;
 q = b*d;
 rlow = (-a + b)*(c - d);
 rhigh = (int)((-a + b)^(c - d)) >> 31;
 if (rlow == 0) rhigh = 0; // Correction.
 q = q + (q >> 16); // Overflow cannot occur here.
 rlow = rlow + p;
 if (rlow < p) rhigh = rhigh + 1;
 rlow = rlow + q;
 if (rlow < q) rhigh = rhigh + 1;

 return p + (rlow >> 16) + (rhigh << 16);
}

After computing p, q, rlow, and rhigh, the function does the following
addition:

 |...... p.......|
|....rhigh..... ||..... rlow...... |
 |....... p....... |
 |....... q....... |
 |....... q....... |

The statement “if (rlow < p) rhigh = rhigh + 1” is adding 1 to rhigh if there
is a carry from the addition of p to rlow in the previous statement.

The low-order 32 bits of the product can be obtained from the following
expression, inserted just after the “correction” step above:

q + ((p + q + rlow) << 16)

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p426fig01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p427fig01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p427fig03

Answers To Exercises

A branch-free version follows.

unsigned mulhu(unsigned u, unsigned v) {
 unsigned a, b, c, d, p, q, x, y, rlow, rhigh, t;

 a = u >> 16; b = u & 0xFFFF;
 c = v >> 16; d = v & 0xFFFF;

 p = a*c;
 q = b*d;
 x = -a + b;
 y = c - d;
 rlow = x*y;
 rhigh = (x ^ y) & (rlow | -rlow);
 rhigh = (int)rhigh >> 31;

 q = q + (q >> 16); // Overflow cannot occur here.
 t = (rlow & 0xFFFF) + (p & 0xFFFF) + (q & 0xFFFF);
 p += (t >> 16) + (rlow >> 16) + (p >> 16) + (q >> 16);
 p += (rhigh << 16);
 return p;
}

These functions have more overhead than the four-multiplication function of
Figure 8–2 on page 174, and will be superior only if the machine’s multiply
instruction is slower than that found on most modern computers. In “bignum”
arithmetic (arithmetic on multiword integers), the time to multiply is
substantially more than the time to add two integers of similar sizes. For that
application, a method known as Karatsuba multiplication [Karat] applies the
three-multiplication scheme recursively, and it is faster than the straightforward
four-multiplication scheme for sufficiently large numbers. Actually, Karatsuba
multiplication, as usually described, uses

For our application, that method does not work out very well because r can be
nearly as large as 234, and there does not seem to be any easy way to
calculate the high-order two bits of the 34-bit quantity r.

A signed version of the functions above has problems with overflow. It is
just as well to use the unsigned function and correct it as described in Section
8–3 on page 174.

Chapter 9: Integer Division
1. Let x = x0 + δ, where x0 is an integer and 0 ≤ δ < 1. Then

 by the definition of the ceiling function as the

next integer greater than or equal to its argument. Hence , which
is .

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p427fig02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#ch08fig2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_174
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#ch08lev3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#ch08lev3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_174
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09ansa1

Answers To Exercises

2. Let n / d denote the quotient of signed, truncating, integer division. Then we
must compute

(If d = 0 the result is immaterial.) This can be computed as n / d + c, where

which is four instructions to compute c (the term commons). Another
way to compute c in four instructions, but with the shifts unsigned, is

If your machine has mod-32 shifts, c can be computed in three instructions:

For the remainder, let rem(n, d) denote the remainder upon dividing the
signed integer n by the signed integer d, using truncating division. Then we
must compute

The amount to add to rem(n, d) is 0 or the absolute value of d. This can be
computed from

which is five instructions to compute c. It can be computed in four instructions
if your machine has mod-32 shifts and you use the multiply instruction (details
omitted).

3. To get the quotient of floor division, it is necessary only to subtract 1 from the
quotient of truncating division if the dividend and divisor have opposite signs:

For the remainder, it is necessary only to add the divisor to the remainder of
truncating division if the dividend and divisor have opposite signs:

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09ansa3

Answers To Exercises

4. The usual method, most likely, is to compute (n + d – 1)/d . The problem is
that n + d- 1 can overflow. (Consider computing 12/5 on a 4-bit machine.)

Another standard method is to compute q = n / d using the machine’s
divide instruction, then compute the remainder as r = n- qd, and if r is nonzero,
add 1 to q. (Alternatively, add 1 if n ≠ qd.) This gives the correct result for all n
and d ≠ 0, but it is somewhat expensive because of the multiply, subtract, and
conditional add of 1. On the other hand, if your machine’s divide instruction
gives the remainder as a by-product, and especially if it has an efficient way to
do the computation q = q + (r 0), then this is a good way to do it.

Still another way is to compute q = (n – 1) / d + 1. Unfortunately, this
fails for n = 0. It can be fixed if the machine has a simple way to compute the
x 0 predicate, such as by means of a compare instruction that sets the target
GPR to the integer 1 or 0 (see also Section 2–12 on page 23). Then one can
compute:

Lastly, one can compute q = (n – 1) / d + 1 and then change the result
to 0 if n = 0, by means of a conditional move or select instruction, for example.

5. Let f () = a and f (x) = b, as illustrated below.

If b is an integer, then by property (c), x is also, so that = x, and there
is nothing to prove. Therefore, assume in what follows that b is not an integer,
but a may or may not be.

There cannot be an integer k such that a < k ≤ b, because if there were,
there would be an integer between and x (by properties (a), (b), and (c)),

which is impossible. Therefore a = b ; that is, f () = f (x) .
As examples of the utility of this, we have, for a and b integers,

It can similarly be shown that if f (x) has properties (a), (b), and (c), then

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09ansa4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09ansa4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02lev12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_23
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09ansa5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09ansa5

Answers To Exercises

Chapter 10: Integer Division by Constants
1. (a) If the divisor is even, then the low-order bit of the dividend does not affect

the quotient (of floor division); if it is 1 it makes the remainder odd. After
turning this bit off, the remainder of the division will be an even number. Hence
for an even divisor d, the remainder is at most d – 2. This slight change in the
maximum possible remainder results in the maximum multiplier m being a W-bit
number rather than a (W + 1)-bit number (and hence the shrxi instruction is
not needed), as we will now see. In fact, we will investigate what simplifications
occur if the divisor ends in z 0-bits, that is, if it is a multiple of 2z, for z ≥ 0. In
this case, the z low-order bits of the dividend can be cleared without affecting
the quotient, and after clearing those bits, the maximum remainder is d – 2z.

Following the derivation of Section 10–9 on page 230, but changed so that
the maximum remainder is d – 2z, we have nc = 2W – rem(2W, d) – 2z, and
inequality (24a) becomes

2w-d≤nc≤2w-2z.

Inequality (25) becomes

Equation (26) is unchanged, and inequality (27) becomes

Inequality (28) becomes

In the case that p is not forced to equal W, combining these inequalities
gives

Thus if z ≥ 1, m < 2W, so that m fits in a W-bit word. The same result follows
in the case that p is forced to equal W.

To calculate the multiplier for a given divisor, calculate nc as shown above,

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev9
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_230

Answers To Exercises

then find the smallest p ≥ W that satisfies (27’), and calculate m from (26). As
an example, for d = 14 and W = 32, we have nc = 232 – rem(232, 14) – 2 =
0xFFFFFFFA. Repeated use of (27′) gives p = 35, from which (26) gives m =
(235 + 14 – 1 – 3) / 14 = 0x92492493. Thus, the code to divide by 14 is

ins n,R0,0,1 Clear low-order bit of n.
li M,0x92492493 Load magic number.
mulhu q,M,n q = floor(M*n/2**32).
shri q,q,3 q = q/8.

(b) Again, if the divisor is a multiple of 2z, then the low-order z bits of the
dividend do not affect the quotient. Therefore, we can clear the low-order z bits
of the dividend, and divide the divisor by 2z, without changing the quotient.
(The division of the divisor would be done at compile time.)

Using the revised n and d, both less than 2W–z, (24a) becomes

2w-z-d≤nc≤2w-z-1

Equation (26) and inequality (27) are not changed, but they are to be used
with the revised values of nc and d. We omit the proof that the multiplier will
be less than 2W and give an example again for d = 14 and W = 32. In the
equations, we use d = 7. Thus, we have nc = 231 – rem(231, 7) – 1 =
0x7FFFFFFF. Repeated use of (27) gives p = 34, from which (26) gives m =
(234 + 5) / 7 = 0x92492493, and the code to divide by 14 is

shri n,n,1 Halve the dividend.
li M,0x92492493 Load magic number.
mulhu q,M,n q = floor(M*n/2**32).
shri q,q,2 q = q/4.

These methods should not always be used when the divisor is an even
number. For example, to divide by 10, 12, 18, or 22 it is better to use the
method described in the text, because there’s no need for an instruction to clear
the low-order bits of the dividend, or to shift the dividend right. Instead, the
algorithm of Figure 10–3 on page 236 should be used, and if it gives an “add”
indicator of 1 and the divisor is even, then one of the above techniques can be
used to get better code on most machines. Among the divisors less than or
equal to 100, these techniques are useful for 14, 28, 38, 42, 54, 56, 62, 70, 74,
76, 78, 84, and 90.

Which is better, (a) or (b)? Experimentation indicates that method (b) is
preferable in terms of the number of instructions required, because it seems to
always require either the same number of instructions as (a), or one fewer.
However, there are cases in which (a) and (b) require the same number of
instructions, but (a) yields a smaller multiplier. Some representative cases are
shown below. The “Book” method is the code that Figure 10–3 gives. We
assume here that the computer’s and immediate instruction sign-propagates the
high-order bit of the immediate field (our basic RISC would use the insert
instruction).

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p432fig01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p432fig02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10fig3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_236
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10fig3

Answers To Exercises

These techniques are not useful for signed division. In that case, the
difference between the best and worst code is only two instructions (as
illustrated by the code for dividing by 3 and by 7, shown in Section 10–3 on
page 207). The fix-up code for method (a) would require adding 1 to the
dividend if it is negative and odd, and subtracting 1 if the dividend is
nonnegative and odd, which would require more than two instructions. For
method (b), the fix-up code is to divide the dividend by 2, which requires three
basic RISC instructions (see Section 10–1 on page 205), so this method is also
not a winner.

2. Python code is shown below.

def magicg(nmax, d):
 nc = (nmax//d)*d - 1
 nbits = int(log(nmax, 2)) + 1
 for p in range(0, 2*nbits - 1):
 if 2**p > nc*(d - (2**p)%d):
 m = (2**p + d - (2**p)%d)//d
 return (m, p)
 print "Can't find p, something is wrong."
 sys.exit(1)

3. Because 81 = 34, we need for the starting value, the multiplicative inverse of d
modulo 3. This is simply the remainder of dividing d by 3, because 1 · 1 ≡ 1
(mod 3) and 2 · 2 ≡ 1 (mod 3) (and if the remainder is 0, there is no
multiplicative inverse). For d = 146, the calculation proceeds as follows.

A fixed point was reached, so the multiplicative inverse of 146 modulo 81 is 5.
Check: 146 · 5 = 730 ≡ 1 (mod 81). Actually, it is known a priori that two

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_207
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_205
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p433fig01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10ansa3

Answers To Exercises

iterations suffice.

Chapter 11: Some Elementary Functions

1. Yes. The result is correct in spite of the double truncation. Suppose .
Then by the definition of this operation, a is an integer such that a2 ≤ x and (a
+ 1)2 < x.

Let . Then b2 ≤ a and (b +1)2 < a. Thus, b4 ≤ a2 and, because
a2 ≤ x, b4 ≤ x.

Because (b + 1)2 a, (b + 1)2 ≥ a + 1, so that (b + 1)4≥ (a + 1)2 Because
(a+ 1)2x, (b + 1)4x. Hence b is the integer fourth root of x.

This follows more easily from exercise 5 of Chapter 9.
2. Straightforward code is shown below.

int icbrt64(unsigned long long x) {
 int s;
 unsigned long long y, b, bs;

 y = 0;
 for (s = 63; s >= 0; s = s - 3) {
 y = 2*y;
 b = 3*y*(y + 1) + 1;
 bs = b << s;
 if (x >= bs && b == (bs >> s)) {
 x = x - bs;
 y = y + 1;
 }
 }
 return y;
}

Overflow of b (bs in the above code) can occur only on the second loop
iteration. Therefore, another way to deal with the overflow is to expand the first
two iterations of the loop, and then execute the loop only from s = 57 on
down, with the phrase “&& b == (bs >> s)” deleted.

By inspection, the effect of the first two loop iterations is:

If x ≥ 263, set x = x – 263 and set y = 2.

If 260 ≤ x < 263, set x = x – 260 and set y = 1.

If x < 260, set y = 0 (and don’t change x).
Therefore, the beginning of the routine can be coded as shown below.

y = 0;
if (x >= 0x1000000000000000LL) {
 if (x >= 0x8000000000000000LL) {
 x = x - 0x8000000000000000LL;
 y = 2;
 } else {
 x = x - 0x1000000000000000LL;
 y = 1;
 }
}

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p434fig04
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p435fig01

Answers To Exercises

for (s = 57; s >= 0; s = s - 3) {
 ...

And, as mentioned, the phrase “&& b == (bs >> s)” can be deleted.

3. Six [Knu2]. The binary decomposition method, based on x23 = x16 · x4 · x2 · x,
takes seven. Factoring x23 as (x11)2 · x or as ((x5)2 · x)2 · x also takes seven.
But computing powers of x in the order x2, x3, x5, x10, x13, x23, in which each
term is a product of two previous terms or of x, does it in six multiplications.

4. (a) x rounded down to an integral power of 2. (b) x rounded up to an integral
power of 2 (in both cases, x itself if x is an integral power of 2).

Chapter 12: Unusual Bases for Number Systems
1. If B is a binary number and N is its base –2 equivalent, then

2. An easy way to do this is to convert the base –2 number x to binary, add 1, and
convert back to base –2. Using Schroeppel’s formula and simplifying, the result
is

3. As in exercise 1, one could convert the base –2 number x to binary, and with
0xFFFFFFF0, and convert back to base –2. This would be five operations.
However, it can be done in four operations with either of the formulas below.2

The formulas below round a number up to the next greater power of 16.

There are similar formulas for rounding up or down to other powers of 2.
4. This is very easy to program in Python, because that language supports complex

numbers.

import sys
import cmath

num = sys.argv[1:]
if len(num) == 0:
 print "Converts a base -1 + 1j number, given in decimal"
 print "or hex, to the form a + bj, with a, b real."
 sys.exit()
num = eval(num[0])

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11ansa4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11ansa4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#ansfn2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12ansa4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12ansa4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p436fig01

Answers To Exercises

r = 0
weight = 1
while num > 0:
 if num & 1:
 r = r + weight;
 weight = (-1 + 1j)*weight
 num = num >> 1;
print ‘r =’, r

5. To convert a base – 1 + i number to its negative, either subtract it from 0 or
multiply it by –1 (11101), using the rules for base – 1 + i arithmetic.

To extract the real part of a number x, add in the negative of its imaginary
part. Process the bits of x in groups of four, starting at the right (low-order)
end. Number the bits in each group 0, 1, 2, and 3, from the right. Then:

If bit 1 is on, add – i (0111) at the current group’s position.
If bit 2 is on, add 2 i (1110100) at the current group’s position.
If bit 3 is on, add –2 i (0100) at the current group’s position.
Bit 1 has a weight of – 1 + i, so adding in – i cancels its imaginary

component. A similar remark applies to bits 2 and 3. There is no need to do
anything for bit 0, because that has no imaginary component. Each group of
four bits has a weight of – 4 times the weight of the group immediately to its
right, because 10000 in base – 1 + i is – 4 decimal. Thus, the weight of bit n of
x is a real number (– 4) times the weight of bit n – 4.

The example below illustrates extracting the real part of the base -1 + i
number 101101101.

The reader may verify that x is 23 + 4i, and the sum is 23. In working out
this addition, many carries are generated, which are not shown above. Several
shortcuts are possible: If bits 2 and 3 are both on, there is no need to add
anything in for these bits, because we would be adding in 2i and –2 i. If a group
ends in 11, these bits can be simply dropped, because they constitute a pure
imaginary (i). Similarly, bit 2 can be simply dropped, as its weight is a pure
imaginary (–2i).

Carried to its extreme, a method employing these kinds of shortcuts would
translate each group of four bits independently to its real part. In some cases a
carry is generated, and these carries would be added to the translated number.
To illustrate, let us represent each group of four bits in hexadecimal. The
translation is shown below.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12ansa5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12ansa5

Answers To Exercises

The digits 2 and 6 have real part –1, which is written 1D in base – 1 + i.
For these digits, replace the source digit with D and carry a 1. The carries can
be added in using the basic rules of addition in base – 1 + i, but for hand work
there is a more expedient way. After translation, there are only four possible
digits: 0, 1, C, and D, as the translation table shows. Rules for adding 1 to
these digits are shown in the left-hand column below.

Adding 1 to D generates a carry of 1D (because 3 + 1 = 4). We will carry both
digits to the same column. The right-hand column above shows how to handle
the carry of 1D. In doing the addition, it is possible to get a carry of both 1 and
1D in the same column (the first carry from the translation and the second from
the addition). In this case, the carries cancel each other, because 1D is –1 in
base – 1 + i. It is not possible to get two carries of 1, or two of 1D, in the
same column.

The example below illustrates the use of this method to extract the real part
of the base – 1 + i number EA26 (written in hexadecimal).

The reader may verify that x is – 45 + 21 i and the sum is – 45.
Incidentally, a base – 1 + i number is real iff all of its digits, expressed in

hexadecimal, are 0, 1, C, or D.
To extract the imaginary part from x, one can, of course, extract the real

part and subtract that from x. To do it directly by the “shortcut” method, the
table below shows the translation of each hexadecimal digit to its pure
imaginary part.

Thus, a carry of 7 can occur, so we need addition rules to add 7 to the four
possible translated digits of 0, 3, 4, and 7. These are shown in the left-hand
column below.

Answers To Exercises

Now a carry of 3 can occur, and the right-hand column above shows how to
deal with that.

The example below illustrates the use of this method to extract the
imaginary part of the base – 1 + i number 568A (written in hexadecimal).

The reader may verify that x is – 87 + 107 i and the sum is 107i.
A base – 1 + i number is imaginary iff all of its digits, expressed in

hexadecimal, are 0, 3, 4, or 7.
To convert a number to its complex conjugate, subtract twice a number’s

imaginary part. A table can be used, as above, but the conversion is more
complicated because more carries can be generated, and the translated number
can contain any of the 16 hexadecimal digits. The translation table is shown
below.

The carries can be added in using base – 1 + i arithmetic or by devising a
table that does the addition a hexadecimal digit at a time. The table is larger
than those above, because the carries can be added to any of the 16 possible
hexadecimal digits.

Chapter 13: Gray Code
1. Proof sketch 1: It is apparent from the construction of the reflected binary Gray

code.

Proof sketch 2: From the formula , it can be seen
that G(x) is 1 at position i wherever there is a transition from 0 to 1 or from 1 to
0 from position i to the bit to the left of i, and is 0 otherwise. If x is even, there
are an even number of transitions, and if x is odd, there are an odd number of
transitions.

Proof sketch 3: By induction on the length of x, using the formula given
above: The statement is true for the one-bit words 0 and 1. Let x be a binary
word of length n, and assume inductively that the statement is true for x. If x is
prepended with a 0-bit, G(x) is also prepended with a 0-bit, and the remaining

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#ch13ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#ch13ansa1

Answers To Exercises

bits are G(x). If x is prepended with a 1-bit, then G(x) is also prepended with a
1-bit, and its next most significant bit is complemented. The remaining bits are
unchanged. Therefore, the number of 1-bits in G(x) is either increased by 2 or is
unchanged.

Thus, one can construct a random number generator that generates integers
with an even (or odd) number of 1-bits by using a generator of uniformly
distributed integers, setting the least significant bit to 0 (or to 1), and converting
the result to Gray code [Arndt].

2. (a) Because each column is a cyclic shift of column 1, the result follows
immediately.
(b) No such code exists. This is not difficult to verify by enumerating all possible
Gray codes for n = 3. Without loss of generality, one can start with

000
001
011

because any Gray code can be made to start that way by complementing
columns and rearranging columns. Corollary: There is no STGC for n = 3 that
has eight code words.

3. The code below was devised by reflecting the first five code words of the
reflected binary Gray code.

0000
0001
0011
0010
0110
1110
1010
1011
1001
1000

Another code can be derived by taking the “excess 3” binary coded decimal
(BCD) code and converting it to Gray. The result turns out to be cyclic. The
excess 3 code for encoding decimal digits has the property that addition of
coded words generates a carry precisely when addition of the decimal digits
would.

EXCESS THREE GRAY CODE

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#ch13ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#ch13ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p440fig01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#ch13ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#ch13ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p440fig02

Answers To Exercises

4. It is a simple matter to derive a “mixed base” Gray code, using the principle of
reflection. For a number with prime decomposition 2

e 13
e 25

e 3, the columns of
the Gray code should be in base e1 + 1, e2 + 1, e3 + 1,.... For example, for
the number 72 = 23 · 32, the list below shows a “base 4 - base 3” Gray code
and the divisor of 72 that each code word represents.

00 1
01 3
02 9
12 18
11 6
10 2
20 4
21 12
22 36
32 72
31 24
30 8

Clearly each divisor follows from the previous one by one multiplication or
division by a prime number.

Even simpler: A binary Gray code can be used to iterate over the subsets of
a set in such a way that in each step only one member is added or removed.

Chapter 14: Cyclic Redundancy Check

1. From the text, a message polynomial M and generator polynomial G satisfy Mxr

= QG + R, where R is the checksum polynomial. Let M ′ be a message
polynomial that differs from M at term xe. (That is, the binary message differs
at bit position e.) Then M ′ = M + xe, and

M'xr = (M+xe)xr = Mxr + xe+r = QG+R+xe+r

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#ch13ansa4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#ch13ansa4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p441fig01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#ch14ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#ch14ansa1

Answers To Exercises

The term xe + r is not divisible by G, because G has two or more terms. (The
only divisors of xe + r are of the form x>>.) Therefore, the remainder upon
dividing M'xr by G is distinct from R, so the error is detected.

2. The main loop might be coded as shown below, where word is an unsigned int
[Danne].

crc = 0xFFFFFFFF;
while (((word = *(unsigned int *)message) & 0xFF) != 0) {
 crc = crc ^ word;
 crc = (crc >> 8) ^ table[crc & 0xFF];
 crc = (crc >> 8) ^ table[crc & 0xFF];
 crc = (crc >> 8) ^ table[crc & 0xFF];
 crc = (crc >> 8) ^ table[crc & 0xFF];
 message = message + 4;
}

Compared to the code of Figure 14–7 on page 329, this saves three load
byte and three exclusive or instructions for each word of message. And, there are
fewer loop control instructions executed.

Chapter 15: Error-Correcting Codes
1. Your table should look like Table 15–1 on page 333, with the rightmost column

and the odd numbered rows deleted.
2. In the first case, if an error occurs in a check bit, the receiver cannot know that,

and it will make an erroneous “correction” to the information bits.
In the second case, if an error occurs in a check bit, the syndrome will be

one of 100...0, 010...0, 001...0, ..., 000...1 (k distinct values). Therefore k must
be large enough to encode these k values, as well as the m values to encode a
single error in one of the m information bits, and a value for “no errors.” So the
Hamming rule stands.

One thing along these lines that could be done is to have a single parity bit
for the k check bits, and have the k check bits encode values that designate one
error in an information bit (and where it is), or no errors occurred. For this
code, k could be chosen as the smallest value for which 2

k
 ≥ m + 1. The code

length would be m + k + 1, where the “+1” is for the parity bit on the check
bits. But this code length is nowhere better than that given by the Hamming
rule, and is sometimes worse.

3. Treating k and m as real numbers, the following iteration converges from below
quite rapidly:

where lg(x) is the log base 2 of x. The correct result is given by ceil(k2) is, only
two iterations are required for all m ≥ 0.

Taking another tack, it is not difficult to prove that for m ≥ 0,

bitsize(m) ≤ k ≤ bitsize(m) + 1.

Here bitsize(m) is the size of m in bits, for example, bitsize(3) = 2, bitsize(4) =

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#ch14ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#ch14ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p441fig02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#ch14fig7
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_329
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15tab1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_333
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15ansa3

Answers To Exercises

3, and so forth. (This is different from the function of the same name described
in Section 5–3 on page 99, which is for signed integers.) Hint: bitsize(m) =

lg(m + 1) = lg(m) + 1 , where we take lg(0) to be –1. Thus, one can try
k = bitsize(m), test it, and if it proves to be too small then simply add 1 to the
trial value. Using the number of leading zeros function to compute bitsize(m),
one way to commit this to code is:

where W is the machine’s word size and 0 ≤ m ≤ 2w – 1.
4. Answer: If d(x,z)>d(x,y) + d(y,z), it must be that for at least one bit position i,

that bit position contributes 1 to d(x,z) and 0 to d(x,y) + d(y,z). This implies
that xi ≠ zi, but xi = yi and yi = zi, clearly a contradiction.

5. Given a code of length n and minimum distance d, simply double-up each 1 and
each 0 in each code word. The resulting code is of length 2n, minimum
distance 2d, and is the same size.

6. Given a code of length n, minimum distance d, and size A(n, d), think of it as
being displayed as in Table 15–1 on page 333. Remove an arbitrary d- 1
columns. The resulting code words, of length n-(d-1), have a minimum
distance of at least 1. That is, they are all distinct. Hence their number cannot
be more than 2”–(d – 1). Since deleting columns did not change the code size,
the original code’s size is at most 2n(d–1), so that A(n,d)≤ 2n – d + 1.

7. The Hamming rule applies to the case that d = 3 and the code has 2m code
words, where m is the number of information bits. The right-hand part of
inequality (6), with A (n, d) = 2m and d = 3, is

Replacing n with m + k gives

which on cancelling 2m on each side becomes inequality (1).
8. The code must consist of an arbitrary bit string and its one’s-complement, so its

size is 2. That these codes are perfect, for odd n, can be seen by showing that
they achieve the upper bound in inequality (6). Proof sketch: An n -bit binary
integer may be thought of as representing uniquely a choice from n objects,
with a 1-bit meaning to choose and a 0-bit meaning not to choose the
corresponding object. Therefore, there are 2n ways to choose from 0 to n

objects from n objects—that is, . If n is odd, i ranging from 0 to
(n – 1)/2 covers half the terms of this sum, and because of the symmetry

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#ch05lev3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_99
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15ansa4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15ansa4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15ansa5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15ansa5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15ansa6
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15ansa6
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15tab1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_333
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15ansa7
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15ansa7
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15ansa8
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15ansa8

Answers To Exercises

, it accounts for half the sum. Therefore ,
so that the upper bound in (6) is 2. Thus, the code achieves the upper bound
of (6).

9. For ease of exposition, this proof will make use of the notion of equivalence of
codes. Clearly a code is not changed in any substantial way by rearranging its
columns (as depicted in Table 15–1 on page 333) or by complementing any
column. If one code can be derived from another by such transformations, they
are said to be equivalent. Because a code is an unordered set of code words,
the order of a display of its code words is immaterial. By complementing
columns, any code can be transformed into an equivalent code that has a code
word that is all 0’s.

Also for ease of exposition, we illustrate this proof by using the case n = 9
and d = 6.

Wlog (without loss of generality), let code word 0 (the first, which we will
call cw0) be 000 000 000. Then all other code words must have at least six 1’s,
to differ from cw0 in at least six places.

Assume (which will be shown) that the code has at least three code words.
Then no code word can have seven or more 1’s. For if one did, then another
code word (which necessarily has six or more 1’s) would have at least four of its
1’s in the same columns as the word with seven or more 1’s. This means the
code words would be equal in four or more positions, so they could differ in five
or fewer positions (9 – 4), violating the requirement that d = 6. Therefore, all
code words other than the first must have exactly six 1’s.

Wlog, rearrange the columns so that the first two code words are
cw0: 000 000 000

cw1: 111 111 000

The next code word, cw2, cannot have four or more of its 1’s in the left six
columns, because then it would be the same as cw1 in four or more positions,
so it would differ from cw1 in five or fewer positions. Therefore it has three or
fewer of its 1’s in the left six columns, so that three of its 1’s must be in the
right three positions. Therefore exactly three of its 1’s are in the left six
columns. Rearrange the left six columns (of all three code words) so that cw2
looks like this:

cw2: 111 000 111

By similar reasoning, the next code word (cw3) cannot have four of its 1’s in
the left three and right three positions together, because it would then equal
cw2 in four positions. Therefore it has three fewer 1’s in the left three and right
three positions, so that three of its 1’s must be in the middle three positions. By
similarly comparing it to cw1, we conclude that three of its 1’s must be in the
right three positions. Therefore cw3 is:

cw3: 000 111 111

By comparing the next code word, if one is possible, with cw1, we conclude
that it must have three 1’s in the right three positions. By comparing it with
cw2, we conclude it must have three 1’s in the middle three positions.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15ansa9
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15ansa9
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15tab1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_333

Answers To Exercises

Thus, the code word is 000 111 111, which is the same as cw3. Therefore a
fifth code word is impossible. By inspection, the above four code words satisfy
d = 6, so A(9, 6) = 4.

10. Obviously A(n, d) is at least 2, because the two code words can be all 0’s and all
1’s. Reasoning as in the previous exercise, let one code word, cw0, be all 0’s.
Then all other code words must have more than 2n/3 1’s. If the code has three
or more code words, then any two code words other than cw0 must have 1’s in
the same positions for more than 2n/3 – n/3 = n/3 positions, as suggested by
the figure below.

(The figure represents cw1 with its 1’s pushed to the left. Imagine placing the
more than 2n/3 1’s of cw2 to minimize the overlap of the 1’s.) Since cw1 and
cw2 overlap in more than n/3 positions, they can differ in less than n – n/3 =
2n/3 positions, resulting in a minimum distance less than 2n/3.

11. It is SEC-DED, because the minimum distance between code words is 4. To see
this, assume first that two code words differ in a single information bit. Then in
addition to the information bit, the row parity, column parity, and corner check
bits will be different in the two code words, making their distance equal to 4. If
the information words differ in two bits, and they are in the same row, then the
row parity bit will be the same in the two code words, but the column parity bit
will differ in two columns. Hence their distance is 4. The same result follows if
they are in the same column. If the two differing information bits are in different
rows and columns, then the distance between the code words is 6. Lastly, if the
information words differ in three bits, it is easy to verify that no matter what
their distribution among the rows and columns, at least one parity bit will differ.
Hence the distance is at least 4.

If the corner bit is not used, the minimum distance is 3. Therefore it is not
SEC-DED, but it is a SEC code.

Whether the corner check bit is a row sum or a column sum, it is the modulo
2 sum of all 64 information bits, so it has the same value in either case.

The code requires 17 check bits, whereas the Hamming code requires eight
(see Table 15–3 on page 336), so it is not very efficient in that respect.

But it is effective in detecting burst errors. Assume the 9×9 array is
transmitted over a bit serial channel in the order row 0, row 1,..., row 8. Then
any sequence of ten or fewer bits is in one or two rows with at most one bit of
overlap. Hence if the only errors in a transmission are a subset of ten
consecutive bits, the error will be detected by checking the column parities in
most cases, or the row parity bits in the case that the first and tenth bits only
are in error.

An error that is not detected is four corrupted bits arranged in a rectangle.

Chapter 16: Hilbert’s Curve
1. and 2.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15ansa10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15ansa10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15ansa11
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15ansa11
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15tab3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_336
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#ch16ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#ch16ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#ch16ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#ch16ansa2

Answers To Exercises

The average jump distance for the traversal shown at the left above is
approximately 1.46. That for the traversal shown at the right is approximately
1.33. Therefore, using the Gray code seems to improve locality, at least by this
measure. (For the Hilbert curve, the jumps are all of distance 1.)

At Edsger Dijkstra’s suggestion, the shuffle algorithm was used in an early
Algol compiler to map a matrix onto backing store. The aim was to reduce
paging operations when inverting a matrix. He called it the “zip-fastener
algorithm.” It seems likely that many people have discovered it independently.

3. Use every third bit of s.

Chapter 17: Floating-Point
1. ±0, ±2.0, and certain NaNs.

2. Yes! The program is easily derived by noting that if x = 2n(1+f), then

Ignoring the fraction, this shows that we must change the biased exponent
from 127 + n to 127 + n /2. The latter is (127 +n)/2 + 127/2. Thus, it seems

that a rough approximation to is obtained by shifting rep(x) right one
position and adding 63 in the exponent position, which is 0x1F800000. This
approximation,

also has the property that if we find an optimal value of k for values of x in the
range 1.0 to 4.0, then the same value of k is optimal for all normal numbers.
After refining the value of k with the aid of a program that finds the maximum
and minimum error for a given value of k, we obtain the program shown below.
It includes one step of Newton-Raphson iteration.

float asqrt(float x0) {
 union {int ix; float x;};

 x = x0; // x can be viewed as int.
 ix = 0x1fbb67a8 + (ix >> 1); // Initial guess.
 x = 0.5f*(x + x0/x); // Newton step.
 return x;
}

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#ch16ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#ch16ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#ch17ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#ch17ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#ch17ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#ch17ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p447fig01

Answers To Exercises

For normal numbers, the relative error ranges from 0 to approximately
0.000601. It gets the correct result for x = inf and x = NaN (inf and NaN,
respectively). For x = 0 the result is approximately 4.0 × 10–20 . For x = –0, the
result is the rather useless –1.35 × 1019. For x a positive denorm, the result is
either within the stated tolerance or is a positive number less than 10–19 .

The Newton step uses division, so on most machines the program is not as
fast as that for the reciprocal square root.

If a second Newton step is added, the relative error for normal numbers
ranges from 0 to approximately 0.00000023. The optimal constant is
0x1FBB3F80. If no Newton step is included, the relative error is slightly less than
±0.035, using a constant of 0x1FBB4F2E. This is about the same as the relative
error of the reciprocal square root routine without a Newton step, and like it,
uses only two integer operations.

3. Yes, one can do cube roots of positive normal numbers with basically the same
method. The key statement is the first approximation:

i = 0x2a51067f + i/3; // Initial guess.

This computes the cube root with a relative error of approximately ±0.0316.
The division by 3 can be approximated with

(where the divisions by powers of 2 are implemented as right shifts). This can
be evaluated with seven instructions and slightly improved accuracy as shown
in the program below. (This division trick is discussed in Section 10–18 on page
251.)

float acbrt(float x0) {
 union {int ix; float x;};

 x = x0; // x can be viewed as int.
 ix = ix/4 + ix/16; // Approximate divide by 3.
 ix = ix + ix/16;
 ix = ix + ix/256;
 ix = 0x2a5137a0 + ix; // Initial guess.
 x = 0.33333333f*(2.0f*x + x0/(x*x)); // Newton step.
 return x;
}

Although we avoided the division by 3 (at a cost of seven elementary
integer instructions), there is a division and four other instructions in the Newton
step. The relative error ranges from 0 to approximately +0.00103. Thus, the
method is not as successful as in the case of reciprocal square root and square
root, but it might be useful in some situations.

If the Newton step is repeated and the same constant is used, the relative
error ranges from 0 to approximately +0.00000116.

4. Yes. The program below computes the reciprocal square root of a double-
precision floating-point number with an accuracy of about ±3.5%. It is
straightforward to improve its accuracy with one or two steps of Newton-

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#ch17ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#ch17ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p447fig02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev18
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_251
file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p448fig01
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#ch17ansa4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#ch17ansa4

Answers To Exercises

Raphson iteration. Using the constant 0x5fe80...0 gives a relative error in the
range 0 to approximately +0.887, and the constant 0x5fe618fdf80...0 gives a
relative error in the range 0 to approximately –0.0613.

double rsqrtd(double x0) {
 union {long long ix; double x;};

 x = x0;
 ix = 0x5fe6ec85e8000000LL - (ix >> 1);
 return x;
}

Chapter 18: Formulas for Primes

1. Let f(x) = anxn + an-1xn-1 +... + a0. Such a polynomial monotonically
approaches infinity, in magnitude, as x approaches infinity. (For sufficiently
large x, the first term exceeds in magnitude the sum of the others.)

Let x0 be an integer such that |f(x)| ≥ 2 for all x > x0. Let f (x0) = k, and
let r be any positive integer. Then |k |≥ 2, and

Thus, as r increases, |f(x0 + rk) | ranges over composites that increase in
magnitude, and hence are distinct. Therefore f (x) takes on an infinite number
of composite values.

Another way to state the theorem is that there is no non-constant
polynomial in one variable that takes on only prime numbers, even for
sufficiently large values of its argument.

Example: Let f (x) = x2 + x + 41. Then f (1) = 43 and

which clearly produces ever-increasing multiples of 43 as r increases.
2. Suppose p is composite. Write the congruence as

(p – 1)! = pk – 1,

for some integer k. Let a be a proper factor of p. Then a divides the left side,
but not the right side, so equality cannot hold.

The theorem is easily seen to be true for p = 1, 2, and 3. Suppose p is a

file:///E|/A%20Post/b/bbbbb/OEBPS/html/images17.html#p448fig02
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18ansa1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18ansa2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18ansa2

Answers To Exercises

prime greater than 3. Then in the factorial

(p – 1)! = (p – 1)(p – 2)...(3)(2),

the first term, p – 1, is congruent to –1 modulo p. Each of the other terms is
relatively prime to p and therefore has a multiplicative inverse modulo p (see
Section 10–16 on page 240), and furthermore, the inverse is unique and not
equal to itself.

To see that the multiplicative inverse modulo a prime is not equal to itself
(except for 1 and p – 1), suppose a2 ≡ 1 (mod p). Then a2 – 1 ≡ 0 (mod p), so
that (a – 1)(a + 1) ≡ 0 (mod p). Because p is a prime, either a – 1 or a + 1 is
congruent to 0 modulo p. In the former case a ≡ 1 (mod p) and in the latter
case a ≡ –1 ≡ p – 1 (mod p).

Therefore, the integers p – 2, p – 3, ..., 2 can be paired so that the product
of each pair is congruent to 1 modulo p. That is,

(p – 1)! = (p – 1)(ab)(cd)...,

where a and b are multiplicative inverses, as are c and d, and so forth. Thus

(p-1)! = (-1)(1)(1) ≡ -1 (mod p).

Example, p = 11: 10! (mod 11)= 10 • 9 • 8 • 7 • 6 • 5 • 4 • 3 • 2 (mod 11)
= 10-(9-5)(8-7)(6-2)(4-3) (mod 11) = (-1)(1)(1)(1)(1) (mod 11) = -1 (mod
11).

The theorem is named for John Wilson, a student of the English
mathematician Edward Waring. Waring announced it without proof in 1770. The
first published proof was by Lagrange in 1773. The theorem was known in
medieval Europe around 1000 AD.

3. If n = ab, with a and b distinct and neither equal to 1 or n, then clearly a and b
are less than n and hence are terms of (n – 1)!. Therefore n divides (n –1)!.

If n = a2, then for a > 2, a2 = n>2a, so that both a and 2a are terms of (n
- 1)!. Therefore a2 divides (n – 1)!.

4. This is probably a case in which a calculation gives more insight into a
mathematical truth than does a formal proof.

According to Mills’s theorem, there exists a real number θ such that θ3n is
prime for all integers n ≥1. Let us try the possibility that for n = 1, the prime is
2. Then

θ31 = 2,

so that

Cubing inequality (1) gives

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#ch10lev16
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_240
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18ansa3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18ansa4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18ansa4

Answers To Exercises

There is a prime in this range. (From our assumption, there is a prime between

23 and (2 + 1)3.) Let us choose 11 for the second prime. Then, we will have

θ32 = 11 if we further constrain (2) to

Continuing, we cube (3), giving

We are assured that there is a prime between 1331 and 1728. Let us choose
the smallest one, 1361. Further constraining (4),

1361 ≤ θ33 < 1362.

So far, we have shown that there exists a real number theta such that θ3n

 is prime for n = 1, 2, and 3 and, by taking 27th roots of 1361 and 1362, that
θ is between 1.30637 and 1.30642.

Obviously the process can be continued. It can be shown that a limiting
value of θ exists, but that is not really necessary. If, in the limit, θ is an
arbitrary number in some finite range, that still verifies Mills’s theorem.

The above calculation shows that Mills’s theorem is a little contrived. As far
as its being a formula for primes, you have to know the primes to determine θ.
It is like the formula for primes involving the constant

a = 0.203005000700011000013...,

given on page 392. The theorem clearly has little to do with primes. A similar
theorem holds for any increasing sequence provided it is sufficiently dense.

The steps above calculate the smallest theta that satisfies Mills’s theorem. It
is sometimes called Mills’ constant, and it has been calculated to over 6850
decimal places [CC].

5. Suppose that there exist integers a, b, c, and d such that

Equating real and imaginary parts,

Clearly c ≠ 0, because if c = 0 then from (6), -5bd = 2, which has no
solution in integers.

Also b ≠ 0, because if b = 0, then from (7), either a or d is 0. a = 0 does
not satisfy (5). Therefore d = 0. Then (5) becomes ac = 2, so one of the factors
in (5) is a unit, which is not an acceptable decomposition.

From (7), abd + b2c = 0. From (6), a2c – 5 abd = 2a. Combining, a2c +

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_392
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18ansa5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18ansa5

Answers To Exercises

5b2c = 2a, or

(recall that c ≠ 0). The left side of (8) is at least a2 + 5, which exceeds 2a/c
whatever the values of a and c are.

To see that 3 is prime, the equation

a2 + 5b2 = 3a/c

can be similarly derived, with b ≠ 0 and c ≠ 0. This also cannot be satisfied in
integers.

The number 6 has two distinct decompositions into primes:

We have not shown that are primes. This can be shown by arguments
similar to those given above (although somewhat longer), but it is not really
necessary to do so to demonstrate that prime factorization is not unique in this
ring. This is because however each of these numbers might factor into primes,
the total decomposition will not be 2.3.

Appendix A. Arithmetic Tables for A 4-Bit Machine

Appendix A. Arithmetic Tables for A 4-Bit Machine

In the tables in Appendix A, underlining denotes signed overflow. For example, in Table
A–1, 7 + 1 = 8, which is not representable as a signed integer on a 4-bit machine, so
signed overflow occurred.

TABLE A–1. ADDITION

The table for subtraction (Table A–2) assumes that the carry bit for a − b is set as
it would be for , so that carry is equivalent to “not borrow.”

TABLE A–2. S UBTRACTION (ROW – COLUMN)

For multiplication (Tables A–3 and A–4), overflow means that the result cannot be
expressed as a 4-bit quantity. For signed multiplication (Table A–3), this is equivalent

Appendix A. Arithmetic Tables for A 4-Bit Machine

to the first five bits of the 8-bit result not being all 1’s or all 0’s.

TABLE A–3. S IGNED MULTIPLICATION

TABLE A–4. UNSIGNED MULTIPLICATION

Tables A–5 and A–6 are for conventional truncating division. Table A–5 shows a
result of 8 with overflow for the case of the maximum negative number divided by –1,
but on most machines the result in this case is undefined, or the operation is
suppressed.

TABLE A–5. S IGNED SHORT DIVISION (ROW ÷ COLUMN)

Appendix A. Arithmetic Tables for A 4-Bit Machine

TABLE A–6. UNSIGNED SHORT DIVISION (ROW ÷ COLUMN)

Tables A–7 and A–8 give the remainder associated with conventional truncating
division. Table A–7 shows a result of 0 for the case of the maximum negative number
divided by –1, but on most machines the result for this case is undefined, or the
operation is suppressed.

TABLE A–7. REMAINDER FOR SIGNED SHORT DIVISION (ROW ÷ COLUMN)

Appendix A. Arithmetic Tables for A 4-Bit Machine

TABLE A–8. REMAINDER FOR UNSIGNED SHORT DIVISION (ROW ÷ COLUMN)

Appendix B. Newton’s Method

Appendix B. Newton’s Method

To review Newton’s method very briefly, we are given a differentiable function f of a
real variable x and we wish to solve the equation f(x) = 0 for x. Given a current
estimate xn of a root of f, Newton’s method gives us a better estimate xn + 1 under
suitable conditions, according to the formula

Here, f′(xn) is the derivative of f at x = xn. The derivation of this formula can be read
off the figure below (solve for xn + 1).

The method works very well for simple, well-behaved functions such as polynomials,
provided the first estimate is quite close. Once an estimate is sufficiently close, the
method converges quadratically. That is, if r is the exact value of the root, and xn is a
sufficiently close estimate, then

|xn + 1 − r| ≤ (xn − r)2.

Thus, the number of digits of accuracy doubles with each iteration (e.g., if |xn − r| ≤
0.001 then |xn + 1 − r| ≤ 0.000001).

If the first estimate is way off, then the iterations may converge very slowly, may
diverge to infinity, may converge to a root other than the one closest to the first
estimate, or may loop among certain values indefinitely.

This discussion has been quite vague because of phrases like “suitable conditions,”
“well-behaved,” and “sufficiently close.” For a more precise discussion, consult almost
any first-year calculus textbook.

In spite of the caveats surrounding this method, it is occasionally useful in the
domain of integers. To see whether or not the method applies to a particular function,
you have to work it out, such as is done in Section 11–1, “Integer Square Root,” on
page 279.

Table B–1 gives a few iterative formulas derived from Newton’s method, for
computing certain numbers. The first column shows the number it is desired to

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#ch11lev1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_279

Appendix B. Newton’s Method

compute. The second column shows a function that has that number as a root. The
third column shows the right-hand side of Newton’s formula corresponding to that
function.

TABLE B–1. N EWTON’S METHOD FOR COMPUTING CERTAIN NUMBERS

It is not always easy, incidentally, to find a good function to use. There are, of
course, many functions that have the desired quantity as a root, and only a few of
them lead to a useful iterative formula. Usually, the function to use is a sort of inverse
of the desired computation. For example, to find use f(x) = x2 − a; to find log2a
use f(x) = 2x − a, and so on.1

The iterative formula for log2a converges (to log2a) even if the multiplier 1/ln2 is
altered somewhat (for example, to 1, or to 2). However, it then converges more slowly.
A value of 3/2 or 23/16 might be useful in some applications (1/ln2 ≈ 1.4427).

file:///E|/A%20Post/b/bbbbb/OEBPS/html/footnotes.html#app02fn1

Appendix C. A Gallery of Graphs of Discrete Functions

Appendix C. A Gallery of Graphs of Discrete
Functions

This appendix shows plots of a number of discrete functions. They were produced by
Mathematica. For each function, two plots are shown: one for a word size of three bits
and the other for a word size of five bits. This material was suggested by Guy Steele.

C–1 Plots of Logical Operations on Integers
This section includes 3D plots of and(x, y), or(x, y), and xor(x, y) as functions of
integers x and y, in Figures C–1, C–2, and C–3, respectively.

FIGURE C–1. Plots of the logical and function.

FIGURE C–2. Plots of the logical or function.

In Figure C–3, almost half of the points are hidden behind the diagonal plane
.

Appendix C. A Gallery of Graphs of Discrete Functions

FIGURE C–3. Plots of the logical exclusive or function.

For and(x, y) (Figure C–1), a certain self-similar, or fractal, pattern of triangles is
apparent. If the figure is viewed straight on parallel to the y-axis and taken to the limit
for large integers, the appearance would be as shown in Figure C–4.

FIGURE C–4. Self-similar pattern made by and(x, y).

This is much like the Sierpinski triangle [Sagan], except Figure C–4 uses right triangles
whereas Sierpinski used equilateral triangles. In Figure C–3, a pattern along the slanted
plane is evident that is precisely the Sierpinski triangle if carried to the limit.

C–2 Plots of Addition, Subtraction, and Multiplication
This section includes 3D plots of addition, subtraction, and three forms of multiplication
of unsigned numbers, using “computer arithmetic,” in Figures C–5 through C–9. Note
that for the plot of the addition operation, the origin is the far-left corner.

Appendix C. A Gallery of Graphs of Discrete Functions

FIGURE C–5. Plots of x + y (computer arithmetic).

FIGURE C–6. Plots of x – y (computer arithmetic).

In Figure C–7, the vertical scales are compressed; the highest peaks in the left
figure are of height 7·7 = 49.

Appendix C. A Gallery of Graphs of Discrete Functions

FIGURE C–7. Plots of the unsigned product of x and y.

FIGURE C–8. Plots of the low-order half of the unsigned product of x and y.

FIGURE C–9. Plots of the high-order half of the unsigned product of x and y.

Appendix C. A Gallery of Graphs of Discrete Functions

C–3 Plots of Functions Involving Division
This section includes 3D plots of the quotient, remainder, greatest common divisor, and
least common multiple functions of nonnegative integers x and y, in Figures C–10, C–
11, C–12, and C–13, respectively. Note that in Figure C–10, the origin is the rightmost
corner.

FIGURE C–10. Plots of the integer quotient function x÷y.

FIGURE C–11. Plots of the remainder function rem(x, y).

Appendix C. A Gallery of Graphs of Discrete Functions

FIGURE C–12. Plots of the greatest common divisor function GCD(x, y).

In Figure C–13, the vertical scales are compressed; the highest peaks in the left
figure are of height LCM(6, 7) = 42.

FIGURE C–13. Plots of the least common multiple function LCM(x, y).

C–4 Plots of the Compress, SAG, and Rotate Left Functions

This section includes 3D plots of compress(x, m), SAG(x, m), and rotate left as
functions of integers x, m, and r, in Figures C–14, C–15, and C–16, respectively

For compress and SAG, m is a mask. For compress, bits of x selected by m are
extracted and compressed to the right, with 0-fill on the left. For SAG, bits of x
selected by m are compressed to the left, and the unselected bits are compressed to
the right.

Appendix C. A Gallery of Graphs of Discrete Functions

FIGURE C–14. Plots of the generalized extract, or compress(x, m) function.

FIGURE C–15. Plots of the sheep and goats function SAG(x, m).

Appendix C. A Gallery of Graphs of Discrete Functions

FIGURE C–16. Plots of the rotate left function

C–5 2D Plots of Some Unary Functions
Figures C–17 through C–21 show 2D plots of some unary functions on bit strings that
are reinterpreted as functions on integers. Like the 3D plots, these were also produced
by Mathematica. For most functions, two plots are shown: one for a word size of four
bits and the other for a word size of seven bits.

FIGURE C–17. Plots of the Gray code function.

FIGURE C–18. Plots of the inverse Gray code function.

FIGURE C–19. Plots of the ruler function (number of trailing zeros).

Appendix C. A Gallery of Graphs of Discrete Functions

FIGURE C–20. Plots of the population count function (number of 1-bits).

FIGURE C–21. Plots of the bit reversal function.

“Gray code function” refers to a function that maps an integer that represents a
displacement or rotation amount to the Gray encoding for that displacement or rotation
amount. The inverse Gray code function maps a Gray encoding to a displacement or
rotation amount. See Figure 13–1 on page 313.

Figure C–22 shows what happens to a deck of 16 cards, numbered 0 to 15, after
one, two, and three outer perfect shuffles (in which the first and last cards do not
move). The x coordinate is the original position of a card, and the y coordinate is the
final position of that card after one, two, or three shuffles. Figure C–23 is the same for
one, two, and three perfect inner shuffles. Figures C–24 and C–25 are for the inverse
operations.

FIGURE C–22. Plots of the outer perfect shuffle function.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#ch13fig1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_313

Appendix C. A Gallery of Graphs of Discrete Functions

FIGURE C–23. Plots of the inner perfect shuffle function.

FIGURE C–24. Plots of the outer perfect unshuffle function.

FIGURE C–25. Plots of the inner perfect unshuffle function.

Figures C–26 and C–27 show the mapping that results from shuffling the bits of an
integer of four and eight bits in length. Informally,

shuffleBits(x) = asInteger(shuffle(bits(x)))

Appendix C. A Gallery of Graphs of Discrete Functions

FIGURE C–26. Plots of the outer perfect shuffle bits function.

FIGURE C–27. Plots of the inner perfect shuffle bits function.

Bibliography

Bibliography

[AES]
Advanced Encryption Standard (AES), National Institute of Standards and
Technology, FIPS PUB 197 (November 2001). Available at
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[Agrell]
Agrell, Erik. http://webfiles.portal.chalmers.se/s2/research/kit/bounds/, table
last updated July 2004.

[Allen]
Allen, Joseph H. Private communication.

[Alv]
Alverson, Robert. “Integer Division Using Reciprocals.” In Proceedings IEEE
10th Symposium on Computer Arithmetic, June 26–28, 1991, Grenoble,
France, 186–190.

[Arndt]
Arndt, Jörg. Matters Computational: Ideas, Algorithms, Source Code.
Springer-Verlag, 2010. Also available at http://www.jjj.de/fxt/#fxtbook.

[Aus1]
Found in a REXX interpreter subroutine written by Marc A. Auslander.

[Aus2]
Auslander, Marc A. Private communication.

[Baum]
D. E. Knuth attributes the ternary method to an unpublished memo from the
mid-1970s by Bruce Baumgart, which compares about 20 different methods
for bit reversal on the PDP10.

[Bern]
Bernstein, Robert. “Multiplication by Integer Constants.” Software—Practice
and Experience 16, 7 (July 1986), 641–652.

[BGN]
Burks, Arthur W., Goldstine, Herman H., and von Neumann, John.
“Preliminary Discussion of the Logical Design of an Electronic Computing
Instrument, Second Edition” (1947). In Papers of John von Neumann on
Computing and Computing Theory, Volume 12 in the Charles Babbage
Institute Reprint Series for the History of Computing, MIT Press, 1987.

[Black]
Black, Richard. Web site
www.cl.cam.ac.uk/Research/SRG/bluebook/21/crc/crc.html. University of
Cambridge Computer Laboratory Systems Research Group, February 1994.

[Bonz]
Bonzini, Paolo. Private communication.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://webfiles.portal.chalmers.se/s2/research/kit/bounds/
http://www.jjj.de/fxt/#fxtbook
http://www.cl.cam.ac.uk/Research/SRG/bluebook/21/crc/crc.html

Bibliography

[Brou]
Brouwer, Andries E. http://www.win.tue.nl/~aeb/codes/binary-1.html, table
last updated January 2012.

[CavWer]
Cavagnino, D. and Werbrouck, A. E. “Efficient Algorithms for Integer Division
by Constants Using Multiplication.” The Computer Journal 51, 4 (2008),
470–480.

[CC]
Caldwell, Chris K. and Cheng, Yuanyou. “Determining Mills’ Constant and a
Note on Honaker’s Problem.” Journal of Integer Sequences 8, 4 (2005),
article 05.4.1, 9 pp. Also available at
http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Caldwell/caldwell78.pdf.

[CJS]
Stephenson, Christopher J. Private communication.

[Cohen]
These rules were pointed out by Norman H. Cohen.

[Cplant]
Leung, Vitus J., et. al. “Processor Allocation on Cplant: Achieving General
Processor Locality Using One-Dimensional Allocation Strategies.” In
Proceedings 4th IEEE International Conference on Cluster Computing,
September 2002, 296–304.

[Cut]
Cutland, Nigel J. Computability: An Introduction to Recursive Function
Theory. Cambridge University Press, 1980.

[CWG]
Hoxey, Karim, Hay, and Warren (Editors). The PowerPC Compiler Writer’s
Guide. Warthman Associates, 1996.

[Dalton]
Dalton, Michael. Private communication.

[Danne]
Dannemiller, Christopher M. Private communication. He attributes this code
to the Linux Source base, www.gelato.unsw.edu.au/lxr/source/lib/crc32.c,
lines 105–111.

[DES]
Data Encryption Standard (DES), National Institute of Standards and
Technology, FIPS PUB 46-2 (December 1993). Available at
http://www.itl.nist.gov/fipspubs/fip46-2.htm.

[Dewd]
Dewdney, A. K. The Turing Omnibus. Computer Science Press, 1989.

[Dietz]
Dietz, Henry G. http://aggregate.org/MAGIC/.

[Ditlow]
Ditlow, Gary S. Private communication.

http://www.win.tue.nl/~aeb/codes/binary-1.html
http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Caldwell/caldwell78.pdf
http://www.gelato.unsw.edu.au/lxr/source/lib/crc32.c
http://www.itl.nist.gov/fipspubs/fip46-2.htm
http://aggregate.org/MAGIC/

Bibliography

[Dubé]
Dubé, Danny. Newsgroup comp.compression.research, October 3, 1997.

[Dud]
Dudley, Underwood. “History of a Formula for Primes.” American
Mathematics Monthly 76 (1969), 23–28.

[EL]
Ercegovac, Miloš D. and Lang, Tomás. Division and Square Root: Digit-
Recurrence Algorithms and Implementations. Kluwer Academic Publishers,
1994.

[Etzion]
Etzion, Tuvi. “Constructions for Perfect 2-Burst-Correcting Codes,” IEEE
Transactions on Information Theory 47, 6 (September 2001), 2553–2555.

[Floyd]
Floyd, Robert W. “Permuting Information in Idealized Two-Level Storage.”
In Complexity of Computer Computations (Conference proceedings), Plenum
Press, 1972, 105–109. This is the earliest reference I know of for this
method of transposing a 2n × 2n matrix.

[Gard]
Gardner, Martin. “Mathematical Games” column in Scientific American 227,
2 (August 1972), 106–109.

[Gaud]
Gaudet, Dean. Private communication.

[GGS]
Gregoire, Dennis G., Groves, Randall D., and Schmookler, Martin S. Single
Cycle Merge/Logic Unit, US Patent No. 4,903,228, February 20, 1990.

[GK]
Granlund, Torbjörn and Kenner, Richard. “Eliminating Branches Using a
Superoptimizer and the GNU C Compiler.” In Proceedings of the 5th ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), July 1992, 341–352.

[GKP]
Graham, Ronald L., Knuth, Donald E., and Patashnik, Oren. Concrete
Mathematics: A Foundation for Computer Science, Second Edition. Addison-
Wesley, 1994.

[GLS1]
Steele, Guy L., Jr. Private communication.

[GLS2]
Steele, Guy L., Jr. “Arithmetic Shifting Considered Harmful.” AI Memo 378,
MIT Artificial Intelligence Laboratory (September 1976); also in SIGPLAN
Notices 12, 11 (November 1977), 61–69.

[GM]
Granlund, Torbjörn and Montgomery, Peter L. “Division by Invariant Integers
Using Multiplication.” In Proceedings of the ACM SIGPLAN ’94 Conference on

Bibliography

Programming Language Design and Implementation (PLDI), August 1994,
61–72.

[Gold]
The second expression is due to Richard Goldberg.

[Good]
Goodstein, Prof. R. L. “Formulae for Primes.” The Mathematical Gazette 51
(1967), 35–36.

[Gor]
Goryavsky, Julius. Private communication.

[GSO]
Found by the GNU Superoptimizer.

[HAK]
Beeler, M., Gosper, R. W., and Schroeppel, R. HAKMEM, MIT Artificial
Intelligence Laboratory AIM 239, February 1972.

[Ham]
Hamming, Richard W., “Error Detecting and Error Correcting Codes,” The
Bell System Technical Journal 26, 2 (April 1950), 147–160.

[Harley]
Harley, Robert. Newsgroup comp.arch, July 12, 1996.

[Hay1]
Hay, R. W. Private communication.

[Hay2]
The first expression was found in a compiler subroutine written by R. W.
Hay.

[Hil]
Hilbert, David. “Ueber die stetige Abbildung einer Linie auf ein
Flächenstück.” Mathematischen Annalen 38 (1891), 459–460.

[Hill]
Hill, Raymond. A First Course in Coding Theory. Clarendon Press, 1986.

[HilPat]
Hiltgen, Alain P. and Paterson, Kenneth G. “Single-Track Circuit Codes.”
IEEE Transactions on Information Theory 47, 6 (2001) 2587-2595.

[Hop]
Hopkins, Martin E. Private communication.

[HS]
Hillis, W. Daniel and Steele, Guy L., Jr. “Data Parallel Algorithms.” Comm.
ACM 29, 12 (December 1986) 1170–1183.

[Hsieh]
Hsieh, Paul. Newsgroup comp.lang.c, April 29, 2005.

[Huef]
Hueffner, Falk. Private communication.

Bibliography

[H&P]
Hennessy, John L. and Patterson, David A. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, 1990.

[H&S]
Harbison, Samuel P. and Steele, Guy L., Jr. C: A Reference Manual, Fourth
Edition. Prentice-Hall, 1995.

[H&W]
Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers,
Fourth Edition. Oxford University Press, 1960.

[IBM]
From an IBM programming course, 1961.

[Irvine]
Irvine, M. M. “Early Digital Computers at Bell Telephone Laboratories.” IEEE
Annals of the History of Computing 23, 3 (July–September 2001), 22–42.

[JVN]
von Neumann, John. “First Draft of a Report on the EDVAC.” In Papers of
John von Neumann on Computing and Computing Theory, Volume 12 in the
Charles Babbage Institute Reprint Series for the History of Computing, MIT
Press, 1987.

[Karat]
Karatsuba, A. and Ofman, Yu. “Multiplication of multidigit numbers on
automata.” Soviet Physics-Doklady 7, 7 (January 1963), 595–596. They
show the theoretical result that multiplication of m-bit integers is O(mlog23)
≈ O(m1.585), but the details of their method are more cumbersome than
the method based on Gauss’s three-multiplication scheme for complex
numbers.

[Karv]
Karvonen, Vesa. Found at “The Assembly Gems” web page,
www.df.lth.se/~john_e/fr_gems.html.

[Keane]
Keane, Joe. Newsgroup sci.math.num-analysis, July 9, 1995.

[Ken]
Found in a GNU C compiler for the IBM RS/6000 that was ported by Richard
Kenner. He attributes this to a 1992 PLDI conference paper by him and
Torbjörn Granlund.

[Knu1]
Knuth, Donald E. The Art of Computer Programming, Volume 1, Third
Edition: Fundamental Algorithms. Addison-Wesley, 1997.

[Knu2]
Knuth, Donald E. The Art of Computer Programming, Volume 2, Third
Edition: Seminumerical Algorithms. Addison-Wesley, 1998.

[Knu3]
The idea of using a negative integer as the base of a number system for

http://www.df.lth.se/~john_e/fr_gems.html

Bibliography

arithmetic has been independently discovered by many people. The earliest
reference given by Knuth is to Vittorio Grünwald in 1885. Knuth himself
submitted a paper on the subject in 1955 to a “science talent search” for
high-school seniors. For other early references, see [Knu2].

[Knu4]
Knuth, Donald E. The Art of Computer Programming, Volume 4A:
Combinatorial Algorithms, Part 1, Section 7.1.1. Addison-Wesley, 2011.

[Knu5]
Ibid, Section 7.1.3. Knuth attributes the equality relation to W. C. Lynch in
2006.

[Knu6]
Ibid, Section 7.2.1.1, Exercise 80.

[Knu7]
Knuth, Donald E. The Art of Computer Programming, Volume 1, Fascicle 1:
MMIX—A RISC Computer for the New Millennium. Addison-Wesley, 2005.

[Knu8]
Knuth, Donald E. Private communication.

[KRS]
Kruskal, Clyde P., Rudolph, Larry, and Snir, Marc. “The Power of Parallel
Prefix.” IEEE Transactions on Computers C-34, 10 (October 1985), 965–968.

[Kumar]
This figure was suggested by Gowri Kumar (private communication).

[Lamp]
Lamport, Leslie. “Multiple Byte Processing with Full-Word Instructions.”
Communications of the ACM 18, 8 (August 1975), 471–475.

[Lang]
Langdon, Glen G. Jr., “Subtraction by Minuend Complementation,” IEEE
Transactions on Computers C-18, 1 (January 1969), 74–76.

[LC]
Lin, Shu and Costello, Daniel J., Jr. Error Control Coding: Fundamentals and
Applications. Prentice-Hall, 1983.

[Lomo]
Lomont, Chris. Fast Inverse Square Root.
www.lomont.org/Math/Papers/2003/InvSqrt.pdf.

[LPR]
Leiserson, Charles E., Prokop, Harald, and Randall, Keith H. Using de Bruijn
Sequences to Index a 1 in a Computer Word. MIT Laboratory for Computer
Science, July 7, 1998. Also available at
http://supertech.csail.mit.edu/papers/debruijn.pdf.

[LSY]
Lee, Ruby B., Shi, Zhijie, and Yang, Xiao. “Efficient Permutation Instructions
for Fast Software Cryptography.” IEEE Micro 21, 6 (November/December
2001), 56–69.

http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf
http://supertech.csail.mit.edu/papers/debruijn.pdf

Bibliography

[L&S]
Lam, Warren M. and Shapiro, Jerome M. “A Class of Fast Algorithms for the
Peano-Hilbert Space-Filling Curve.” In Proceedings ICIP 94, 1 (1994), 638–
641.

[MD]
Denneau, Monty M. Private communication.

[MIPS]
Kane, Gerry and Heinrich, Joe. MIPS RISC Architecture. Prentice-Hall, 1992.

[MM]
Morton, Mike. “Quibbles & Bits.” Computer Language 7, 12 (December
1990), 45–55.

[Möbi]
Möbius, Stefan K. Private communication.

[MS]
MacWilliams, Florence J. and Sloane, Neil J. A. The Theory of Error-
Correcting Codes, Part II. North-Holland, 1977.

[Mycro]
Mycroft, Alan. Newsgroup comp.arch, April 8, 1987.

[Neum]
Neumann, Jasper L. Private communication.

[NZM]
Niven, Ivan, Zuckerman, Herbert S., and Montgomery, Hugh L. An
Introduction to the Theory of Numbers, Fifth Edition. John Wiley & Sons,
Inc., 1991.

[PeBr]
Peterson, W. W. and Brown, D. T. “Cyclic Codes for Error Detection.” In
Proceedings of the IRE, 1 (January 1961), 228–235.

[PHO]
Oden, Peter H. Private communication.

[PL8]
I learned this trick from the PL.8 compiler.

[PuBr]
Purdom, Paul Walton Jr., and Brown, Cynthia A. The Analysis of Algorithms.
Holt, Rinehart and Winston, 1985.

[Reiser]
Reiser, John. Newsgroup comp.arch.arithmetic, December 11, 1998.

[Rib]
Ribenboim, Paulo. The Little Book of Big Primes. Springer-Verlag, 1991.

[RND]
Reingold, Edward M., Nievergelt, Jurg, and Deo, Narsingh. Combinatorial
Algorithms: Theory and Practice. Prentice-Hall, 1977.

Bibliography

[Roman]
Roman, Steven. Coding and Information Theory. Springer-Verlag, 1992.

[Sagan]
Sagan, Hans. Space-Filling Curves. Springer-Verlag, 1994. A wonderful
book, thoroughly recommended to anyone even slightly interested in the
subject.

[Seal1]
Seal, David. Newsgroup comp.arch.arithmetic, May 13, 1997. Harley was the
first known to this writer to apply the CSA to this problem, and Seal showed
a particularly good way to use it for counting the bits in a large array (as
illustrated in Figures 5–8 and 5–9), and also for an array of size seven
(similar to the plan of Figure 5–10).

[Seal2]
Seal, David. Newsgroup comp.sys.acorn.tech, February 16, 1994.

[Shep]
Shepherd, Arvin D. Private communication.

[Stall]
Stallman, Richard M. Using and Porting GNU CC. Free Software Foundation,
1998.

[Strach]
Strachey, Christopher. “Bitwise Operations.” Communications of the ACM 4,
3 (March 1961), 146. This issue contains another paper that gives two
methods for bit reversal (“Two Methods for Word Inversion on the IBM
709,” by Robert A. Price and Paul Des Jardins; there is a small correction on
page A13 of the March 1961 issue). These methods are not discussed in this
book because they rely on the somewhat exotic Convert by Addition from
the MQ (CAQ) instruction of that machine. That instruction does a series of
indexed table lookups, adding the word fetched from memory to the
accumulator. It is not a RISC instruction.

[Tanen]
Tanenbaum, Andrew S. Computer Networks, Second Edition. Prentice Hall,
1988.

[Taro]
The author of this program seems to be lost in history. One of the earliest
people to use it and to tweak the constant a bit was Gary Tarolli, probably
while he was at SGI. He also helped to make it more widely known and
says it goes back to 1995 or earlier. For more on the history see
http://www.beyond3d.com/content/articles/8/.

[Voor]
Voorhies, Douglas. “Space-Filling Curves and a Measure of Coherence.”
Graphics Gems II, AP Professional (1991).

[War]
Warren, H. S., Jr. “Functions Realizable with Word-Parallel Logical and
Two’s-Complement Addition Instructions.” Communications of the ACM 20, 6
(June 1977), 439–441.

http://www.beyond3d.com/content/articles/8/

Bibliography

[Weg]
The earliest reference to this that I know of is: Wegner, P. A. “A Technique
for Counting Ones in a Binary Computer.” Communications of the ACM 3, 5
(May 1960), 322.

[Wells]
Wells, David. The Penguin Dictionary of Curious and Interesting Numbers.
Penguin Books, 1997.

[Will]
Willans, C. P. “On Formulae for the nth Prime Number.” The Mathematical
Gazette 48 (1964), 413–415.

[Wood]
Woodrum, Luther. Private communication. The second formula uses no
literals and works well on the IBM System/370.

[Wor]
Wormell, C. P. “Formulae for Primes.” The Mathematical Gazette 51 (1967),
36–38.

[Zadeck]
Zadeck, F. Kenneth. Private communication.

Footnotes

Footnotes

Foreword
1. Why “HAKMEM”? Short for “hacks memo”; one 36-bit PDP-10 word could hold six 6-bit characters,

so a lot of the names PDP-10 hackers worked with were limited to six characters. We were used to
glancing at a six-character abbreviated name and instantly decoding the contractions. So naming the
memo “HAKMEM” made sense at the time—at least to the hackers.

Preface
1. One such program, written in C, is:

main(){char*p=”main(){char*p=%c%s%c;(void)printf(p,34,p,34,10);}%c”;(void)printf(p,34,p,34,10);}

Chapter 2
1. A variation of this algorithm appears in [H&S] sec. 7.6.7.

2. This is useful to get unsigned comparisons in Java, which lacks unsigned integers.

3. Mathematicians name the operation monus and denote it with . The terms positive difference and
saturated subtraction are also used.

4. A destructive operation is one that overwrites one or more of its arguments.

5. Horner’s rule simply factors out x. For example, it evaluates the fourth-degree polynomial ax4 + bx3

+ cx2 + dx + e as x (x(x(ax + b) + c) + d) + e. For a polynomial of degree n it takes n
multiplications and n additions, and it is very suitable for the multiply-add instruction.

6. Logic designers will recognize this as Reed-Muller, a.k.a positive Davio, decomposition. According to
Knuth [Knu4, 7.1.1], it was known to I. I. Zhegalkin [Matematicheskii Sbornik 35 (1928), 311–369].
It is sometimes referred to as the Russian decomposition.

7. The entire 335-page work is available at www.gutenberg.org/etext/15114.

Chapter 3
1. pop(x) is the number of 1-bits in x.

Chapter 4
1. In the sense of more compact, less branchy, code; faster-running code may result from checking

first for the case of no overflow, assuming the limits are not likely to be large.

Chapter 5
1. A full adder is a circuit with three 1-bit inputs (the bits to be added) and two 1-bit outputs (the sum

and carry).

2. The flakiness is due to the way C is used. The methods illustrated would be perfectly acceptable if
coded in machine language, or generated by a compiler, for a particular machine.

Chapter 7
1. Actually, the first shift left can be omitted, reducing the instruction count to 126. The quantity mv

comes out the same with or without it [Dalton].

2. If big-endian bit numbering is used, compress to the left all bits marked with 0’s, and to the right all
bits marked with 1’s.

Chapter 8
1. Reportedly this was known to Gauss.

Chapter 9
1. I may be taken to task for this nomenclature, because there is no universal agreement that

file:///E|/A%20Post/b/bbbbb/OEBPS/html/forword.html#forfna1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/pref01.html#pref01fna1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02fna1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02fna2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02fna3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02fna4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02fna5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02fna6
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#ch02fna7
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#ch03fna1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#ch04fna1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#ch05fna1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#ch05fna2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07fna1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#ch07fna2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#ch08fna1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09fna1

Footnotes

“modulus” implies “nonnegative.” Knuth’s “mod” operator [Knu1] is the remainder of floor division,
which is negative (or 0) if the divisor is negative. Several programming languages use “mod” for the
remainder of truncating division. However, in mathematics, “modulus” is sometimes used for the
magnitude of a complex number (nonnegative), and in congruence theory the modulus is generally
assumed to be positive.

2. Some do try. IBM’s PL.8 language uses modulus division, and Knuth’s MMIX machine’s division
instruction uses floor division [Knu7].

3. One execution of the RS/6000’s compare instruction sets multiple status bits indicating less than,
greater than, or equal.

4. Actually, the restoring division algorithm can avoid the restoring step by putting the result of the
subtraction in an additional register and writing that register into x only if the result of the
subtraction (33 bits) is nonnegative. In some implementations this may require an additional register
and possibly more time.

Chapter 12
1. The interested reader might warm up to this challenge.

2. This is the way it was done at Bell Labs back in 1940 on George Stibitz’s Complex Number
Calculator [Irvine].

Chapter 14
1. Since renamed the ITU-TSS (International Telecommunications Union—Telecommunications

Standards Sector).

Chapter 15

1. A perfect code exists for m = 2k – k – 1, k an integer—that is, m = 1, 4, 11, 26, 57, 120,....

2. It is also called the “binomial coefficient” because is the coefficient of the term xr yn – r in the
expansion of the binomial (x + y)n.

Chapter 16
1. Recall that a curve is a continuous map from a one-dimensional space to an n-dimensional space.

Chapter 17
1. This is not officially sanctioned C, but with almost all compilers it works.

Chapter 18
1. However, this is the only conjecture of Fermat known to be wrong [Wells].

2. Our apologies for the two uses of π in close proximity, but it’s standard notation and shouldn’t cause
any difficulty.

3. This is my terminology, not Willans’s.

4. We have slightly simplified his formula.

Answers To Exercises
1. Base –2 also has this property, but not base –1 + i.

2. These formulas were found by the exhaustive expression search program Aha! (A Hacker’s
Assistant).

Appendix B
1. Newton’s method for the special case of the square root function was known to Babylonians about

4,000 years ago.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09fna2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09fna3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#ch09fna4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12fna1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#ch12fna2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#ch14fna1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15fna1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#ch15fna2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#ch16fna1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#ch17fna1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18fna1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18fna2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18fna3
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#ch18fna4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ansfna1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#ansfna2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app02.html#app02fna1

Index

Index

0-bits, leading zeros. See nlz function.
0-bits, trailing zeros. See also ntz (number of trailing zeros) function.

counting, 107–114.
detecting, 324. See also CRC (cyclic redundancy check).
plots and graphs, 466

0-bytes, finding, 117–121
1-bits, counting. See Counting bits.
3:2 compressor, 90–95
The 16 Boolean binary operations, 53–57

A
Absolute value

computing, 18
multibyte, 40–41
negative of, 23–26

add instruction
condition codes, 36–37
propagating arithmetic bounds, 70–73

Addition
arithmetic tables, 453
combined with logical operations, 16–17
double-length, 38–39
multibyte, 40–41
of negabinary numbers, 301–302
overflow detection, 28–29
plots and graphs, 461
in various number encodings, 304–305

Advanced Encryption Standard, 164
Alternating among values, 48–51
Alverson‘s method, 237–238
and

plots and graphs, 459
in three instructions, 17

and with complement, 131
Answers to exercises, by chapter

1: Introduction, 405–406
2: Basics, 407–415
3: Power-of-2 Boundaries, 415–416
4: Arithmetic Bounds, 416–417
5: Counting Bits, 417–418
6: Searching words, 418–423
7: Rearranging Bits and Bytes, 423–425

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_107
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_114
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_324
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_466
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_117
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_121
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_90
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_95
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_53
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_57
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_18
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_40
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_41
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_23
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_26
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_36
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_37
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_70
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_73
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app01.html#page_453
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_16
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_17
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_38
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_39
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_40
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_41
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_301
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_302
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_28
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_29
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_461
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_304
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_305
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_164
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_48
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_51
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_237
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_238
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_459
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_17
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_131
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_405
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_406
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_407
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_415
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_415
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_416
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_416
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_417
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_417
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_418
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_418
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_423
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_423
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_425

Index

8: Multiplication, 425–428
9: Integer Division, 428–430
10: Integer Division by Constants, 431–434
11: Some Elementary Functions, 434–435
12: Unusual Bases for Number Systems, 435–439
13: Gray Code, 439–441
14: Cyclic Redundancy Check, 441–442
15: Error-Correcting Codes, 442–445
16: Hilbert‘s Curve, 446
17: Floating-Point, 446–448
18: Formulas for Primes, 448–452

Arithmetic, computer vs. ordinary, 1
Arithmetic bounds

checking, 67–69
of expressions, 70–71
propagating through, 70–73
range analysis, 70
searching for values in, 122

Arithmetic tables, 4-bit machine, 453–456
Arrays

checking bounds. See Arithmetic bounds.
counting 1-bits, 89–96
indexes, checking. See Arithmetic bounds.
indexing a sparse array, 95
permutation, 161–163
rearrangements, 165–166
of short integers, 40–41

Autodin-II polynomial, 323
Average, computing, 19, 55–56

B
Base –1 + i number system, 306–308

extracting real and imaginary parts, 310
Base –1 – i number system, 308–309
Base –2 number system, 299–306

Gray code, 315
rounding down, 310

Basic RISC instruction set, 5–6
Basic, Wang System 2200B, 55
Big-endian format, converting to little-endian, 129
Binary decomposition, integer exponentiation, 288–290
Binary forward error-correcting block codes (FEC), 331
Binary search

counting leading 0‘s, 99–104
integer logarithm, 291–297
integer square root, 279–287

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_425
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_428
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_428
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_430
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_431
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_434
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_434
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_435
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_435
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_439
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_439
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_441
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_441
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_442
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_442
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_445
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_446
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_446
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_448
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_448
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_452
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_67
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_69
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_70
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_71
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_70
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_73
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_70
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_122
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app01.html#page_453
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app01.html#page_456
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_89
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_96
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_95
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_161
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_163
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_165
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_166
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_40
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_41
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_323
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_19
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_55
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_56
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_306
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_308
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_310
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_308
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_309
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_299
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_306
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_315
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_310
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_6
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_55
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_129
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_288
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_290
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_331
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_99
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_104
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_291
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_297
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_279
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_287

Index

Bit matrices, multiplying, 98
Bit operations

compress operation, 150–156
computing parity. See Parity.
counting bits. See Counting bits.
finding strings of 1-bits, 123–128
flipping bits, 135
general permutations, 161–165
generalized bit reversal, 135
generalized extract, 150–156
half shuffle, 141
inner perfect shuffle, plots and graphs, 468–469
inner perfect unshuffle, plots and graphs, 468
inner shuffle, 139–141
numbering schemes, 1
outer shuffle, 139–141, 373
perfect shuffle, 139–141
reversing bits. See Reversing bits and bytes.
on rightmost bits. See Rightmost bits.
searching words for bit strings, 107, 123–128
sheep and goats operation, 161–165
shuffling bits, 139–141, 165–166
transposing a bit matrix, 141–150
unshuffling bits, 140–141, 150, 162

Bit reversal function, plots and graphs, 467
Bit vectors, 1
bitgather instruction, 163–165
Bits. See specific topics.
bitsize function, 106–107
Bliss, Robert D., xv
Bonzini, Paolo, 263
BOOL function, 54–55
Boole, George, 54
Boolean binary operations, all 16, 53–57
Boolean decomposition formula, 51–53, 56–57
Boundary crossings, powers of 2, 63–64
Bounds, arithmetic. See Arithmetic bounds.
Bounds checking. See Checking arithmetic bounds.
branch on carry and register result nonzero instruction, 63
Bytes. See also specific topics.

definition, 1
finding first 0-byte, 117–121

C
C language

arithmetic on pointers, 105, 240

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_98
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_150
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_156
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_123
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_128
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_135
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_161
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_165
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_135
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_150
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_156
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_141
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_468
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_469
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_468
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_139
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_141
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_139
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_141
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_373
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_139
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_141
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_107
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_123
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_128
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_161
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_165
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_139
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_141
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_165
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_166
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_141
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_150
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_140
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_141
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_150
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_162
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_467
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_163
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_165
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_106
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_107
file:///E|/A%20Post/b/bbbbb/OEBPS/html/pref01.html#page_xv
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_263
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_54
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_55
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_54
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_16
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_53
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_57
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_51
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_53
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_56
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_57
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#page_63
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#page_64
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#page_63
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_117
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_121
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_105
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_240

Index

GNU extensions, 105
iIterative statements, 4, 10
referring to same location with different types, 104
representation of character strings, 117
summary of elements, 2–4

Caches, 166-167
Carry-save adder (CSA) circuit, 90–95
CCITT (Le Comité Consultatif Internationale...), 321
Ceiling function, identities, 183–184
Chang, Albert, 123
Character strings, 117
Check bits

Hamming code, 332
SEC-DED code, 334–335

Checking arithmetic bounds, 67–69
Chinese ring puzzle, 315
Chipkill technology, 336
Code, definition, 343
Code length, 331, 343
Code rate, 343
Code size, 343
Comparison predicates

from the carry bit, 26–27
definition, 23
number of leading zeros (nlz) function, 23–24, 107
signed comparisons, from unsigned, 25
true/false results, 23
using negative absolute values, 23–26

Comparisons
computer evaluation of, 27
floating-point comparisons using integer operations, 381–382
three-valued compare function, 21–22. See also sign function.

Compress function, plots and graphs, 464–465
compress operation, 119, 150–161

with insert and extract instructions, 155–156
Computability test, right-to-left, 13–14, 55
Computer algebra, 2–4
Computer arithmetic

definition, 1
plots and graphs, 461–463

Condition codes, 36–37
Constants

dividing by. See Division of integers by constants.
multiplying by, 175–178

Counting bits. See also ntz (number of trailing zeros) function; nlz (number of leading
zeros) function; population count function.

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_105
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_104
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_117
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_166
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_167
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_90
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_95
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_321
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_183
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_184
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_123
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_117
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_332
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_334
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_335
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_67
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_69
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_315
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_336
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_343
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_331
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_343
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_343
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_343
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_26
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_27
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_23
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_23
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_24
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_107
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_25
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_23
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_23
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_26
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_27
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_381
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_382
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_21
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_22
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_464
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_465
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_119
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_150
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_161
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_155
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_156
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_13
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_55
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_2
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_461
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_463
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_36
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_37
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_175
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_178

Index

1-bits in
7- and 8-bit quantities, 87
an array, 89–95
a word, 81–88

bitsize function, 106–107
comparing two words, 88–89
divide and conquer strategy, 81–82
leading 0‘s, with

binary search method, 99–100
floating-point methods, 104–106
population count instruction, 101–102

rotate and sum method, 85–86
search tree method, 109
with table lookup, 86–87
trailing 0‘s, 107–114
by turning off 1-bits, 85

CRC (cyclic redundancy check)
background, 319–320
check bits, generating, 319–320
checksum, computing

generator polynomials, 322–323, 329
with hardware, 324–326
with software, 327–329
with table lookup, 328–329
techniques for, 320

code vector, 319
definition, 319
feedback shift register circuit, 325–326
generator polynomial, choosing, 322–323, 329
parity bits, 319–320
practice

hardware checksums, 324–326
leading zeros, detecting, 324
overview, 323–324
residual/residue, 324
software checksums, 327–329
trailing zeros, detecting, 324

theory, 320–323
CRC codes, generator polynomials, 322, 323
CRC-CITT polynomial, 323
Cryptography

Advanced Encryption Standard, 164
bitgather instruction, 164–165
DES (Data Encryption Standard), 164
Rijndael algorithm, 164
SAG method, 162–165

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_87
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_89
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_95
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_81
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_88
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_106
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_107
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_88
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_89
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_81
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_82
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_99
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_100
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_104
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_106
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_101
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_102
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_85
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_86
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_109
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_86
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_87
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_107
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_114
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_85
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_319
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_320
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_319
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_320
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_322
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_323
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_329
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_324
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_326
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_327
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_329
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_328
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_329
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_320
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_319
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_319
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_325
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_326
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_322
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_323
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_329
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_319
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_320
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_324
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_326
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_324
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_323
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_324
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_324
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_327
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_329
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_324
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_320
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_323
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_322
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_323
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_323
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_164
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_164
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_165
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_164
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_164
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_162
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_165

Index

shuffling bits, 139–141, 165
Triple DES, 164

CSA (carry-save addr) circuit, 90–95
Cube root, approximate, floating-point, 389
Cube root, integer, 287–288
Curves. See also Hilbert‘s curve.

Peano, 371–372
space-filling, 355–372

Cycling among values, 48–51

D
Davio decomposition, 51-53, 56–57
de Bruijn cycles, 111–112
de Kloet, David, 55
De Morgan‘s laws, 12–13
DEC PDP-10 computer, xiii, 84
Decryption. See Cryptography.
DES (Data Encryption Standard), 164
Dietz‘s formula, 19, 55
difference or zero (doz) function, 41–45
Distribution of leading digits, 385–387
Divide and conquer strategy, 81–82
Division

arithmetic tables, 455
doubleword

from long division, 197–202
signed, 201–202
by single word, 192–197
unsigned, 197–201

floor, 181–182, 237
modulus, 181–182, 237
multiword, 184–188
of negabinary numbers, 302–304
nonrestoring algorithm, 192–194
notation, 181
overflow detection, 34–36
plots and graphs, 463–464
restoring algorithm, 192–193
shift-and-subtract algorithms (hardware), 192–194
short, 189–192, 195–197
signed

computer, 181
doubleword, 201–202
long, 189
multiword, 188
short, 190–192

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_139
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_141
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_165
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_164
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_90
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_95
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_389
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_287
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_288
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_371
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_372
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_355
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_372
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_48
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_51
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_51
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_53
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_56
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_57
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_111
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_112
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_55
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_13
file:///E|/A%20Post/b/bbbbb/OEBPS/html/forword.html#page_xiii
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_84
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_164
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_19
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_55
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_41
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_45
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_385
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_387
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_81
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_82
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app01.html#page_455
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_197
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_202
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_201
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_202
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_192
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_197
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_197
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_201
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_181
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_182
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_237
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_181
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_182
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_237
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_184
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_188
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_302
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_304
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_192
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_194
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_181
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_34
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_36
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_463
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_464
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_192
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_193
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_192
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_194
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_189
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_192
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_195
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_197
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_181
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_201
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_202
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_189
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_188
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_190
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_192

Index

unsigned
computer, 181
doubleword, 197–201
long, 192–197
short from signed, 189–192

Division of integers by constants
by 3, 207–209, 276–277
by 5 and 7, 209–210
exact division

converting to, 274–275
definition, 240
multiplicative inverse, Euclidean algorithm, 242–245
multiplicative inverse, Newton‘s method, 245–247
multiplicative inverse, samples, 247–248

floor division, 237
incorporating into a compiler, signed, 220–223
incorporating into a compiler, unsigned, 232–234
magic numbers

Alverson‘s method, 237–238
calculating, signed, 212–213, 220–223
calculating, unsigned, 231–234
definition, 211
sample numbers, 238–239
table lookup, 237
uniqueness, 224

magicu algorithm, 232–234
magicu2 algorithm, 236
modulus division, 237
remainder by multiplication and shifting right

signed, 273–274
unsigned, 268–272

remainder by summing digits
signed, 266–268
unsigned, 262–266

signed
by divisors ≤ –2, 218–220
by divisors ≥ 2, 210–218
by powers of 2, 205–206
incorporating into a compiler, 220–223
not using mulhs (multiply high signed), 259–262
remainder by multiplication and shifting right, 273–274
remainder by summing digits, 266–268
remainder from powers of 2, 206–207
test for zero remainder, 250–251
uniqueness, 224

timing test, 276

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_181
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_197
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_201
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_192
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_197
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_189
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_192
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_207
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_209
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_276
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_277
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_209
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_210
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_274
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_275
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_240
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_242
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_245
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_245
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_247
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_247
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_248
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_237
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_220
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_223
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_232
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_234
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_237
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_238
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_212
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_213
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_220
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_223
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_231
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_234
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_211
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_238
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_239
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_237
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_224
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_232
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_234
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_236
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_237
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_273
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_274
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_268
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_272
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_266
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_268
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_262
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_266
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_218
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_220
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_210
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_218
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_205
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_206
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_220
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_223
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_259
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_262
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_273
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_274
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_266
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_268
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_206
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_207
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_250
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_251
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_224
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_276

Index

unsigned
best programs for, 234–235
by 3 and 7, 227–229
by divisors ≥ 1, 230–232
by powers of 2, 227
incorporating into a compiler, 232–234
incremental division and remainder technique, 232–234
not using mulhu (multiply high unsigned) instruction, 251–259
remainder by multiplication and shifting right, 268–272
remainder by summing digits, 262–266
remainder from powers of 2, 227
test for zero remainder, 248–250

Double buffering, 46
Double-length addition/subtraction, 38–39
Double-length shifts, 39–40
Doubleword division

by single word, 192–197
from long division, 197–202
signed, 201–202
unsigned, 197–201

Doublewords, definition, 1
doz (difference or zero) function, 41–45
Dubé, Danny, 112

E
ECCs (error-correcting codes)

check bits, 332
code, definition, 343
code length, 331, 343
code rate, 343
code size, 343
coding theory problem, 345–351
efficiency, 343
FEC (binary forward error-correcting block codes), 331
Gilbert-Varshamov bound, 348–350
Hamming bound, 348, 350
Hamming code, 332-342

converting to SEC-DED code, 334–337
extended, 334–337
history of, 335–337
overview, 332–334
SEC-DED on 32 information bits, 337–342

Hamming distance, 95, 343–345
information bits, 332
linear codes, 348–349
overview, 331, 342–343

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_234
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_235
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_227
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_229
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_230
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_232
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_227
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_232
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_234
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_232
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_234
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_251
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_259
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_268
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_272
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_262
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_266
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_227
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_248
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_250
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_46
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_38
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_39
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_39
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_40
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_192
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_197
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_197
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_202
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_201
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_202
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_197
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_201
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_41
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_45
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_112
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_332
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_343
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_331
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_343
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_343
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_343
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_345
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_351
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_343
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_331
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_348
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_350
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_348
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_350
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_332
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_342
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_334
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_337
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_334
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_337
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_335
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_337
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_332
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_334
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_337
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_342
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_95
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_343
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_345
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_332
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_348
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_349
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_331
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_342
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_343

Index

perfect codes, 333, 349, 352
SEC (single error-correcting) codes, 331
SEC-DED (single error-correcting, double error-detecting) codes

on 32 information bits, 337–342
check bits, minimum required, 335
converting from Hamming code, 334–337
definition, 331

singleton bound, 352
sphere-packing bound, 348, 350
spheres, 347–351

Encryption. See Cryptography.
End-around-carry, 38, 56, 304–305
Error detection, digital data. See CRC (cyclic redundancy check).
Estimating multiplication overflow, 33–34
Euclidean algorithm, 242–245
Euler, Leonhard, 392
Even parity, 96
Exact division

definition, 240
multiplicative inverse, Euclidean algorithm, 242–245
multiplicative inverse, Newton‘s method, 245–247
multiplicative inverse, samples, 247–248
overview, 240–242

Exchanging
conditionally, 47
corresponding register fields, 46
two fields in same register, 47
two registers, 45–46

exclusive or
plots and graphs, 460
propagating arithmetic bounds through, 77–78
scan operation on an array of bits, 97
in three instructions, 17

Execution time model, 9–10
Exercise answers. See Answers to exercises.
Expand operation, 156–157, 159–161
Exponentiation

by binary decomposition, 288–290
in Fortran, 290

Extended Hamming code, 334–342
on 32 information bits, 337-342

Extract, generalized, 150–156

F
Factoring, 178
FEC (binary forward error-correcting block codes), 331

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_333
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_349
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_352
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_331
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_337
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_342
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_335
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_334
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_337
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_331
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_352
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_348
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_350
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_347
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_351
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_38
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_56
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_304
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_305
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_33
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_34
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_242
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_245
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_392
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_96
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_240
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_242
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_245
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_245
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_247
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_247
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_248
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_240
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_242
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_47
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_46
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_47
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_45
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_46
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_460
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_77
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_78
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_97
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_17
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_9
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_156
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_157
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_159
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_161
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_288
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_290
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_290
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_334
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_342
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_337
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_342
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_150
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_156
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_178
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_331

Index

feedback shift register circuit, 325–326
Fermat numbers, 391
FFT (Fast Fourier Transform), 137–139
find leftmost 0-byte, 117–121
find rightmost 0-byte, 118–121
Finding

decimal digits, 122
first 0-byte, 117–121
first uppercase letter, 122
length of character strings, 117
next higher number, same number of 1-bits, 14–15
the nth prime, 391–398, 403
strings of 1-bits

first string of a given length, 123–125
longest string, 125–126
shortest string, 126–128

values within arithmetic bounds, 122
Flipping bits, 135
Floating-point numbers, 375–389

distribution of leading digits, 385–387
formats (single/double), 375–376
gradual underflow, 376
IEEE arithmetic standard, 375
IEEE format, 375–377
NaN (not a number), 375–376
normalized, 375–377
subnormal numbers, 375–377
table of miscellaneous values, 387–389
ulp (unit in the last position), 378

Floating-point operations
approximate cube root, 389
approximate reciprocal square root, 383–385
approximate square root, 389
comparing using integer operations, 381–382
conversion table, 378–381
converting to/from integers, 377–381
counting leading 0‘s with, 104–106
simulating, 107

Floor division, 181–182, 237
Floor function, identities, 183, 202–203
Floyd, R. W., 114
Formula functions, 398–403
Formulas for primes, 391–403
Fortran

IDIM function, 44
integer exponentiation, 290

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_325
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_326
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_391
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_137
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_139
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_117
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_121
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_118
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_121
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_122
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_117
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_121
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_122
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_117
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_15
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_391
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_398
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_403
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_123
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_125
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_125
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_126
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_126
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_128
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_122
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_135
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_375
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_389
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_385
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_387
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_375
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_376
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_376
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_375
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_375
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_377
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_375
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_376
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_375
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_377
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_375
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_377
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_387
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_389
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_378
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_389
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_383
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_385
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_389
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_381
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_382
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_378
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_381
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_377
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_381
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_104
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_106
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_107
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_181
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_182
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_237
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_183
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_202
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_203
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_114
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_398
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_403
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_391
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_403
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_44
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_290

Index

ISIGN function, 22
MOD function, 182

Fractal triangles, plots and graphs, 460
Full adders, 90
Full RISC instruction set, 7
Fundamental theorem of arithmetic, 404

G
Gardner, Martin, 315
Gaudet, Dean, 110
Gaudet‘s algorithm, 110
generalized extract operation, 150–156
Generalized unshuffle. See SAG (sheep and goats) operation.
Generator polynomials, CRC codes, 321–323
Gilbert-Varshamov bound, 348–350
Golay, M. J. E., 331
Goryavsky, Julius, 103
Gosper, R. W.

iterating through subsets, 14–15
loop-detection, 114–116

Gradual underflow, 376
Graphics-rendering, Hilbert‘s curve, 372–373
Graphs. See Plots and graphs.
Gray, Frank, 315
Gray code

applications, 315–317
balanced, 317
converting integers to, 97, 312–313
cyclic, 312
definition, 311
history of, 315–317
incrementing Gray-coded integers, 313–315
negabinary Gray code, 315
plots and graphs, 466
reflected, 311–312, 315
single track (STGC), 316–317

Greatest common divisor function, plots and graphs, 464
GRP instruction, 165

H
Hacker, definition, xvi
HAKMEM (hacks memo), xiii
Half shuffle, 141
Halfwords, 1
Hamiltonian paths, 315
Hamming, R. W., 331

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_22
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_182
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_460
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_90
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_7
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_404
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_315
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_110
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_110
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_150
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_156
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_321
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_323
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_348
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_350
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_331
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_103
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_15
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_114
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_116
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_376
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_372
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_373
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_315
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_315
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_317
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_317
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_97
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_312
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_313
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_312
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_311
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_315
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_317
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_313
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_315
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_315
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_466
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_311
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_312
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_315
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_316
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_317
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_464
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_165
file:///E|/A%20Post/b/bbbbb/OEBPS/html/pref01.html#page_xvi
file:///E|/A%20Post/b/bbbbb/OEBPS/html/forword.html#page_xiii
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_141
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_315
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_331

Index

Hamming bound, 348, 350
Hamming code

on 32 information bits, 337–342
converting to SEC-DED code, 334–337
extended, 334–337
history of, 335–337
overview, 332–334
perfect, 333, 352

Hamming distance, 95, 343–345
triangle inequality, 352

Hardware checksums, 324–326
Harley, Robert, 90, 101
Harley‘s algorithm, 101, 103
Hexadecimal floating-point, 385
High-order half of product, 173–174
Hilbert, David, 355
Hilbert‘s curve. See also Space-filling curves.

applications, 372–373
coordinates from distance

curve generator driver program, 359
description, 358–366
Lam and Shapiro method, 362–364, 368
parallel prefix operation, 365–366
state transition table, 361, 367

description, 355–356
distance from coordinates, 366–368
generating, 356–358
illustrations, 355, 357
incrementing coordinates, 368–371
non-recursive generation, 371
ray tracing, 372
three-dimensional analog, 373

Horner‘s rule, 49

I
IBM

Chipkill technology, 336
Harvest computer, 336
PCs, error checking, 336
PL/I language, 54
Stretch computer, 81, 336
System/360 computer, 385
System/370 computer, 63

IDIM function, 44
IEEE arithmetic standard, 375
IEEE format, floating-point numbers, 375–377

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_348
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_350
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_337
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_342
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_334
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_337
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_334
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_337
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_335
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_337
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_332
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_334
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_333
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_352
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_95
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_343
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_345
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_352
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_324
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_326
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_90
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_101
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_101
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_103
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_385
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_173
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_174
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_355
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_372
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_373
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_359
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_358
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_366
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_362
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_364
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_368
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_365
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_366
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_361
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_367
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_355
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_356
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_366
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_368
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_356
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_358
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_355
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_357
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_368
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_371
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_371
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_372
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_373
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_49
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_336
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_336
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_336
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_54
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_81
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_336
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_385
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#page_63
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_44
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_375
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_375
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_377

Index

IEEE Standard for Floating-Point Arithmetic, 375
Image processing, Hilbert‘s curve, 372
Incremental division and remainder technique, 232–234
Inequalities, logical and arithmetic expressions, 17–18
Information bits, 332
Inner perfect shuffle function, plots and graphs, 468–469
Inner perfect unshuffle function, plots and graphs, 468
Inner shuffle, 139–141
insert instruction, 155–156
Instruction level parallelism, 9
Instruction set for this book, 5–8
integer cube root function, 287–288, 297
Integer exponentiation, 288–290
integer fourth root function, 297
integer log base 2 function, 106, 291
integer log base 10 function, 292–297
Integer quotient function, plots and graphs, 463
integer remainder function, 463
integer square root function, 279–287
Integers. See also specific operations on integers.

complex, 306–309
converting to/from floating-point, 377–381
converting to/from Gray code, 97, 312–313
reversed, incrementing, 137–139
reversing, 129–137

Inverse Gray code function
formula, 312
plots and graphs, 466

An Investigation of the Laws of Thought, 54
ISIGN (transfer of sign) function, 22
Iterating through subsets, 14–15
ITU-TSS (International Telecommunications Union...), 321
ITU-TSS polynomial, 323

K
Knuth, Donald E., 132
Knuth‘s Algorithm D, 184–188
Knuth‘s Algorithm M, 171–172, 174–175
Knuth‘s mod operator, 181
Kronecker, Leopold, 375

L
Lam and Shapiro method, 362–364, 368
Landry, F., 391
Leading 0‘s, counting, 99–106. See also nlz (number of leading zeros) function.
Leading 0’s, detecting, 324. See also CRC (cyclic redundancy check).

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_375
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_372
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_232
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_234
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_17
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_18
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_332
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_468
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_469
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_468
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_139
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_141
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_155
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_156
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_9
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_8
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_287
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_288
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_297
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_288
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_290
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_297
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_106
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_291
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_292
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_297
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_463
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_463
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_279
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_287
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_306
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_309
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_377
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_381
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_97
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_312
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_313
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_137
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_139
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_129
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_137
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_312
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_466
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_54
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_22
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_15
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_321
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_323
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_132
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_184
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_188
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_171
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_172
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_174
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_175
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_181
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_375
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_362
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_364
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_368
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_391
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_99
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_106
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_324

Index

Leading digits, distribution, 385–387
Least common multiple function, plots and graphs, 464
Linear codes, 348–349
Little-endian format, converting to/from big-endian, 129
load word byte-reverse (lwbrx) instruction, 118
Logarithms

binary search method, 292–293
definition, 291
log base 2, 106–107, 291
log base 10, 291–297
table lookup, 292, 294–297

Logical operations
with addition and subtraction, 16–17
and, plots and graphs, 459
binary, table of, 17
exclusive or, plots and graphs, 460
or, plots and graphs, 459
propagating arithmetic bounds through, 74–76, 78
tight bounds, 74–78

Logical operators on integers, plots and graphs, 459–460
Long Division, definition, 189
Loop detection, 114–115
LRU (least recently used) algorithm, 166–169
lwbrx (load word byte-reverse) instruction, 118

M
MacLisp, 55
magic algorithm

incremental division and remainder technique, 232–234
signed division, 220–223
unsigned division, 232–234

Magic numbers
Alverson‘s method, 237–238
calculating, signed, 212–213, 220–223
calculating, unsigned, 232–234
calculating, Python code for
definition, 211
samples, 238–239
table lookup, 237
uniqueness, 224

magicu algorithm, 232–234
in Python, 240

magicu2 algorithm, 236–237
max function, 41–45
Mills, W. H., 403
Mills’s theorem, 403–404

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_385
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_387
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_464
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_348
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_349
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_129
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_118
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_292
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_293
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_291
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_106
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_107
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_291
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_291
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_297
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_292
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_294
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_297
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_16
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_17
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_459
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_17
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_460
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_459
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_74
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_76
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_78
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_74
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_78
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_459
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_460
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_189
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_114
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_115
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_166
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_169
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_118
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_55
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_232
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_234
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_220
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_223
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_232
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_234
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_237
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_238
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_212
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_213
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_220
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_223
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_232
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_234
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_211
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_238
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_239
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_237
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_224
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_232
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_234
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_240
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_236
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_237
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_41
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_45
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_403
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_403
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_404

Index

min function, 41–45
MIT PDP-6 Lisp, 55
MOD function (Fortran), 182
modu (unsigned modulus) function, 98
Modulus division, 181–182, 237
Moore, Eliakim Hastings, 371–372
mulhs (multiply high signed) instruction

division with, 207–210, 212, 218, 222, 235
implementing in software, 173–174
not using, 259–262

mulhu (multiply high unsigned) instruction
division with, 228–229, 234–235, 238
implementing in software, 173
not using, 251–259

Multibyte absolute value, 40–41
Multibyte addition/subtraction, 40–41
Multiplication

arithmetic tables, 454
of complex numbers, 178–179
by constants, 175–178
factoring, 178
low-order halves independent of signs, 178
high-order half of 64-bit product, 173–174
high-order product signed from/to unsigned, 174–175
multiword, 171–173
of negabinary numbers, 302
overflow detection, 31–34
plots and graphs, 462

Multiplicative inverse
Euclidean algorithm, 242–245
Newton‘s method, 245–247, 278
samples, 247–248

multiply instruction, condition codes, 36–37
Multiword division, 184–189
Multiword multiplication, 171–173
MUX operation in three instructions, 56
mux (multiplex) instruction, 406

N
NAK (negative acknowledgment), 319
NaN (not a number), 375–376
Negabinary number system, 299–306

Gray code, 315
Negative absolute value, 23–26
Negative overflow, 30
Newton-Raphson calculation, 383

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_41
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_45
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_55
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_182
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_98
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_181
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_182
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_237
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_371
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_372
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_207
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_210
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_212
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_218
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_222
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_235
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_173
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_174
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_259
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_262
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_228
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_229
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_234
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_235
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_238
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_173
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_251
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_259
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_40
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_41
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_40
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_41
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app01.html#page_454
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_178
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_179
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_175
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_178
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_178
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_178
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_173
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_174
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_174
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_175
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_171
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_173
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_302
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_31
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_34
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_462
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_242
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_245
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_245
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_247
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_278
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_247
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_248
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_36
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_37
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_184
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_189
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_171
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_173
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_56
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_406
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_319
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_375
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_376
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_299
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_306
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_315
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_23
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_26
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_30
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_383

Index

Newton‘s method, 457–458
integer cube root, 287–288
integer square root, 279–283
multiplicative inverse, 245–248

Next higher number, same number of 1-bits, 14–15
Nibbles, 1
nlz (number of leading zeros) function

applications, 79, 107, 128
bitsize function, 106–107
comparison predicates, 23–24, 107
computing, 99–106
for counting trailing 0‘s, 107
finding 0-bytes, 118
finding strings of 1-bits, 123–124
incrementing reversed integers, 138
and integer log base 2 function, 106
rounding to powers of 2, 61

Nonrestoring algorithm, 192–194
Normalized numbers, 376
Notation used in this book, 1–4
nth prime, finding

formula functions, 398–401
Willans‘s formulas, 393–397
Wormell‘s formula, 397–398

ntz (number of trailing zeros) function
applications, 114–116
from counting leading 0‘s, 107
loop detection, 114–115
ruler function, 114

Number systems
base –1 + i, 306–308
base –1 – i, 308–309
base –2, 299–306, 315
most efficient base, 309–310
negabinary, 299–306, 315

O
Odd parity, 96
1-bits, counting. See Counting bits.
or

plots and graphs, 459
in three instructions, 17

Ordinary arithmetic, 1
Ordinary rational division, 181
Outer perfect shuffle bits function, plots and graphs, 469
Outer perfect shuffle function, plots and graphs, 467

file:///E|/A%20Post/b/bbbbb/OEBPS/html/app02.html#page_457
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app02.html#page_458
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_287
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_288
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_279
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_283
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_245
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_248
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_15
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_79
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_107
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_128
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_106
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_107
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_23
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_24
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_107
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_99
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_106
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_107
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_118
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_123
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_124
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_138
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_106
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#page_61
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_192
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_194
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_376
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_4
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_398
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_401
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_393
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_397
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_397
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_398
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_114
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_116
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_107
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_114
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_115
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_114
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_306
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_308
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_308
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_309
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_299
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_306
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_315
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_309
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_310
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_299
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_306
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_315
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_96
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_459
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_17
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_181
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_469
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_467

Index

Outer perfect unshuffle function, plots and graphs, 468
Outer shuffle, 139–141, 373
Overflow detection

definition, 28
division, 34–36
estimating multiplication overflow, 33–34
multiplication, 31–34
negative overflow, 30
signed add/subtract, 28–30
unsigned add/subtract, 31

P
Parallel prefix operation

definition, 97
Hilbert‘s curve, 364–366
inverse, 116
parity, 97

Parallel suffix operation
compress operation, 150–155
expand operation, 156–157, 159–161
generalized extract, 150–156
inverse, 116

Parity
adding to 7-bit quantities, 98
applications, 98
computing, 96–98
definition, 96
parallel prefix operation, 97
scan operation, 97
two-dimensional, 352

Parity bits, 319–320
PCs, error checking, 336
Peano, Giuseppe, 355
Peano curves, 371–372. See also Hilbert‘s curve.
Peano-Hilbert curve. See Hilbert‘s curve.
Perfect codes, 333, 349
Perfect shuffle, 139–141, 373
Permutations on bits, 161–165. See also Bit operations.
Planar curves, 355. See also Hilbert‘s curve.
Plots and graphs, 459–469

addition, 461
bit reversal function, 467
compress function, 464–465
division, 463–464
fractal triangles, 460
Gray code function, 466

file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_468
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_139
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_141
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_373
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_28
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_34
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_36
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_33
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_34
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_31
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_34
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_30
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_28
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_30
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_31
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_97
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_364
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_366
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_116
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_97
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_150
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_155
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_156
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_157
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_159
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_161
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_150
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_156
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_116
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_98
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_98
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_96
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_98
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_96
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_97
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_97
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_352
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_319
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_320
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_336
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_355
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_371
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_372
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_333
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_349
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_139
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_141
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_373
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_161
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_165
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_355
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_459
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_469
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_461
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_467
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_464
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_465
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_463
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_464
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_460
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_466

Index

greatest common divisor function, 464
inner perfect shuffle, 468–469
inner perfect unshuffle, 468
integer quotient function, 463
inverse Gray code function, 466
least common multiple function, 464
logical and function, 459
logical exclusive or function, 460
logical operators on integers, 459–460
logical or function, 459
multiplication, 462
number of trailing zeros, 466
outer perfect shuffle, 467–469
outer perfect unshuffle, 468
population count function, 467
remainder function, 463
rotate left function, 465
ruler function, 466
SAG (sheep and goats) function, 464–465
self-similar triangles, 460
Sierpinski triangle, 460
subtraction, 461
unary functions, 466–469
unsigned product of x and y, 462

Poetry, 278, 287
population count function. See also Counting bits.

applications, 95–96
computing Hamming distance, 95
counting 1-bits, 81
counting leading 0‘s, 101–102
counting trailing 0‘s, 107–114
plots and graphs, 467

Position sensors, 315–317
Powers of 2

boundary crossings, detecting, 63–64
rounding to, 59–62, 64
signed division, 205–206
unsigned division, 227

PPERM instruction, 165
Precision, loss of, 385–386
Prime numbers

Fermat numbers, 391
finding the nth prime

formula functions, 398–403
Willans‘s formulas, 393–397
Wormell‘s formula, 397–398

file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_464
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_468
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_469
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_468
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_463
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_466
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_464
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_459
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_460
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_459
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_460
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_459
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_462
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_466
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_467
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_469
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_468
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_467
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_463
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_465
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_466
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_464
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_465
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_460
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_460
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_461
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_466
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_469
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_462
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_278
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_287
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_95
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_96
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_95
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_81
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_101
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_102
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_107
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_114
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_467
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_315
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_317
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#page_63
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#page_64
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#page_59
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#page_62
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#page_64
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_205
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_206
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_227
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_165
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_385
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_386
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_391
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_398
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_403
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_393
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_397
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_397
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_398

Index

formulas for, 391–403
from polynomials, 392

Propagating arithmetic bounds
add and subtract instructions, 70–73
logical operations, 73–78
signed numbers, 71–73
through exclusive or, 77–78

PSHUFB (Shuffle Packed Bytes) instruction, 163
PSHUFD (Shuffle Packed Doublewords) instruction, 163
PSHUFW (Shuffle Packed Words) instruction, 163

Q
Quicksort, 81

R
Range analysis, 70
Ray tracing, Hilbert‘s curve, 372
Rearrangements and index transformations, 165–166
Reed-Muller decomposition, 51-53, 56–57
Reference matrix method (LRU), 166–169
Reflected binary Gray code, 311–312, 315
Registers

exchanging, 45–46
exchanging conditionally, 47
exchanging fields of, 46–47
reversing contents of, 129–135
RISC computers, 5

Reiser, John, 113
Reiser‘s algorithm, 113–114
Remainder function, plots and graphs, 463
Remainders

arithmetic tables, 456
of signed division

by multiplication and shifting right, 273–274
by summing digits, 266–268
from non-powers of 2, 207–210
from powers of 2, 206–207
test for zero, 248–251

of unsigned division
by multiplication and shifting right, 268–272
by summing digits, 262–266
and immediate instruction, 227
incremental division and remainder technique, 232–234
test for zero, 248–250

remu function, 119, 135–136
Residual/residue, 324

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_391
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_403
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_392
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_70
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_73
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_73
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_78
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_71
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_73
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_77
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_78
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_163
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_163
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_163
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_81
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_70
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_372
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_165
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_166
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_51
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_53
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_56
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_57
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_166
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_169
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_311
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_312
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_315
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_45
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_46
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_47
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_46
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_47
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_129
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_135
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_113
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_113
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_114
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_463
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app01.html#page_456
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_273
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_274
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_266
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_268
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_207
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_210
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_206
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_207
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_248
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_251
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_268
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_272
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_262
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_266
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_227
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_232
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_234
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_248
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_250
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_119
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_135
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_136
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_324

Index

Restoring algorithm, 192–193
Reversing bits and bytes, 129–137

6-, 7-, 8-, and 9-bit quantities, 135–137
32-bit words, 129–135
big-endian format, converting to little-endian, 129
definition, 129
generalized, 135
load word byte-reverse (lwbrx) instruction, 118
rightmost 16 bits of a word, 130
with rotate shifts, 129–133
small integers, 135–137
table lookup, 134

Riemann hypothesis, 404
Right justify function, 116
Rightmost bits, manipulating, 11–12, 15

De Morgan‘s laws, 12–13
right-to-left computability test, 13–14, 55

Rijndael algorithm, 164
RISC

basic instruction set, 5–6
execution time model, 9–10
extended mnemonics, 6, 8
full instruction set, 7–8
registers, 5–6

Rotate and sum method, 85–86
Rotate left function, plots and graphs, 464–465
Rotate shifts, 37–38, 129–133
Rounding to powers of 2, 59–62, 64
Ruler function, 114, 466
Russian decomposition, 51-53, 56–57

S
SAG (sheep and goats) operation

description, 162–165
plots and graphs, 464–465

Scan operation, 97
Seal, David, 90, 110
Search tree method, 109
Searching. See Finding.
SEC (single error-correcting) codes, 331
SEC-DED (single error-correcting, double error-detecting) codes

on 32 information bits, 337–342
check bits, minimum required, 335
converting from Hamming code, 334–335
definition, 331

Select instruction, 406

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_192
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_193
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_129
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_137
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_135
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_137
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_129
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_135
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_129
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_129
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_135
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_118
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_130
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_129
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_133
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_135
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_137
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_134
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_404
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_116
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_11
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_15
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_12
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_13
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_13
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_55
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_164
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_6
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_9
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_10
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_6
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_8
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_7
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_8
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_5
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_6
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_85
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_86
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_464
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_465
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_37
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_38
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_129
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_133
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#page_59
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#page_62
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#page_64
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_114
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_466
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_51
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_53
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_56
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_57
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_162
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_165
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_464
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_465
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_97
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_90
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_110
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_109
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_331
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_337
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_342
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_335
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_334
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_335
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_331
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch19_answer.html#page_406

Index

Self-reproducing program, xvi
Self-similar triangles, plots and graphs, 460
shift left double operation, 39
shift right double signed operation, 39–40
shift right double unsigned operation, 39
shift right extended immediate (shrxi) instruction, 228–229
shift right signed instruction

alternative to, for sign extension, 19–20
division by power of 2, 205–206
from unsigned, 20

Shift-and-subtract algorithm
hardware, 192–194
integer square root, 285–287

Shifts
double-length, 39–40
rotate, 37–38

Short division, 189–192, 195–196
Shroeppel‘s formula, 305–306
shrxi (shift right extended immediate) instruction, 228–229
Shuffle Packed Bytes (PSHUFB) instruction, 163
Shuffle Packed Doublewords (PSHUFD) instruction, 163
Shuffle Packed Words (PSHUFW) instruction, 163
Shuffling

arrays, 165–166
bits

half shuffle, 141
inner perfect shuffle, plots and graphs, 468–469
inner perfect unshuffle, plots and graphs, 468
inner shuffle, 139–141
outer shuffle, 139–141, 373
perfect shuffle, 139–141
shuffling bits, 139–141, 165–166
unshuffling, 140–141, 150, 162, 165-166

Sierpinski triangle, plots and graphs, 460
Sign extension, 19–20
sign function, 20–21. See also three-valued compare function.
Signed bounds, 78
Signed comparisons, from unsigned, 25
Signed computer division, 181–182
Signed division

arithmetic tables, 455
computer, 181
doubleword, 201–202
long, 189
multiword, 188
short, 190–192

file:///E|/A%20Post/b/bbbbb/OEBPS/html/pref01.html#page_xvi
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_460
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_39
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_39
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_40
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_39
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_228
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_229
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_19
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_20
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_205
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_206
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_20
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_192
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_194
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_285
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_287
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_39
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_40
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_37
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_38
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_189
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_192
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_195
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_196
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_305
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_306
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_228
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_229
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_163
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_163
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_163
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_165
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_166
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_141
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_468
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_469
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_468
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_139
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_141
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_139
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_141
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_373
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_139
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_141
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_139
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_141
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_165
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_166
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_140
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_141
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_150
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_162
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_165
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_166
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_460
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_19
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_20
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_20
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_21
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_78
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_25
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_181
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_182
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app01.html#page_455
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_181
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_201
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_202
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_189
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_188
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_190
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_192

Index

Signed division of integers by constants
best programs for, 225–227
by divisors ≤ –2, 218–220
by divisors ≥ 2, 210–218
by powers of 2, 205–206
incorporating into a compiler, 220–223
remainder from non-powers of 2, 207–210
remainder from powers of 2, 206–207
test for zero remainder, 250–251
uniqueness of magic number, 224

Signed long division, 189
Signed numbers, propagating arithmetic bounds, 71–73
Signed short division, 190–192
signum function, 20–21
Single error-correcting, double error-detecting (SEC-DED) codes. See SEC-DED (single

error-correcting, double error-detecting) codes.
Single error-correcting (SEC) codes, 331
snoob function, 14–15
Software checksums, 327–329
Space-filling curves, 371–372. See also Hilbert‘s curve.
Sparse array indexing, 95
Sphere-packing bound, 348–350
Spheres, ECCs (error-correcting codes), 347–350
Square root, integer

binary search, 281–285
hardware algorithm, 285–287
Newton‘s method, 279–283
shift-and-subtract algorithm, 285–287

Square root, approximate, floating-point, 389
Square root, approximate reciprocal, floating-point, 383–385
Stibitz, George, 308
Strachey, Christopher, 130
Stretch computer, 81, 336
Strings. See Bit operations; Character strings.
strlen (string length) C function, 117
Subnormal numbers, 376
Subnorms, 376
subtract instruction

condition codes, 36–37
propagating arithmetic bounds, 70–73

Subtraction
arithmetic tables, 453
difference or zero (doz) function, 41–45
double-length, 38–39
combined with logical operations, 16–17
multibyte, 40–41

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_225
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_227
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_218
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_220
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_210
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_218
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_205
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_206
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_220
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_223
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_207
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_210
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_206
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_207
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_250
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_251
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_224
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_189
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_71
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_73
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_190
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_192
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_20
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_21
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_331
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_14
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_15
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_327
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_329
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_371
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_372
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_95
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_348
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_350
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_347
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_350
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_281
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_285
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_285
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_287
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_279
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_283
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_285
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch11.html#page_287
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_389
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_383
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_385
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_308
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_130
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_81
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch15.html#page_336
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_117
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_376
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_376
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_36
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_37
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_70
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_73
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app01.html#page_453
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_41
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_45
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_38
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_39
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_16
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_17
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_40
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_41

Index

of negabinary numbers, 301–302
overflow detection, 29–31
plots and graphs, 461

Swap-and-complement method, 362–365
Swapping pointers, 46
System/360 computer, 385
System/370 computer, 63

T
Table lookup, counting bits, 86–87
three-valued compare function, 21–22. See also sign function.
Tight bounds

add and subtract instructions, 70–73
logical operations, 74–79

Timing test, division of integers by constants, 276
Toggling among values, 48–51
Tower of Hanoi puzzle, 116, 315
Trailing zeros. See also ntz (number of trailing zeros) function.

counting, 107–114
detecting, 324. See also CRC (cyclic redundancy check).
plots and graphs, 466

Transfer of sign (ISIGN) function, 22
Transposing a bit matrix

8 x 8, 141–145
32 x 32, 145–149

Triangles
fractal, 460
plots and graphs, 460
self-similar, 460
Sierpinski, 460

Triple DES, 164
True/false comparison results, 23
Turning off 1-bits, 85

U
Ulp (unit in the last position), 378
Unaligned load, 65
Unary functions, plots and graphs, 466–469
Uniqueness, of magic numbers, 224
Unshuffling

arrays, 162
bits, 140–141, 162, 468

Unsigned division
arithmetic tables, 455
computer, 181
doubleword, 197–201

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_301
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch12.html#page_302
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_29
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_31
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_461
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_362
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_365
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_46
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_385
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#page_63
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_86
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_87
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_21
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_22
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_70
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_73
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_74
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch04.html#page_79
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_276
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_48
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_51
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_116
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch13.html#page_315
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_107
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_114
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch14.html#page_324
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_466
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_22
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_141
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_145
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_145
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_149
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_460
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_460
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_460
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_460
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_164
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_23
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_85
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch17.html#page_378
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch03.html#page_65
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_466
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_469
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_224
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_162
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_140
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_141
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_162
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_468
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app01.html#page_455
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_181
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_197
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_201

Index

long, 192–197
short from signed, 189–192

Unsigned division of integers by constants
best programs for, 234–235
by 3 and 7, 227–229
by divisors ≥ 1, 230–232
by powers of 2, 227
incorporating into a compiler, 232–234
incremental division and remainder technique, 232–234
remainders, from powers of 2, 227
test for zero remainder, 248–250

unsigned modulus (modu) function, 84
Unsigned product of x and y, plots and graphs, 462
Uppercase letters, finding, 122

V
Voorhies, Douglas, 373

W
Willans, C. P., 393
Willans‘s formulas, 393–397
Wilson‘s theorem, 393, 403
Word parity. See Parity.
Words

counting bits, 81–87
definition, 1
division

doubleword by single word, 192–197
Knuth‘s Algorithm D, 184–188
multiword, 184–189
signed, multiword, 188

multiplication, multiword, 171–173
reversing, 129–134
searching for

first 0-byte, 117–121
first uppercase letter, 122
strings of 1-bits, 123–128
a value within a range, 122

word parallel operations, 13
Wormell, C. P., 397
Wormell‘s formula, 397–398

Z
zbytel function, 117–121
zbyter function, 117–121
Zero means 2n, 22–23

file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_192
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_197
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_189
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_192
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_234
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_235
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_227
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_229
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_230
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_232
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_227
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_232
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_234
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_232
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_234
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_227
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_248
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch10.html#page_250
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_84
file:///E|/A%20Post/b/bbbbb/OEBPS/html/app03.html#page_462
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_122
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch16.html#page_373
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_393
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_393
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_397
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_393
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_403
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_81
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch05.html#page_87
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch01.html#page_1
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_192
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_197
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_184
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_188
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_184
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_189
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch09.html#page_188
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_171
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch08.html#page_173
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_129
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch07.html#page_134
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_117
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_121
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_122
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_123
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_128
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_122
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_13
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_397
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_397
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch18.html#page_398
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_117
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_121
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_117
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch06.html#page_121
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_22
file:///E|/A%20Post/b/bbbbb/OEBPS/html/ch02.html#page_23

	Hacker's Delight 2nd Edition
	Contents
	Foreword
	Preface

	Chapter 1. Laying the Groundwork
	Chapter 2. Basics
	Chapter 3. Power-of-2 Boundaries
	Chapter 4. Arithmetic Bounds
	Chapter 5. Counting Bits
	Chapter 6. Searching Words
	Chapter 7. Rearranging Bits and Bytes
	Chapter 8. Multiplication
	Chapter 9. Integer Division
	Chapter 10. Integer Division By Constants
	Chapter 11. Some Elementary Functions
	Chapter 12. Unusual Bases for Number Systems
	Chapter 13. Gray Code
	Chapter 14. Cyclic Redundancy Check
	Chapter 15. Error-Correcting Codes
	Chapter 16. Hilbert’s Curve
	Chapter 17. Floating-Point
	Chapter 18. Formulas For Primes
	Answers To Exercises
	Appendix A. Arithmetic Tables for A 4-Bit Machine
	Appendix B. Newton’s Method
	Appendix C. A Gallery of Graphs of Discrete Functions
	Bibliography
	Footnotes
	Index

